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Abstract

In this paper, we propose an decomposition approach to

large-scale multi-view stereo from an initial sparse recon-

struction. The success of the approach depends on the intro-

duction of surface-segmentation-based camera clustering

rather than sparse-point-based camera clustering, which

suffers from the problems of non-uniform reconstruction

coverage ratio and high redundancy. In details, we intro-

duce three criteria for camera clustering and surface seg-

mentation for reconstruction, and then we formulate these

criteria into an energy minimization problem under con-

straints. To solve this problem, we propose a joint op-

timization in a hierarchical framework to obtain the fi-

nal surface segments and corresponding camera cluster-

s. On each level of the hierarchical framework, the cam-

era clustering problem is formulated as a parameter esti-

mation problem of a probability model solved by a Gen-

eral Expectation-Maximization algorithm and the surface

segmentation problem is formulated as a Markov Random

Field model based on the probability estimated by the pre-

vious camera clustering process. The experiments on sever-

al Internet datasets and aerial photo datasets demonstrate

that the proposed approach method generates more unifor-

m and complete dense reconstruction with less redundancy,

resulting in more efficient multi-view stereo algorithm.

1. Introduction

Nowadays, the scale of multi-view stereo (MVS) grows

dramatically because of the emerging of high resolution im-

agery and automatic imaging devices, such as unmanned

vehicles mounted with video cameras. Given a large scale

dataset with thousands of high resolution images, modern

1Tian Fang is the corresponding author.

multi-view stereo usually takes camera poses and sparse

point clouds reconstructed by structure from motion (SFM)

as the input and generates dense point clouds with multiple

images simultaneously. For such datasets, it is impracti-

cal and unnecessary to put all images into MVS algorithms

at a time, because each image only correlates with several

image locally in spaces. Taking the advantage of the local-

ities in camera clusters, there have been several algorithm-

s [3, 6, 7, 12, 14] to improve the scalability of multi-view

stereo. In such methods, the visibility and quality of sparse

SFM points are used to evaluate the locality of camera clus-

ters. The whole reconstruction problem is then divided into

several sub-problems in terms of camera clusters. Finally

the MVS algorithm is performed in each camera cluster.

However, there are two major problems in these method-

s. Firstly, the reconstruction region is not uniformly sam-

pled in 3D space. Since these methods conduct clustering

merely based on cameras, regions seen by multiple cluster-

s will be reconstructed many times with inconsistent qual-

ities. Secondly, because of occlusions in the reconstruc-

tion scene and mismatching of image features, sparse SFM

points can hardly provide true visibility and quality assess-

ment for camera clustering.

Instead of using sparse SFM points, our approach takes a

coarse mesh reconstructed from the sparse points as input.

Such coarse meshes interpolate the regions of lower point

density, and give more robust occlusion and shape infor-

mation for the evaluation of the quality of camera clusters.

Meanwhile, it provides a clean segmentation on surface lev-

el, which significantly reduces the redundancy of the MVS

reconstruction, ensures a complete coverage of the recon-

structed scene and improves the quality of the MVS recon-

struction.

More concretely, we formulate the joint camera cluster-

ing and mesh segmentation as a constrained energy mini-

mization problem to fulfill three criteria of quality control-
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(a) Points and cameras from SFM
……

(b) Coarse mesh (c) Mesh segments and camera clusters (d) MVS results 
of each cluster (e) Final MVS results

Figure 1. Large-scale Multi-view stereo using joint camera clustering and surface segmentation. The inputs of our method are points and

cameras from SFM. Then, we use the state-of-the-art mesh triangulation algorithm to generate the coarse mesh. Next, our proposed joint

camera clustering and surface segmentation method is utilised to generate mesh segments and camera clusters. Finally, the MVS algorithm

is performed in each segment with its corresponding camera cluster for dense reconstruction.

s. Then we solve such a minimization problem efficiently

by a hierarchical clustering framework, in which a Gener-

al Expectation-Maximization (EM) algorithm and Markov

Random Field (MRF) optimization are involved iteratively

to find out the camera clustering and mesh segmentation re-

spectively. Finally, each segment is reconstructed by state-

of-the-art MVS algorithms with its corresponding camera

cluster.

We test our method on both of the publicly available

dataset and Internet dataset. The results show that our pro-

posed algorithm outperforms the state-of-the-art method in

terms of both the uniformity and completeness of the recon-

struction. Moreover, since our method effectively prevents

over-sampling of cameras and reconstructed regions, the re-

dundancy and running time of MVS are reduced significant-

ly.

In summaries, our contributions primarily are as follows:

1. We propose three criteria for the joint camera cluster-

ing and surface segmentation, which are formulated as

a constrained energy minimization problem;

2. We formulate camera clustering problem as a param-

eter estimation problem of a probability model, which

can be solved by a General Expectation-M aximiza-

tion algorithm. Meanwhile, the surface segmentation

is obtained using Markov Random Field optimization.

3. We present a hierarchical framework to solve the con-

strained energy minimization problem efficiently.

The rest of the paper is organized as follows. The prob-

lem definition will be proposed in Section 2. In Section 3

and 4, we will introduce the details of our method to solve

the problem defined in Section 2. And Section 4.3 describes

the details of stereo reconstruction after surface segmenta-

tion and camera clustering. Last, the experiment results in

Section 5 show our method effectively solves the problem

and generate better reconstruction results.

1.1. Related Work

Most of algorithms for improving the scalability of MVS

can be classified into two categories. One kind of algo-

rithms utilizes prior knowledge on the scene and the se-

quential attributes of video [17, 15, 9]. Pollefeys et al. [17]

and Micusik et al. [15] partition the problem using nearby

frames in videos and estimate the depth-maps using MVS

algorithms for each sub-problem. Gallup et al. [9] focus

on merging height map for street level images. These ap-

proaches make strong sequential assumptions on the input

images.

The other kind of algorithms [12, 7, 6, 3, 10, 2, 14]

divides the unordered images into several camera cluster-

s to reduce the computation cost. An image graph is first

built to find out the neighboring relationship between im-

ages. Then the quality assessment scores are computed

based on either photometric similarity [12, 6], or triangula-

tion angles/distances to the visible points [7, 14]. The whole

camera graph is thereby divided into a few camera clusters

according to the scores. Nevertheless, these methods only

cluster cameras and cannot prevent a region from being re-

constructed several times in different qualities. To address

this problem, we propose to cluster images according to the

region segmentation to reduce the redundancy, and guaran-

tee both good spatial coverage and uniformity in each small

region, which minimizes the number of images naturally.

Some algorithms [16, 19, 21] are targeted to decouple

the SFM problem into sub-problems on the 3D space lev-

el. Unlike them, our work focuses on the division of MVS

problems on the 3D space level.

2. Problem Formulation

Taking sparse point cloud P and camera poses C recov-

ered from structure-from-motion (SFM), we target to break

the to-be-reconstructed surface into a few disjoint segments

each of which is associated with an optimal set of cam-

eras for stereo reconstruction. Unfortunately, the to-be-

reconstructed surface is not valid until the stereo recon-

struction is done. Moreover, the SFM point cloud is so

sparse, leaving many uncovered regions, and do not en-

code occlusion among points. Instead of starting from SFM

points, we take advantage of the 3D triangulation [13] of

SFM points P to obtain a reasonable initial rough trian-

gle mesh T = {ti} to approximate the to-be-reconstructed
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surface. Then we denote its K disjoint segmentation as

{Ti|Ti ⊆ T , i = 1, ...,K}. For each segment, a cluster

of cameras Ci ⊆ C is gathered for stereo reconstruction. Al-

though the mesh segments are disjoint, the associated cam-

era clusters are unnecessary to be disjoint. Now, our goal is

to obtain a joint mesh segmentation and camera clustering

S = {Si|Si = {Ti, Ci}} for large scale stereo reconstruc-

tion.

A solution to this joint mesh segmentation and camera

clustering should satisfy the following criteria:

1. Smoothness: the mesh segment should be as smooth

as possible to avoid scattered segments.

This criteria also intends to constraint the total number

of clusters implicitly, since the more clusters are there,

the less smooth is the segmentation. This criteria also

avoids the trivial solution that each cluster only con-

tains a triangle.

2. Size: the number of cameras in each cluster should not

be too many, since the scale of stereo reconstruction

for each cluster is bounded by the number of images.

3. coverage: each mesh segment should be well covered

by the selected cluster of cameras.

We adapt the coverage ratio of 3D points in [7] to tri-

angles to measure the proportion of triangles that are

well observed by the cameras in the cluster for each

mesh segment. This criteria ensures a good reconstruc-

tion quality.

Now our goal is mathematically cast into looking for a

segmentation S∗ such that

S∗ = argminS Es(S) (smoothness)

s.t. |Ci| ≤ nc, ∀Ci (size) (1)
# covered triangle in Ti

|Ti|
≥ δ, ∀Ti (coverage),

where nc is the maximum number of cameras in each clus-

ter and δ is the minimum coverage ratio for each segment.

Let L = {1, ...,K} be the label set corresponding to the

mesh segments and F = {ft ∈ L|t ∈ T } be the label

set of triangles. The label ft of triangle t is i if and on-

ly if t ∈ Ti. We further define a neighborhood set N =
{(ti, tj)|ti ∈ T , tj ∈ T , ti and tj share a common edge}.

Thus, the object function Es(S) penalizing the scattered

segments is written as

Es(S) =
∑

(ti,tj)∈N

uI(fti , ftj ), (2)

where u is penalizing the two adjacent triangles in different

clusters. We set I(fti , ftj ) as 1 if fti 6= ftj . Otherwise,

it is set as 0. The smaller is Es(S), the smoother will the

segmentation be.

However, optimizing Equation 1 is NP complete. Even

worse, we do not know the number of labels. Therefore,

we develop the following hierarchical framework to solve

this problem. Given the initial number of cluster K0 (set as

one, Es(S) is 0), the optimal camera clusters are obtained

by the algorithm in section 3 and then we divide the coarse

mesh into K0 segments by the method in 4.1. After that, we

check whether the clustering and segmentation satisfy the

second and third criteria. If a segment does not satisfy those

criteria, then the segment is divided by the above process

recursively. The details of hierarchical framework will be

described in 4.2.

3. Camera clustering

We first define a probability model of surface triangles

given the number of camera clusters. Then we adopt the

General Expectation-Maximization algorithm to compute

camera clusters and the posterior probabilities of surface tri-

angles belonging to each cluster.

3.1. Probability model of surface triangles and cam
era cluster

Given a camera cluster Ci for a triangle t to be recon-

structed, the probability distribution of the surface triangle

is given by

p(t|Ci) =
1

Z
e−αU(t,Ci),

where α is a prefixed scalar and

U(t, Ci) =

{

λ−R(t, Ci), R(t, Ci) < λ

0, otherwise,

where R(t, Ci) = g(t,Ci)
g(t,V (t)) and V (t) is the set of cameras

seeing triangle t. λ is a scalar to judge whether a region is

sufficiently covered similar to that proposed in [7]. Appar-

ently, the closer R(t, Ci) is to λ, the higher probability of

triangle t belonging to cluster Ci is. When R exceeds the

λ, the probability is the highest. When this probability is

higher, it is easier to meet the coverage constraint in Eq. 1

and the clustered cameras are more suitable to reconstruct

the given region according to Eq. 3, 4, 5 and 6.

The Z in above equation is the normalisation term.

Z =
∑

t∈T

e−αU(t,Ci)

.

The g(t, Ci) is the MVS accuracy measurement in [7].

g(t, Ci) = max
p∈T(Ci)

∑

ck,cl∈p

g′(t, ck, cl), (3)

where

g′(tj , ck, cl) = g1(tj , ck, cl)g2(tj , ck)g2(tj , cl). (4)
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Figure 2. (a) The relationship between cameras and triangles. The

angle ∠c1tc2 is the baseline of triangulation. And αinc(t, c1) is

the incidence angle. (b) The MRF model for surface segmentation.

The circles represent label vertexes in Vf and the centers of each

triangle represent triangle vertexes in Vt.

The T (Ci) is the set of β combination of cameras in

the i-th cluster of cameras and the g1(t, ck, cl) is the MVS

accuracy measurement in [7].

g1(t, ck, cl) = h(∠cktcl)min(
1

r(t, ck)
,

1

r(t, cl)
), (5)

where ∠cktcl is the angle between two viewing rays from

the center of triangle t and two camera centers, which mea-

sures the baseline. The metric of the angle is defined as

[7]: h(x) = exp
(

− (x−µ)2

2σ2
x

)

(µ is set as 20◦, when x ≤ µ,

σx = 5◦, otherwise, σx = 15◦). We use 1
r(t,ck)

to present

the pixel sampling rate of image ck at the center of the tri-

angle, where r(t, ck) is the diameter of a sphere centered

at the center of triangle t whose projected diameter equals

one pixel in ck, which measures the pixel sampling rate of

image ck at the center of the triangle.

We have a coarse surface available now, we can there-

fore describe the relationship of regions and cameras by the

surface normals, which is formulated as g2. The g2 is de-

fined according to photometry [10, 2], the probability that

a camera should be selected for one certain mesh region is

determined by incidence angle shown in Figure 2 (a). Inci-

dence angle is the angle αinc between rays coming from the

center of triangle to the camera and surface normal. If this

angle is large, the triangle is very oblique when reprojected

into images actually, which is unsuitable for reconstruction.

g2(t, c) = e
−αinc(t,c)

2

2σ2 , (6)

where σ is usually set as 1.

3.2. ExpectationMaximization Optimization

Camera clustering is regarded as a parameter estima-

tion problem. And by this, the posterior probabilities

P (Ci|t), t ∈ T , i = 1, ...,K are also estimated. To esti-

mate the parameter, we maximize the following likelihood

with respect to a mixture model by the General Expectation-

Maximization under the following constraint:

Φ∗ = argmax
Φ

L(Φ|T )

s.t. |Ci| ≤ nc, ∀i,

and

L(Φ|T ) = log
∏

t∈T

p(t|Φ)

=
∑

t∈T

log

K
∑

i=1

p(t|Ci)p(Ci)

We use indicator variables z(t) = (z
(t)
1 , z

(t)
2 , ..., z

(t)
K ) to ex-

press the label of each triangle. If triangle t belongs to clus-

ter i, z
(t)
i = 1, otherwise, z

(t)
i = 0. And

∑

t∈T z
(t)
i = 1

since each triangle can only belong to one cluster. Let the

prior probabilities P (Ci) = πi, then p(z(t)) =
∏K

i=1 π
z
(t)
i

i .

Therefore, probability of triangle’s parameters given hid-

den variable is p(t|z(t)) =
∏K

i=1 pi(t)
z
(t)
i , where pi(t) is

the shorthand for p(t|Ci). The joint density is p(t, z(t)) =
p(z(t))p(t|z(t)). So, given the hidden variable Z, the likeli-

hood function is

L(Φ|Z) = −
∑

t∈T

K
∑

i=1

z
(t)
i (log πi + log pi(t)) (7)

Since the energy minimization problem in Eq. 7 cannot

be solved analytically even given the number of clusters,

we use the General Expectation-Maximization algorithm to

solve it.

E-step The evaluation of expectation after the τ -th itera-

tion can be expressed as

Q(Φ|Φτ ) = −
∑

t∈T

K
∑

i=1

E[zti |t,Φ
τ ](log πi+log pi(t)), (8)

where E[zti |t,Φ
τ ] = p(zi = 1|t,Φτ ) = p(Ci|t,Φ

τ ). Define

p(Ci|t,Φ
τ ) = ht

i, which can be seen as soft label of triangle

t and will be used in mesh segmentation in Section 4.1. And

according to Bayesian rule, the posterior probability is

h
(t)
i =

πip(t|Ci)
∑K

i=1 πip(t|Ci)

M-step Since πi does not depend on log pi(t), combined

with
∑K

i=1 πi = 1, let the partial derivative of the first part

−
∑

t∈T

∑K
i=1 h

t
i log πi in Eq. 8 be zero, the we get πi =

∑

t∈T h
(t)
i /|T |.

The camera selection model has no analytical opti-

mization solution in M-step, but it is the core of the
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optimization. Maximization problem of the second part

−
∑

t∈T

∑K
i=1 pi(t) log pi(t) in Eq. 8 is a combination op-

timization problem actually. For each cluster i, we select

cameras to minimize the following function

C∗i = argmin
Ci

∑

t∈T

h
(t)
i (αU(t, Ci) + logZ)

s.t. |Ci| ≤ nc (9)

Since the computation of g(t, Ci) needs much time, we

use a suboptimal greedy algorithm to solve it in low time

complexity. When computing g(t, V (t)), we store the

combination of β cameras for triangle t, which is denot-

ed as C∗(t). For each camera ck, we compute sk =
∑

t∈{t|ck∈C∗(t)} h
(t)
i . In each iteration, we select the cam-

era with highest sk. When one triangle’s R(t, Ci) reaches

λ, we remove its contribution from each involved sk. The

selection procedure does not stop until the nc cameras are

selected. We select the camera set with the minimum en-

ergy in Eq. 9 as the final result from all the result set of

each iteration. To reduce the time complexity of the greedy

algorithm, we use Fibonacci Heap to store sk. Since each

triangle can only induce the score decreasing once, the time

complexity is O(|T |(|C|+ nc)).

Algorithm 1 Camera Selection in the i-th cluster

1: function CAMERASELECTION({h
(t)
i
}, T , C, K, nc, C∗(t))

2: Compute all sk and insert into H ⊲ H is the Fibonacci Heap to store sk
3: Tcover ← ∅, Ci = ∅
4: while H 6= ∅ and |Ci| ≤ nc do

5: Extract camera sk from the top of H and insert ck into Ci
6: for t ∈ T − Tcover do

7: Compute g(t, Ci)
8: if g(t, Ci) ≥ λg(t, V (t)) then

9: Insert t into Tcover

10: for each sk ∈ {sk ∈ H|ck ∈ C∗(t)} do

11: Decrease sk in H with h
(t)
i

12: Compute the total energy En by Eq. 9

13: Select the smallest En∗ from En

14: Select the first n∗ cameras from Ci as the result C∗i
15: Return C∗i

4. Joint optimization

In this section, the details of the joint camera clustering

and surface segmentation will be described. We first intro-

duce how the surface is segmented using the results of cam-

era clustering in Section 3. Then the details of hierarchical

framework to optimize the object function in Eq. 1 will be

introduced. Last, we will describe the process to reconstruct

each segmented region by MVS algorithm.

4.1. Surface Segmentation

Given the probability obtained by the algorithm in Sec-

tion 3 and the fixed number of cluster K, to satisfy the cov-

erage constraints and smoothen the segmentation as much

as possible simultaneously, we use Markov Random Field

model based on the probability p(t, Cft) = p(t|Cft)p(Cft)
to divide the coarse mesh into K segments.

Define an undirected graph G = (V,E) on triangles and

cameras, where V = VT ∪ Vf and E = {Ef ∪Etf}. VT is

the set of all triangles, Vf is the set of all triangles’ labels.

Ef = {(fti , ftj )|(fti , ftj ) ∈ N} and Etf = {(ti, fti)|ti ∈
T }, where fti is the label of the i-th triangle. The toy graph

sample is shown in Figure 2 (b). The energy function of the

MRF model is

E(F) = −
∑

t∈T

log p(t, Cft)−
∑

(ti,tj)∈N

log p(fti , ftj ).

(10)

In Eq. 10, p(t, Cft) describes the coverage constraints,

while p(fti , ftj ) essentially penalizes segmenting adjacen-

t triangles into different segments and − log p(fti , ftj ) can

be calculated the same as uI(fti , ftj ) in Eq. 2. By graph

cut algorithm [5, 4, 11], we can minimize energy function

E(F) to divide the mesh into K segments.

After segmentation, if one segment has no triangles, this

segment and its corresponding camera clustering will be e-

liminated.

4.2. Hierarchical optimization

In this section, the objective function in Eq. 1 will be

solved by a hierarchical framework to satisfy all constraints.

As mentioned above, when segmenting surface, we do not

consider whether the coverage constraint is satisfied. Be-

sides, all the above algorithms require the number of clus-

ters K should be given. These will be solved by dividing

surface segments and hierarchical optimization. The initial

number of clusters K0 is set to one. The branch process in

the hierarchical algorithm can be run in parallel, which will

accelerate the algorithm.

Algorithm 2 Hierarchical mesh segmentation and camera

selection
1: function HIERARCHICALOPTIMIZATION(T , C, F , K, nc, S∗) ⊲ F is the

initial label input. K is the initial cluster number. S∗ is the final camera clusters

and mesh segments

2: Estimate model parameters to get C1,...,CK
3: Mesh segmentation by graph cut to get T1,...,TK
4: for i← 1 to K do

5: r ←
# covered triangles in Ti

|Ti|

6: if r ≥ δ then

7: Add {C′i, Ti} into S∗

8: else

9: Select cameras to get camera set C′i by Algorithm 1 till the coverage

constraint is satisfied

10: if |Ci| ≤ nc then

11: Add {C′i, Ti} into S∗

12: else

13: Divide Ti into ⌈
|C′

i
|

nc
⌉ segments by K-means to get labels F ′

14: HierarchicalOptimization(Ti, C, F ′, ⌈
|C′

i|

nc
⌉, nc, S∗)

15: Merge segmentation with same camera clusters

When estimating model parameters to cluster cameras

in Section 3.2, we do not know the surface segmentation.
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(c) (d)

Figure 3. (a) Input coarse surface. (b) Surface segmentation on the

first level. (c) Surface segmentation on the second level. (d) Sur-

face segmentation on the third level.

Therefore, the camera clustering may not ensure the cover-

age constraint is satisfied for each segment by energy min-

imization. So, it is necessary to check the coverage con-

straint. If the coverage constraint is satisfied, this camer-

a cluster and mesh segment can be used in the following

dense reconstruction stage.

Otherwise, we continue to cluster cameras by the algo-

rithm in Section 3.2 till the coverage constraint is satis-

fied. The new selected camera cluster is denoted as C′i. If

C′i ≤ nc, the camera cluster and mesh segment can be used

in the following reconstruction stage. Otherwise, we divide

the segment into ⌈ |C
′
i|

nc
⌉ sub-segments just by K-means on

the position of triangle’s centers. And this segmentation is

regarded as the initialization of Alg. 1 to estimate parame-

ters and cluster cameras in the sub-segment again.

At the end of the algorithm, if the cameras in two camera

clusters are identical, it is unnecessary to segment these two

regions, so we need to merge these two regions.

4.3. Preparation for dense reconstruction

After segmenting the coarse surface into K regions and

clustering cameras for each region, we need to process in-

put images before dense reconstruction. Each segment is

reprojected into images of its associated camera clusters to

generate masks. To avoid some small regions may not be

covered by the coarse mesh, the masks are dilated d (usual-

ly set as 1
40 of the image size) times using 3 × 3 kernel. K

segments will generate K sets of mask images. Then these

sets of images and masks are used in the dense reconstruc-

tion. The results of all clusters are merged into the final

point cloud without any filtering.

5. Experimental Results

The proposed algorithm is implemented in C++ and runs

on a PC with Intel(R) Core(TM) i7-4770K 3.50GHz proces-

sors and 32GB main memory. We use Kolmogorov et al.’s

Graph-cut software [11] for mesh segmentation and PMVS

[8] for the core MVS reconstruction. The coarse mesh is

reconstructed from a set of SFM points using the method

in [13]. Points off the surface of mesh will be filtered out.

Throughout the experiments, we use the same parameter

setting: α = 16, β = 4, u = 0.1, λ = 0.7, δ = 0.7. nc is

set according to the dataset scale1.

Since the camera graph in Rome dataset [1] has more

than one component, we select three major components to

perform experiments: Basilica, Trevi and Colosseum. Be-

sides, we also use the Dubrovnik dataset [1]. For these four

datasets, we set nc = 150 same as the setting in CMVS [7].

Besides, our algorithm is also tested on an aerial photo

dataset called Campus. Campus contains 2060 images and

the resolution is pretty high (6000 × 3376). Since the res-

olution of the aerial photo dataset is high, nc is set as 30

to load the images in main memory. The SFM result of the

aerial photo datasets is obtained by Bundler [20]. We al-

so use Temple and Dino datasets [18] to evaluate accuracy

and coverage. We set the parameter nc = 30 for the above

two datasets since each of them has only around 300 im-

ages. To achieve a fair comparison, we employ the same

MVS algorithm to generate dense point cloud. And to com-

pare the clustering algorithm of ours and CMVS specially,

all the dense points obtained by PMVS are not filtered by

the MVS filter process in CMVS.

5.1. Quantitative evaluation

We evaluate the performance of our algorithm quantita-

tively with regard to uniformity, redundancy and processing

time. For two small benchmark datasets, the accuracy and

coverage are also measured. Uniformity is evaluated by the

standard deviation of point density (SDd). The density of a

point is measured by the average distance to its 10-nearest

points. Redundancy is estimated by the average reconstruct-

ed times of each pixel in all clusters (P ). The evaluation of

coverage is referred to [14]. Dense points generated by all

images are regarded as ground-truth and for each point in

ground-truth and search the nearest point in our result and

check whether their distance is in 4R. R is the average dis-

tance of points to its nearest neighbor in ground-truth. The

detailed statistics are shown in Table 1. Since only the t-

wo small benchmark datasets can be reconstructed without

clustering, the quantitative evaluation of coverage can only

be preformed on these two datasets. Besides, only these two

datasets have ground-truth for surface reconstruction, so we

only evaluate accuracy qualitatively on them.

For Basilica, Trevi, Colosseum, Campus and Dubrovnik,

these five large scale datasets, the number of used cameras

selected by our algorithm is less than CMVS and the av-

erage used times of each selected camera in our algorithm

1The default values of nc, β, δ and λ are derived from CMVS [7]
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Dataset Temple Dino Basilica Colosseum Trevi Campus Dubrovnik

# cameras 312 363 1180 2043 1933 2060 6844

Ours CMVS Ours CMVS Ours CMVS Ours CMVS Ours CMVS Ours CMVS Ours CMVS

# clusters 4 4 5 2 7 7 4 7 2 7 40 42 46 57

Nc 37 77 99 62 322 452 182 436 123 472 719 1485 2612 3270

Average Uc 1.08 1.06 1.11 1.02 1.57 1.34 1.15 1.10 1.18 1.54 1.94 1.49

# points (×105) 1.41 1.39 1.43 1.37 106 135 72.8 76.7 49.4 54.4 1686.8 1855.5 303.1 1021.6

SDd (×10−4) 2.26 3.67 1.40 1.58 2.31 3.11 0.724 1.00 4.57 5.46 2.40 3.22 1.02 4.17

P 1.080 1.085 1.03 1.04 1.09 1.42 1.01 1.12 1.00 1.60 1.11 1.31 2.20 10.4

Np/P (×105) 1.30 1.28 1.39 1.32 97.5 94.9 72.1 68.5 49.2 34.0 1519.7 1416.4 137.78 98.23

Accuracy(mm) 0.52 0.63 0.62 0.59 - - - - - - - - - -

CR 0.990 0.987 0.95 0.91 - - - - - - - - - -

tcluster (min) 2.2 1.4 2.3 1.2 31 5.9 49 13 25 6.7 74 18 654 282

tpmvs (min) 1.5 4.3 1.9 3.2 107 179 70 114 41 70 667 981 1219 3469

ttotal (min) 3.7 5.7 4.2 4.4 138 184.9 119 127 66 76.7 741 999 1873 3751

Table 1. Statistics. Nc is the number of used cameras. Uc is the used times per camera. SDd is the standard deviation of average distance

between the point and its 10-nearest points. P is the average reconstructed times of each pixel in all clusters. CR is the coverage ratio.

tcluster is the time of clustering algorithm. tpmvs is the total running time of pmvs for all clusters. ttotal is the total time.
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Figure 4. (a) Dense points of a cluster. (b) Dense points of another

cluster. (c) Merged dense points of two clusters. The region in the

red rectangle is reconstructed more than once in CMVS. In con-

trast, our method reduces the redundancy by surface segmentation

without any post-filtering.

is higher than CMVS. However, the average reconstructed

times of each point in all clusters (denoted as P ) in our al-

gorithm is much less than CMVS, which measures actually

redundancy of the results. The less redundancy of our algo-

rithm is attributed to the space division by surface segmen-

tation, which explicitly reduces the opportunity that each

region is reconstructed more than one time. The dilation of

the masks also guarantees the completeness of reconstruct-

ed region.

As our algorithm usually selects less cameras than

CMVS, the total number of reconstructed points of our al-

gorithm is slightly smaller than the one of CMVS. Nev-

ertheless, CMVS tends to produce more redundant points.

Therefore, considering the redundancy, we use the ratio of

the number of point to P to measure the number of the ef-

fective reconstructed points. It is clear that our algorithm

generates more effective points, because our algorithm s-

elects cameras specially for each region and assigns each

triangle to the camera clusters most suitable to reconstruct

it. Besides, for the same reason, our algorithm generates

more uniform points by defining the uniformity in space

level rather than image level.

Although our algorithm spends more time on the recon-

struction and segmentation of the coarse mesh, we save sig-

nificant time in multi-view stereo process. It is owed to the

fact that we reduce the actual redundancy and eventually

increase the actual reconstruction efficiency. As for accura-

cy, our method outperforms significantly CMVS in Temple

and fall behind CMVS marginally in Dino. The benefit of

our method is not significant on small dataset with well-

condition cameras.

5.2. Qualitative evaluation

Figure 5 shows visual comparison between our method

and CMVS. Overall, our method generates more complete

dense point cloud than CMVS among all six datasets. The

point cloud of CMVS seems to be noisier (more obvious

in Colosseum, Campus). The major reason is that CMVS

may reconstruct the same region multiple times with dif-

ferent qualities. So, these noises disturb the reconstruc-

tion of sculpture in Campus, which also shows that our

method selects better cameras in detailed region. More-

over, the repeated dense reconstruction inevitably leads to

the uneven density of point cloud, which easily causes s-

mall holes (Basilica) in surface reconstruction. To avert the

above problem that sparse-points-based clustering method-

s have a bias on fine scene details, our method explicitly

segments the initial mesh and ensures each segment of the

surface is reconstructed once with the best visible cameras.

Figure 4 shows the effectiveness of our method in reducing

the redundancy. Note that in Trevi, since coverage criteria

in the domain part is satisfied, this part is unnecessary to

be partitioned. Because our method requests that each seg-

ment should be covered by enough cameras, in the margin

of reconstructed regions with lower density of SFM points

than the center regions, such as Trevi, our method generates

more complete points. Please note that the image resolu-

tions of Dubrovnik have a large variance. CMVS’s dense

points from high resolution images are degraded by the ones
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  Figure 5. The visual comparison between CMVS and our method (Please refer to the color pdf for better visual quality). From top to button

are respectively the segmentation results, MVS results using camera clusters from our method, MVS results using camera clusters from

CMVS, our mesh results, and those of CMVS. In the region of circles, our method generates more complete or accurate dense points and

surfaces.

from low resolution images, but our method only generates

dense points by the best images for the region with fine de-

tails and dense points of other clusters do not degrade the

good one.

6. Conclusion

In the paper, we propose a novel method to divide large

scale MVS into small sub-problems not only on the im-

age level but also on the reconstructed 3D space level. Our

key contribution is to solve the problem as a coarse surface

segmentation problem and regard camera clustering as the

process of parameter estimation. To satisfy the scalabili-

ty limitation and coverage constraints, we use a hierarchi-

cal framework to jointly optimize the camera clustering and

surface segmentation. In the end, the experiment demon-

strates our method can reduce the reconstruction redundan-

cy, speed up large scale reconstruction and obtain better re-

construction results.
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