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Abstract

Facial landmark detection, as a vital topic in comput-

er vision, has been studied for many decades and lots of

datasets have been collected for evaluation. These dataset-

s usually have different annotations, e.g., 68-landmark

markup for LFPW dataset, while 74-landmark markup for

GTAV dataset. Intuitively, it is meaningful to fuse all the

datasets to predict a union of all types of landmarks from

multiple datasets (i.e., transfer the annotations of each

dataset to all other datasets), but this problem is nontriv-

ial due to the distribution discrepancy between datasets and

incomplete annotations of all types for each dataset. In this

work, we propose a deep regression network coupled with

sparse shape regression (DRN-SSR) to predict the union of

all types of landmarks by leveraging datasets with vary-

ing annotations, each dataset with one type of annotation.

Specifically, the deep regression network intends to predict

the union of all landmarks, and the sparse shape regres-

sion attempts to approximate those undefined landmarks on

each dataset so as to guide the learning of the deep regres-

sion network for face alignment. Extensive experiments on

two challenging datasets, IBUG and GLF, demonstrate that

our method can effectively leverage multiple datasets with

different annotations to predict the union of all landmarks.

1. Introduction

Facial landmark detection is a key component of many

computer vision tasks, such as face recognition, face ani-

mation, video editing, etc. In the past few decades, many

efforts are devoted to learn robust models for accurate

face alignment under the controlled and uncontrolled set-

ting [10, 34, 26, 4, 29, 28, 40, 2, 12, 35, 17]. At the

same time, a lot of datasets under laboratory condition

or wild condition are published for extensive evaluation-

s [3, 21, 40, 27, 19, 18, 23]. These datasets have abundant

Figure 1. Overview of our DRN-SSR for face alignment by lever-

aging datasets with varying facial landmark annotations. F denotes

the unified cascade deep regression networks which can predict a

union of all types of landmarks, by taking shape-indexed feature

φ(I, S) as input. H denotes the sparse shape regression model

which approximates those undefined landmarks for each dataset,

so as to guide the learning of deep networks F.

variations in head pose, expressions, partial occlusions, etc.

However, one dataset usually only focuses on one or several

types of variations, and besides these datasets usually have

different annotations, e.g., 68-landmark markup for LFP-

W [3], while 74-landmark markup for GTAV [18]. So the

face alignment model learnt from one dataset can only pre-

dict those landmarks defined on that dataset, and different

datasets can only be used independently. Naturally, it is

quite anticipating to predict the union of all types of land-

marks by leveraging multiple datasets.

One straightforward solution is to train multiple detec-

tion models on each dataset, and therefore the union of al-

l types of landmarks can be achieved by uniting the pre-
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dictions of all models. However, the model trained on one

dataset cannot get promising results on other datasets due to

the distribution discrepancy between varied data. So ideal-

ly, all datasets are re-labeled with a union of all landmarks,

based on which a unified alignment model of predicting the

union of landmarks can be learnt. Nevertheless it is quite

cost-consuming to re-label all datasets, and even impossi-

ble in some scenarios. The goal of this study is to predict a

union of all types of landmarks on multiple datasets by tak-

ing together the variations and annotations from all datasets.

In order to predict the union of landmarks defined on

multiple datasets, we propose a deep regression network

coupled with sparse shape regression (DRN-SSR), which

can take advantages of the variations (e.g., pose, expres-

sion, etc.) and annotations from multiple datasets without

re-labelling them, as shown in Fig. 1. Specifically, for each

dataset, a sparse shape regression model that characterizes

the shape correlations across different datasets is introduced

to approximate those undefined landmarks on this dataset,

i.e., landmarks defined on other datasets and thus guides the

learning of deep regression networks.

The main contributions can be summarized as: 1) By

leveraging multiple datasets with varying annotations, a u-

nified deep regression network is achieved, which can pre-

dict the union of all types of landmarks. 2) Benefited from

the sparse shape regression, the proposed DRN-SSR can

take advantages of both variations and annotations from all

datasets, leading to a robust face alignment model that can

characterize all variations from multiple datasets. Exten-

sive experiments shows that our method achieves impres-

sive performance for predicting all types of landmarks.

2. Related Work

2.1. Typical Face Alignment Methods

The early popular face alignment methods, such as

ASMs [10, 11, 24] and AAMs [9, 22], employ Princi-

pal Component Analysis (PCA) to build statistical mod-

els of face shape and appearance. Generally, these para-

metric models achieve promising results on favorable im-

ages. However, their performances severely degenerate

when tested on face images from unseen domain. For exam-

ple, even with a large dataset for training, AAM generalizes

poorly across datasets. Recently, in [31] a new framework

is proposed to do fast and exact AAM fitting and achieves

promising results on real-world face alignment.

Lately, regression based methods achieve great suc-

cess for both controlled and uncontrolled face alignmen-

t [14, 34, 2, 7, 4, 26, 15, 13]. Dollar et al. [14] pioneer cas-

cade shape regression algorithm for fast and accurate shape

estimation of general objects by using shape-indexed fea-

tures. Then Cao et al. [7] improve this method by simulta-

neously regressing all landmarks and it achieves better per-

formance for face alignment in the wild. In [4], Burgos-

Artizzu et al. employ interpolated shape-indexed feature

and smart restart strategy to improve the robustness to large

shape variations. In [34], SDM, as a highly effective and

efficient face alignment method, cascades several linear re-

gression models to predict shapes with shape-indexed SIFT

feature and achieves impressive results for face alignmen-

t. In [13], Dantone et al. present a real-time face align-

ment method based on conditional regression forests, which

achieves close-to-human accuracy on LFW [19]. Further-

more, Chen et al. [26] learn local binary features for robust

shape regressions, which achieves both better accuracy and

efficiency for face alignment in the wild.

Besides regression based methods, deep models also

make great progress on face alignment [29, 33, 36, 37] and

human pose estimation [30, 25]. Sun et al. [29] employ a

three-level deep convolutional neural networks (DCNN) for

facial landmark detection. Zhang et al. [37] also use cascade

DCNN for face alignment and further improve the detection

accuracy by simultaneously optimizing multiple correlated

tasks. Besides, Zhang et al. [36] design a coarse-to-fine

auto-encoder network for robust face alignment. Benefit-

ed from the favorable ability of characterizing nonlinearity,

all these deep methods have achieved impressive results for

real-world face alignment. In [30], Toshev et al. cascade

deep neural networks to jointly estimate human pose and

achieve state-of-art performance on real-world images. P-

fister et al. [25] present a deep convolutional neural network

to estimate human pose in videos, which exploits temporal

information from videos and significantly outperforms the

state-of-the-art methods on the BBC TV Signing dataset [8].

2.2. Face Alignment Across Datasets

Considering the existence of dataset bias for face align-

ment, Zhu et al. [39] extend the original SDM [34] to trans-

ductive SDM for transferring landmark annotations across

datasets. By exploiting common facial landmarks as guid-

ance, densely labeled landmarks are transferred from source

dataset to target images and a more robust model is achieved

with a combined training set of source and target. This

method achieves good performance for face alignment of

cross-dataset or unseen dataset. In another interesting work,

Smith et al. [28] integrate nonparametric appearance model,

affine-invariant shape constraint [38] and graph matching to

get a prediction of the union of all types of landmarks. First-

ly, landmarks from each source dataset are independently

transferred to each target image. Then the individual land-

mark predictions are integrated into a single result by doing

joint face alignment on the target dataset. It is the first ef-

fort to combine multiple datasets for effectively predicting

a union of all types of landmarks. However, it suffers from

high computation problem and may be inapplicable for sin-

gle target image which is popular in online applications.
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3. Our Approach

In this section, we will firstly give an overview of our

DRN-SSR for predicting the union of landmarks defined

on multiple datasets, and then illustrate the details about

the formulation and optimization, followed by a discussion

about the differences with the existing works.

3.1. Methodology

3.1.1 Overview

Suppose we have n datasets {D1, D2, ..., Dn}, and each

dataset defines an individual type of landmarks, denoted as

Si ∈ R
pi×2 with pi landmarks. In other words, we have

n types of landmarks S1, S2, ..., Sn that are defined on n

datasets respectively. These n types of landmarks may or

may not have common ones. For clear description of the

formulation, we assume there are no common points be-

tween the n types of landmarks. But it should be noted that

our method is also applicable with common landmarks.

As shown in Fig. 1, our goal is to build a deep regres-

sion network F that can predict the union of all types of

landmarks S = S1 ∪ S2... ∪ Sn, S ∈ R
p×2, by leveraging

multiple datasets {D1 ∪D2 ∪ ... ∪Dn} , D as follows:

S = F(φ(I, S̄)) + S̄, S ∈ R
p×2, (1)

where p=
∑n

i=1 pi denotes the numbers of all landmarks, φ

is a feature extraction function, and S̄ is an initial shape.

If all images from D are labeled with n types of land-

marks S, the face alignment model F can be achieved by

minimizing the residual between the prediction from F and

the ground truth S with an initial shape S̄ as below:

F∗ = argmin
F

∑
I∈D

||S −
(
F(φ(I, S̄)) + S̄

)
||22, (2)

however, for image I only one type of landmarks are de-

fined. That is, for images from the ith dataset Di, only

the ith type of facial landmarks are available while the oth-

er n− 1 types of landmarks {S1, · · · , Si−1, Si+1, · · · , Sn}
are missing. Fortunately, landmarks from different datasets

have strong correlation as they usually have related seman-

tics. Inspired by this, a sparse shape regression model H is

introduced to approximate those undefined landmarks, and

the approximation of S obtained from H is denoted as SH.

Briefly speaking, based on all images from D with all

types of landmarks that are defined or approximated from

the sparse regression model H, the overall objective func-

tion of the unified deep regression model can be reformu-

lated as follows:

{F∗,H∗}=arg min
{F,H}

∑

I∈D

||SH(I)−
(
F(φ(I, S̄))+S̄

)
||22. (3)

Here, if I ∈ Di, the ith type landmarks in SH are available

and the other n − 1 types of landmarks in SH are approxi-

mated from H.

In the following, we will give the details about the deep

regression model F and the sparse shape regression model

H for approximating the ground truth shape.

3.1.2 Deep Regression Network Coupled with Sparse

Shape Regression

Considering that mapping from image to shape is a complex

nonlinear process and inspired by the impressive nonlinear

deep networks, here F is modeled as a deep regression net-

work with l − 1 hidden layers:

∆S , F(I) = (fl(fl−1(...f1(φ(I, S̄)))), (4)

aq , fq(aq−1) = σ(Wqaq−1 + bq), q ∈ [1, l − 1], (5)

fl(al−1) = Wlal−1 + bl, (6)

where φ(I, S̄) denotes the shape-indexed feature extract-

ed around the initial shape S̄ and fq denotes the nonlin-

ear mapping in the qth layer parameterized with Wq and

bq , q = 1, ..., l − 1. A sigmoid function σ is employed to

characterize the nonlinearity mapping at the first l−1 layer-

s, and {a1, a2, ..., al−1} denotes the feature representations

from each hidden layer. For the last layer, linear regression

fl is exploited to predict the shape deviation ∆S between

the ground truth S and a initial shape S̄.

As mentioned above, the S in Eq. (2) represents the

ground truth shape for all types of landmarks. However,

for any image I ∈ D only one type of landmarks are de-

fined, so we introduce a sparse shape regression model H

to approximate the other n−1 types of landmarks as below.

Specifically, for the ith dataset, only the ith type of land-

marks Si are defined while the other n − 1 types of land-

marks Sj are undefined. Although the landmarks defined

on different datasets are varied, they usually have strong

correlation between each other, e.g., a landmark on the up-

per eyelid from the jth type can be approximated by those

landmarks on eyes and eyebrows from the ith type. So natu-

rally, those undefined landmarks in S can be represented by

several locally relevant ones defined in Si, leading to the ap-

proximated SH = [Ŝ1; Ŝ2; · · · ; Ŝi−1;Si; Ŝi+1; · · · ; Ŝn] ∈
R

p×2. Formally, for images from Di, sparse shape regres-

sion is employed to approximate the jth type of undefined

landmarks as follows:

Ŝj = Hij ∗ Si, s.t., |hr
ij |1 < τ, r = 1, · · · , pj , (7)

where Hij ∈ R
pj×pi is a sparse matrix to approximate the

undefined landmarks Ŝj ∈ R
pj×2 for those images in Di,

and hr
ij is the rth row of Hij corresponding to one land-

mark. The principle of Hij being sparse is that all land-

marks of Si would span a large subspace containing lots

of landmarks, while sparse regression model tends to select

a very small subset of Si that are relevant to the undefined

landmarks, which can span a very compact subspace around
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Figure 2. The jth type of undefined landmarks are approximated

by defined landmarks Si with sparse shape regression Hij .

the ground truth, as shown in Fig. 2. Besides, the sparse re-

gression model is shared by all samples from one dataset,

so it can tolerate the outliers benefitted from the statistics of

subspace. With Eq. (7), all types of landmarks in SH for

those images from Di|
n
i=1 can be reformulated as:

SH=Hi ∗Si=




Hi1

...

Hi(i−1)

E

Hi(i+1)

...

Hin




∗Si=




Hi1 ∗ Si

...

Hi(i−1) ∗ Si

Si

Hi(i+1) ∗ Si

...

Hin ∗ Si




(8)

where Hi=[Hi1;· · · ;Hi(i−1);E;Hi(i+1);· · · ;Hin] ∈R
p×pi

is the regression matrix for images from Di, E ∈ R
pi×pi is

an identity matrix.

Overall, the objective function of the deep regression

network for predicting the union of landmarks on multiples

datasets can be reformulated as below:

argmin
F,H

n∑

i=1

∑

I∈Di

‖SH(I)−
(
F(I, S̄) + S̄

)
‖22

⇔ argmin
F,H

n∑

i=1

∑

I∈Di

‖Hi ∗ Si(I)−
(
F(I, S̄) + S̄

)
‖22

s.t., |hr
ij |1 < τ, r = 1, · · · , pj .

(9)

Si(I) denotes its defined landmarks for image I ∈ Di. F

is a deep regression network which can predict a union of

all types of landmarks. H = {H1,H2, ...,Hn} denotes a

combination of sparse regression matrices for all datasets.

Details for optimizing Eq. (9) are presented in Sec. 3.2.

3.1.3 Cascade Deep Regression Model

The above deep regression model will give a prediction

S1 ∈ R
p×2 for the union of all types of landmarks. How-

ever, it is usually not close enough to the ground truth. So

we cascade K successive deep regression models Fk, k =
1, 2, ...,K to further refine the shapes in higher and higher

resolution. Specifically, after obtaining the shape predic-

tion Sk−1 from stage k−1, the stage k further improves the

alignment results by optimizing the following objective:

arg min
Fk,Hk

n∑

i=1

∑

I∈Di

‖H
k
i ∗ Si(I)− (Fk(I, Sk−1) + S

k−1)||22

(10)

where Fk(I, Sk−1) = fk
l (f

k
l−1(...f

k
1 (φ(I, S

k−1)))) de-

notes a deep regression model of l layers with the shape-

indexed SIFT feature φ(I, Sk−1) as input and Hk =
{H

k
1 ,H

k
2 , ...,H

k
n} is constrained to be sparse as in Eq. (9).

3.2. Optimization

As seen, Eq. (9) is a non-convex optimization problem

with both F and H are unknown, thus we solve it by us-

ing the alternating optimization method, i.e., the deep face

alignment model F and the sparse matrices H are iteratively

updated until both converge.

3.2.1 Initialization for Deep Regression Model F

The face alignment model F is simply initialized by only

using those defined landmarks for each image I ∈ D, and

can be formulated as the following objective:

argmin
F

∑n

i=1

∑
I∈Di

||Si(I)− δi(F(I, S̄) + S̄)||22, (11)

where δi is a selection function to pick the ith type of land-

marks. In other words, the l−1 hidden layers are optimized

by using samples from n datasets while the parameters cor-

responding to the ith type of landmarks in the last layer

are optimized by merely using those samples from the ith

dataset. Eq. (11) can be easily optimized by employing L-

BFGS [20].

3.2.2 Alternating Optimization for H and F

After the deep face alignment model is initialized, we opti-

mize the objective function in Eq. (9) by using the alternat-

ing method, i.e., iteratively optimizing H and F.

Given F, optimize H. When F is fixed, the objective

function in Eq. (9) degenerates as below:

H∗ = argmin
H

∑n

i=1

∑
I∈Di

||Hi ∗ Si(I)− YI ||
2
2,

s.t., |hr
ij |1 < τ, , r = 1, · · · , pj ,

(12)

where YI = F(I, S̄) + S̄, H = {H1,H2, ...,Hn}. As seen

from Eq. (12), Hi is independent from each other, so they

can be optimized separately as follows.

H
∗
i = argmin

Hi

∑
I∈Di

||Hi ∗ Si(I)− YI ||
2
2,

s.t., |hr
ij |1 < τ, , r = 1, · · · , pj ,

(13)

with Hi = [Hi1; · · · ;Hi(i−1);E;Hi(i+1); · · · ;Hin]. Each

row hr
ij of Hi is also irrelevant to each other, and thus can

be further optimized independently. Eq. (13) can be formu-

lated as follows with the rth row of YI denoted as yrij :

hr∗
ij = argmin

hr
ij

∑
I∈Di

||hr
ijSi(I)− yrij ||

2
2,

s.t., |hr
ij |1 < τ, i 6= j, r = 1, · · · , pj ,

(14)
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which can be efficiently optimized by using the least angle

regression algorithm [16]. Given H, optimize F. When H

is fixed, the objective in Eq. (9) can be re-formulated as:

F
∗=argmin

F

n∑

i=1

∑

I∈Di

||∆S(I)−F(I, S̄)||22+α

l∑

q=1

||Wq||
2

F (15)

where ∆S(I) = Hi ∗ Si(I) − S̄. Additionally, the weight

decay term
∑l

q=1 ||Wq||
2
F is included to prevent over-fitting

and this problem can be optimized by using L-BFGS [20].

Finally, we can achieve a stable solution by iteratively

optimizing H and F according to the above two steps until

both converge. As our DRN-SSR has several stages, for the

kth stage, we initial Hk with the optimized Hk−1 from k−1
stage, and then alternatively optimize Hk and Fk as above.

3.3. Discussions

Differences from [28]. Smith et al. [28] also propose a

pipeline to predict a union of all landmarks across datasets,

and our method differs from theirs in two aspects: 1) the ap-

plication scenario is different: [28] can only jointly align all

testing images together as the correlation between all test-

ing images are employed to guide the collaborative transfer

of annotations from the training set to testing set. On the

contrary, ours only use the training set to learn the model

which makes it applicable for even single image, and thus

our method is more practical since in many scenarios it is

unable to access all testing images at the same time. 2)

[28] trains individual models on each dataset for detecting

one type of landmarks and then get the predictions of the

union of all landmarks by integrating the results from indi-

vidual models. In other words, in [28] the predictions from

multiple datasets are integrated to achieve the result of all

landmarks, while in our DRN-SSR the data from multiple

datasets are integrated to learn single model that can pre-

dicts the union of landmarks. Integrating data rather than

the predictions can better characterize the variations from

multiple datasets, leading to a more robust alignment mod-

el. Moreover, [28] takes more than 30 seconds per image

on a powerful workstation while our DRN-SSR performs

much more efficiently with 0.33 second on a I7 desktop.

Differences from [39]. Zhu et al. [39] propose a trans-

ductive alignment method (TCR) to transfer landmark an-

notations from one dataset to another. The differences be-

tween our method and [39] are as follows: 1) TCR [39] em-

ploys only those common facial points to guide the transfer

between datasets, while our method takes all defined land-

marks on each dataset as the guidance for transferring land-

marks across datasets. 2) [39] employs transductive SD-

M to get the approximation of those undefined landmarks

which stays unchanged as long as they are approximated,

while ours refines the approximation and updates the face

alignment model iteratively, resulting in a more accurate

approximation of undefined landmarks and then achieving

more robust alignment model.

4. Experiments

4.1. Experimental settings

To evaluate our method, seven public datasets are

employed, i.e., LFPW [3], HELEN [21], AFW [40],

IBUG [27], GTAV [18], LFW [19] and FaceWare-

house [6]. Both FaceWarehouse and GTAV are collected

under laboratory conditions while the others are collected

in the wild. FaceWarehouse contains 5904 images of 150

individuals with various expressions and GTAV has large

variations in pose, expressions, illuminations and partial oc-

clusions. Both HELEN and AFW are collected from Flick-

r. HELEN contains 2330 high resolution images and AFW

includes 205 images with 468 faces. Recently, LFPW, HE-

LEN and AFW are relabeled with 68 landmarks and re-

leased in [1]. Besides, they release another dataset IBUG

including 135 images with extreme pose and expressions.

For GTAV, LFW and FaceWarehouse, the annotations of 74

landmarks are released by [5].

As illustrated, there are two types of annotations among

these datasets, i.e., 68 landmarks and 74 landmarks, with 29

common ones. So the problem is how to predict the union of

all 113 landmarks (68+74-29=113) by leveraging two types

of datasets respectively. We re-organize these datasets as

follows: a training set consisting of two subsets, one with

68 landmarks and the other with 74 landmarks; two testing

sets with 113 landmarks for evaluation.

The training subset with 68 landmarks consists of 3478

images from LFPW training set, HELEN and AFW dataset-

s, recorded as 68-type training set. The training sub-

set with 74 landmarks consists of 14360 images from G-

TAV, LFW and FaceWarehouse datasets, recorded as 74-

type training set. One testing set is IBUG dataset, which

is comprised 135 extremely challenging images in the wild.

The other testing set named as GLF dataset, contains 100

images selected from GTAV, LFW and FaceWarehouse,

which have no overlap with 74-type training subset. In or-

der to evaluate all types of landmarks, we manually re-label

IBUG and GLF to make them have 113 landmarks. The

cumulative function (CDF) is employed to measure the per-

formance based on the normalized root-mean-squared error

(NRMSE) which is normalized by face size.

In our approach, we cascade 4 deep regression networks

and each of them has four layers including three non-linear

hidden layers and the last layer of linear regression. For

all stages, the numbers of hidden units in each layer are re-

spectively 1296, 784, 400. For the first two stages, the face

images are normalized to 80×80 pixels and for the third and

fourth stages, the face images are normalized to 140 × 140
pixels. The weight decay parameter α of each layer is set to
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0.001. The sparsity parameter τ which controls the sparsi-

ty of matrices H and determines the number of landmarks

selected as bases is set as 1.4 by exploring its performance

w.r.t. different values (see Sec. 4.2.3 for details).

4.2. Analysis of DRN­SSR

4.2.1 Benefits of Coupling DRN with SSR

As seen in Eq. (9), our approach couples the deep align-

ment model with sparse shape regression together, so the

approximations of those undefined landmarks are refined it-

eratively. To investigate the effectiveness of the coupling

strategy, we compare it with another two strategies: one

is to learn deep alignment model without sparse shape re-

gression denoted as “Deep”, another is a two-step approach

which firstly does sparse shape regression and then learn-

s deep alignment model with the approximated landmarks,

denoted as “Deep+Sparse”, and our method is denoted as

“Deep Coupled with Sparse” which can iteratively refine

the deep alignment model with the updated approximations

for undefined landmarks from previous stage.

To simulate the scenario of multiple datasets with differ-

ent annotations, 36 landmarks are assumed to be available

on HELEN training set, and another 32 landmarks are as-

sumed to be available on LFPW training set. For compari-

son, images from LFPW and HELEN testsets are evaluated

in terms of 68 landmarks. The “Deep” strategy learns two

separate alignment models on HELEN and LFPW to pre-

dict 36 and 32 landmarks respectively. In “Deep+Sparse”

strategy, the 32 undefined landmarks of HELEN and 36 un-

defined ones of LFPW are firstly predicted by using the two

models in “Deep” strategy, then the predictions are refined

by sparse shape regression only once, and finally based on

the defined and approximated landmarks, “Deep+Sparse”

model is trained with both images from HELEN and LFPW

to predict 68 facial points. Our “Deep Coupled with Sparse”

models the deep alignment networks and sparse regression

together, and the approximations for undefined landmarks

can be refined iteratively, which can further refine the align-

ment model.

The evaluation results are shown in Fig. 3. Given a

threshold t, “Data Proportion” denotes the percentage of

faces whose NRMSE is below t. As seen, “Deep” performs

the worst as each dataset is modeled independently which

means only those variations from one dataset are captured

to predict each facial landmark. The “Deep+Sparse” strat-

egy performs better benefited from capturing all variations

from both datasets to predict each point. However, the ap-

proximations of undefined landmarks on training data are

not good enough leading to a biased model, as the predic-

tions of those undefined landmarks on each training set may

be far from the ground truth. On the contrary, in our cou-

pled strategy, the alignment model and the approximations

for undefined landmarks are iteratively refined, leading to

a more robust alignment model which is learned with bet-

ter and better approximations for undefined landmarks. As

seen from Fig. 3, the accuracy is further improved up to 8%

when NRMSE is 0.03, implying the necessity of coupling

deep alignment model and sparse shape regression.

4.2.2 Jointly Predicting Landmarks vs. Uniting Data

In our approach, the data from multiple datasets are unit-

ed together to predict the union of multiple types of land-

marks, which means the performance gain might stem from

the more variations of the united data, the jointly predict-

ing multiple types of landmarks, or both. As stated in

Sec. 4.2.1, the same datasets are used for this investigation.

The baseline method learns two separate alignment mod-

els on HELEN and LFPW with 36 and 32 landmarks re-

spectively, and final detection of 68 landmarks are achieved

by merging the predictions from these two models. This

method is recorded as “LFPW32+HELEN36”, in which nei-

ther the multiple types of landmarks are jointly predicted

nor the data from multiple datesets are leveraged together.

As illustrated in Fig. 4, it performs the worst as expected.

Furthermore, a method which only considers the joint

prediction of multiple types of facial landmarks is evaluat-

ed, recorded as “LFPW68+HELEN68”. This method also

learns two separate models on LFPW training set and HE-

LEN training set respectively, but with 68 landmarks for

both models. As seen in Fig. 4, “LFPW68+HELEN68” per-

forms slightly better than “LFPW32+HELEN36”, as detec-

tion of different but relative annotations can benefit each

other, which means jointly predicting multiple types of

landmarks can improve the performance, but only slightly.

Moreover, the most favorable method should jointly pre-

dict multiple types of landmarks and leverage the multiple

datasets, denoted as “(LFPW+HELEN)68”, which learns a

unified model on both LFPW and HELEN training sets with

68 landmarks. As seen, “(LFPW+HELEN)68” performs

much better, which means more variations from multiple

datasets can significantly improve the performance.

Yet, in the real world scenario, each dataset usually has

only one type of annotations, and it is quite cost-consuming

or even impossible to attain all types of annotations for mul-

tiple datasets to make “(LFPW+HELEN)68” applicable. In-

stead, our DRN-SSR can leverage all these datasets without

relabelling them, to jointly predict the union of all types of

landmarks. As seen, although our method is not as good as

“(LFPW+HELEN)68” which needs all types of annotations,

it still significantly outperforms “LFPW32+HELEN36” and

“LFPW68+HELEN68” with an improvement up to about

13% and 10% respectively when NRMSE is 0.03.

These comparisons demonstrate that more variations

from multiple datasets can significantly improve the perfor-

mance of alignment, and the proposed DRN-SSR can effec-

tively leverage multiple datasets, even if each dataset only
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Figure 3. Benefits of coupling deep align-

ment model with sparse shape regression.

Figure 4. Jointly predicting landmarks vs.

uniting data.

Figure 5. Results of the first stage on IBUG.

has one type of annotation, which makes our method a very

practical solution for leveraging data as much as possible.

4.2.3 Sparsity Parameter of Sparse Shape Regression

As mentioned above, the sparse shape regression can char-

acterize the shape correlations between datasets by con-

structing compact approximations for those undefined land-

marks. To explore how the sparsity τ influences the accu-

racy of approximations of those undefined landmarks, we

evaluate the performance of our method under different s-

parsity. Specifically, we evaluate our method with τ set as

1.0, 1.4, 10, least square regression (i.e., τ → +∞) and

DRN, i.e., a method without considering the approximation

for undefined landmarks.

Fig. 5 shows the performance of the first stage from these

methods by evaluating 113 landmarks on IBUG. As seen,

DRN performs the worst due to no consideration of approx-

imation for undefined landmarks. Furthermore, the deep

regression network with least square regression to approx-

imate those undefined landmarks performs better by lever-

aging both datasets with 68 landmarks and 74 landmarks

together. When the sparsity is set to be large, e.g., τ = 10,

deep regression network coupled with sparse shape regres-

sion performs similarly as that with the least square regres-

sion. This is because almost all landmarks are selected for

sparse reconstruction, which approaches the least square re-

gression. Although least square regression or sparse regres-

sion with a large sparsity can achieve better approximations

for those undefined landmarks, they are not accurate enough

Figure 6. Approximations of undefined landmarks at the first

stage on training dataset. LR denotes least square regression.

Figure 7. The selected landmarks (red dots) for approximating

the undefined facial points (green dots), when τ = 1.4.

as the approximations are from a relax subspace spanned by

almost all defined landmarks. On the contrary, sparse re-

gression with a small sparsity, e,g., τ = 1.4 and 1.0, can

form a compact subspace spanned by only several relevan-

t landmarks, resulting in more accurate approximations of

those undefined landmarks as shown in Fig. 6. Fig. 7 shows

the selected landmarks (red dots) that are used to approxi-

mate the undefined landmarks (green dots) with τ = 1.4.

As seen, only those landmarks that have strong correlations

with the undefined landmarks are selected as expected.

4.3. Comparison with the Existing Methods

To compare with the existing methods, two types of

training sets are used: 68-type training set and 74-type train-

ing set. The goal is to predict the union of both types of

landmarks, i.e., 113 landmarks with 29 common ones. We

compare our DRN-SSR with a few state-of-the-art method-

s, e.g., RCPR [4], SDM [34], FAST-SIC [32] and Smith et

al. [28]. For RCPR and FAST-SIC, we use their off-the-

shelf codes. We implement SDM which achieves compara-

ble accuracy to the origin. For Smith et al. [28], we directly

quote results from [28]. Besides, a Deep Regression Net-

work (DRN) for face alignment is implemented as a base-

line, which is also a deep method but without leveraging

multiple datasets with varying annotations.

To our best knowledge, none of these methods except

[28] and ours can utilize multiple datasets with varying an-

notations to predict a union of landmarks. To make these

methods, i.e., RCPR, SDM, FAST-SIC and DRN, predict a

union of 113 landmarks, two models respectively predicting

68 and 74 landmarks are trained on 68-type and 74-types

training sets separately. The predictions of these two mod-

els are merged together as the final output of the union of

113 landmarks, with that of those common points averaged.

[28] and our proposed method can learn a unified model that

directly predicts 113 landmarks by leveraging both 68-type

and 74-type training sets.

4.3.1 Evaluations on IBUG Dataset

Firstly, we evaluate all methods on IBUG dataset which

is extremely challenging due to extreme poses, exaggerat-
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Figure 8. IBUG, 113 Landmarks. Figure 9. IBUG, 68 Landmarks. Figure 10. GLF, 113 Landmarks.

ed expressions, occlusions, etc. The performance on this

dataset is reported in terms of 113 landmarks, as shown in

Fig. 8. As a fast and exact AAM fitting method, FAST-SIC

significantly outperforms project-out inverse composition-

al algorithm (POIC) [22] as evaluated in [32], however it

degenerates on this challenging dataset, as the linear princi-

pal component analysis model cannot well characterize the

complex variations in shape and appearance. Furthermore,

SDM and RCPR performs better benefited from the effec-

tive shape regression pipeline with shape-indexed feature.

Attributed to the favorable ability of modeling nonlineari-

ty, DRN makes further improvement than SDM and RCPR.

Our DRN-SSR outperforms DRN with an improvement up

to 10% when NRMSE is 0.05, as more variations from mul-

tiple datasets with varying annotations are modeled togeth-

er, promising a more robust alignment model. Tabel 1 re-

ports the mean errors of all these methods on IBUG. More-

over, we compare our method to [28], which can also com-

bines multiple datasets with different annotations to predic-

t a union of all landmarks. Since the CDF curve of only

66 landmarks is reported in [28], the common 66 points

are evaluated for fair comparison. As shown in Fig. 9, our

method outperforms [28] and the improvement is even up

to 13% w.r.t. NRMSE=0.05 even though [28] use manually

labeled eye centers to remove the rotation and scale varia-

tions. This is possibly because [28] cannot simultaneously

cover all variations from multiple training sets with varying

annotations as it only integrates the alignment results from

individual models rather than combining data, while ours

can well capture all variations from multiple training sets

simultaneously, leading to better predictions. Besides, [28]

performs much slower than ours, and it is only applicable

Figure 11. Fitting Results on IBUG and GLF. Top: DRN fitting

results, Bottom: our fitting results.

Table 1. The mean errors (%) of 113 landmarks on IBUG and GLF

datasets, which is normalized by face size.

FAST-SIC SDM RCPR DRN DRN-SSR

IBUG 8.22 6.17 6.73 5.26 4.58

GLF 5.47 3.84 3.72 3.42 3.16

for image sets, but not single image scenario.

4.3.2 Evaluations on GLF Dataset

Secondly, we further evaluate our method on GLF dataset.

GLF consists of 100 challenging images with large varia-

tions in pose, expression, partial occlusion, blur, etc. The

comparison results are shown in Fig. 10, from which the

similar conclusion can be obtained. As seen, RCPR and

DRN performs the best among the existing methods and our

DRN-SSR achieves a further improvement with 10% when

NRMSE is 0.03 and 6% when NRMSE is 0.04 respectively.

This demonstrates that it is beneficial to fuse the multiple

datasets with varying annotations, and our method is an ef-

fective solution to leverage more variations from multiple

datasets to predict the union of all types of landmarks. Re-

sults shown in Tabel 1 also support the conclusion. Fig. 11

shows the fitting results of some challenging samples from

IBUG and GLF. As seen, the proposed DRN-SSR can ac-

curately predict the union of all landmarks.

5. Conclusions

By leveraging the datasets with varying annotations, we

present a unified deep regression network coupled with the

sparse shape regression (DRN-SSR) to predict the union

of all types of landmarks. With the shape correlations be-

tween different datasets bridging the annotation gap, DRN-

SSR can utilize multiple datasets with different annotations,

which can integrate more data variations. As evaluated on

two challenging datasets, our method achieves impressive

performance for predicting the union of all landmarks.
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