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Abstract

We explore the problem of predicting “just noticeable

differences” in a visual attribute. While some pairs of

images have a clear ordering for an attribute (e.g., A is

more sporty than B), for others the difference may be in-

distinguishable to human observers. However, existing rel-

ative attribute models are unequipped to infer partial or-

ders on novel data. Attempting to map relative attribute

ranks to equality predictions is non-trivial, particularly

since the span of indistinguishable pairs in attribute space

may vary in different parts of the feature space. We develop

a Bayesian local learning strategy to infer when images are

indistinguishable for a given attribute. On the UT-Zap50K

shoes and LFW-10 faces datasets, we outperform a variety

of alternative methods. In addition, we show the practical

impact on fine-grained visual search.

1. Introduction

Imagine you are given a pile of images of Barack Obama,

and you must sort them according to where he looks most to

least serious. Can you do it? Surely there will be some obvi-

ous ones where he is more serious or less serious. There will

even be image pairs where the distinction is quite subtle, yet

still perceptible. However, you are likely to conclude that

forcing a total order is meaningless: while the images ex-

hibit different degrees of the attribute seriousness, at some

point the differences become indistinguishable. It’s not that

the pixel patterns in indistinguishable image pairs are liter-

ally the same—they just can’t be characterized consistently

as anything other than “equally serious”.

Attributes are visual properties describable in words,

capturing anything from material properties (metallic,

furry), shapes (flat, boxy), expressions (smiling, surprised),

to functions (sittable, drinkable). Since their introduc-

tion to the recognition community [7, 15, 16], attributes

have inspired a number of useful applications in image

search [13, 14, 15, 26], biometrics [4, 21], and language-

based supervision for recognition [2, 16, 19, 25].

Existing attribute models come in one of two forms:

categorical or relative. Whereas categorical attributes are

least serious most serious

least open most open

indistinguishable?

indistinguishable?

Figure 1: At what point is the strength of an attribute indistinguishable be-

tween two images? While existing relative attribute methods are restricted

to inferring a total order, in reality there are images that look different but

where the attribute is nonetheless perceived as “equally strong”. For exam-

ple, in the fourth and fifth images of Obama, is the difference in seriousness

noticeable enough to warrant a relative comparison?

suited only for clear-cut predicates, such as male or wooden,

relative attributes can represent “real-valued” properties

that inherently exhibit a spectrum of strengths, such as se-

rious or sporty. Typically one learns a relative attribute in

the learning-to-rank setting; training data is ordered (e.g.,

we are told image A has it less than B), and a ranking func-

tion is optimized to preserve those orderings. Given a new

image, the function returns a score conveying how strongly

the attribute is present [1, 3, 5, 6, 14, 17, 18, 19, 22, 23, 27].

The problem is that existing models for relative attributes

assume that all images are orderable. In particular, they as-

sume that at test time, the system can and should always dis-

tinguish which image in a pair exhibits the attribute more.

Yet, as our Obama example above illustrates, this assump-

tion is incompatible with how humans actually perceive at-

tributes. In fact, recent work reports that in a fine-grained

domain like fashion, 40% of the time human judges asked to

compare images for a relative attribute declare that no dif-

ference is perceptible [27]. Within a given attribute, some-

times we can perceive a comparison, sometimes we can’t.

See Figure 1.

We argue that this situation calls for a model of just no-

ticeable difference among attributes. Just noticeable differ-

ence (JND) is a concept from psychophysics. It refers to

the amount a stimulus has to be changed in order for it to

be detectable by human observers at least half the time. For

example, JND is of interest in color perception (which light

sources are perceived as the same color?) and image quality
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Smiling

Figure 2: Analogous to the MacAdam ellipses in the CIE x,y color space

(right) [8], relative attribute space is likely not uniform (left). That is, the

regions within which attribute differences are indistinguishable may vary

in size and orientation across the high-dimensional visual feature space.

Here we see the faces within each “equally smiling” cluster exhibit varying

qualities for differentiating smiles—such as age, gender, and visibility of

the teeth—but are still difficult or impossible to order in terms of smiling-

ness. As a result, simple metrics and thresholds on attribute differences are

insufficient to detect just noticeable differences.

assessment (up to what level of compression do the images

look ok?). JNDs are determined empirically through tests

of human perception. For example, JND in color can be de-

termined by gradually altering the light source just until the

human subject detects that the color has changed [8].

Why is it challenging to develop a computational model

of JND for relative attributes? At a glance, one might think

it amounts to learning an optimal threshold on the differ-

ence of predicted attribute strengths. However, this begs

the question of how one might properly and densely sam-

ple real images of a complex attribute (like seriousness) to

gradually walk along the spectrum, so as to discover the

right threshold with human input. More importantly, an at-

tribute space need not be uniform. That is, depending on

where we look in the feature space, the magnitude of at-

tribute difference required to register a perceptible change

may vary. Therefore, the simplistic “global threshold” idea

falls short. Analogous issues also arise in color spaces, e.g.,

the famous MacAdam ellipses spanning indistinguishable

colors in the CIE x,y color space vary markedly in their size

and orientation depending on where in the feature space one

looks (leading to the crafting of color spaces like CIE Lab

that are more uniform). See Figure 2.

We propose a solution to infer when two images are in-

distinguishable for a given attribute. Following the non-

uniformity intuition above—which says the decision func-

tion will likely vary depending on where in the feature

space one looks—we develop a Bayesian approach that re-

lies on local statistics of orderability. Our approach lever-

ages both a low-level visual descriptor space, within which

image pair proximity is learned, as well as a mid-level vi-

sual attribute space, within which attribute distinguishabil-

ity is represented. To our knowledge, our framework of-

fers the first attempt to unify a notion of “equality” (i.e.,

unnoticeable differences) into relative attributes during in-

ference. Whereas past ranking models have attempted to

integrate equality into training, none attempt to distinguish

between orderable and un-orderable pairs at test time.

We apply our method on two challenging datasets with

fine-grained relative attributes, the UT Zappos 50K collec-

tion of catalog images of shoes and the Labeled Faces in the

Wild (LFW) collection of human faces. The results show

our approach’s superior performance compared to various

baselines for detecting noticeable differences. Furthermore,

we demonstrate how attribute JND has potential benefits for

an image search application.

2. Related Work

Comparing images by their attributes Relative at-

tributes are most commonly represented with learned rank-

ing functions [1, 2, 3, 5, 6, 14, 17, 18, 19, 22, 23, 27]. Pair-

wise supervision is used for training: a set of pairs ordered

according to the attribute is obtained from human annota-

tors, and a ranking function that preserves those orderings

is learned. Given a novel pair of images, the ranker in-

dicates which image has the attribute more. In a similar

spirit, regression [4] and paired-difference classification [9]

have also been employed. While some implementations (in-

cluding [19]) augment the training pool with “equal” pairs

to facilitate learning, notably no existing work attempts to

discern distinguishable from indistinguishable pairs at test

time—our main goal. In Sec. 3 we discuss technical rea-

sons why other common learning paradigms (e.g., ordinal

regression) are not an easy solution to the problem.

Fine-grained and unrankable attributes Of all prior

work in relative image ranking, those that come closest to

our goal are our fine-grained relative attribute work [27] and

the facial attractiveness ranking method of [3]. The former

uses local learning to tackle attribute comparisons that are

visually subtle, e.g., deciding which of two athletic shoes

is more sporty. Like the methods cited above, this method

also assumes all images are distinguishable at test time. In

contrast, our method specifically deals with the boundary

where “subtle” and “indistinguishable” meet.

In [3], the authors train a hierarchy of SVM classifiers to

recursively push a image into buckets of more/less attrac-

tive faces. The leaf nodes contain images “unrankable” by

the human subject, which can be seen as indistinguishability

for the specific attribute of human attractiveness. Nonethe-

less, the proposed method is not applicable to our problem.

It learns a ranking model specific to a single human sub-

ject, whereas we learn a subject-independent model. Fur-

thermore, the training procedure [3] has limited scalability,

since the subject must rank all training images into a partial

order; the results focus on training sets of 24 images for this

reason. In our domains of interest, where thousands or more

training instances are standard, getting a reliable global par-

tial order on all images remains an open challenge.
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Variability in how attributes are perceived Differences

in human perception are another source of ambiguity in at-

tribute prediction, especially for subjective properties. Re-

cent work deals with this by learning personalized mod-

els [1, 3, 12]. In contrast, we are interested in modeling

attributes where there is consensus about comparisons, only

they are subtle. Rather than personalize a model towards an

observer, we want to discover the (implicit) map of where

the consensus for JND boundaries in attributes exists. The

attribute calibration method of [24] post-processes attribute

classifier outputs so they can be fused for multi-attribute

search. Our method is also conscious that differences in at-

tribute outputs taken at “face value” can be misleading, but

our goal and approach are entirely different.

Choosing between relative and binary attributes The

“spoken attributes” [22] method learns to generate a human-

like description for an image by intelligently selecting

whether to use binary or relative attributes. The insight is

that even when a person can distinguish an attribute, he may

choose not to say so, depending on the context. For exam-

ple, if one face is clearly smiling more than the other, but

neither is smiling much, it is unusual for a human describ-

ing the image to say “the person on the left is smiling more

than the one on the right.” The work is not concerned with

detecting JND. It assumes a relative comparison is always

possible, just not always worth mentioning.

3. Approach

Given a pair of images and specified attribute, our goal

is to decide whether or not the attribute’s strength is distin-

guishable between the two. We develop a Bayesian pre-

diction approach based on local learning. Our approach

first constructs a predicted relative attribute space using

sparse human-provided supervision about image compar-

isons (Sec. 3.1). Then, on top of that model, we com-

bine a likelihood computed in the predicted attribute space

(Sec. 3.2.1) with a local prior computed in the original im-

age feature space (Sec. 3.2.2). See Figure 3.

3.1. Relative Attribute Ranks

In all notation that follows, it is assumed that a single

attribute is learned at a time (e.g., seriousness). For each

attribute to be learned, we take as input two sets of anno-

tated training image pairs. The first set consists of ordered

pairs, Po = {(i, j)}, for which humans perceive image i to

have the attribute more than image j. That is, each pair in

Po has a “noticeable difference”. The second set consists

of unordered, or “equal” pairs, Pe = {(p, q)}, for which

humans cannot perceive a difference in attribute strength.

We enforce stringent requirements to ensure the preci-

sion of these pair annotations, such that the training data

reflects the common perception across multiple human ob-

servers (see Sec. 4 for details). This is critical, since a JND

model demands that we correctly preserve the distinction

between a “just barely orderable” pair and an equal pair.

Let xi ∈ X ⊂ ℜd be a d-dimensional image descriptor

for image i. First we learn a ranking function R : X →
ℜ that maps an input image to (an intial estimate of) its

attribute strength. Following [19], we use a large-margin

approach based on the SVM-Rank framework [11]. The

method optimizes the rank function parameters to preserve

the orderings in Po, maintaining a margin between them in

the 1D output space, while also minimizing the separation

between the unordered pairs in Pe. For the linear case, the

parameters are simply a weight vector w:

R(x) = w
T
x, (1)

though non-linear ranking functions are also possible. The

learning objective is as follows:

minimize

(

1

2
||w||2

2
+ C

(

∑

ξ2ij +
∑

γ2

p,q

)

)

(2)

s.t. w
T (xi − xj) ≥ 1− ξij ; ∀(i, j) ∈ Po

|wT (xp − xq)| ≤ γpq; ∀(p, q) ∈ Pe

ξij ≥ 0; γpq ≥ 0,

where the constant C balances the margin regularizer and

pair constraints. Step 1 in Figure 3 depicts a linear ranking

function learned from the training pairs.

Given a novel image pair (xm,xn), one can apply the

rank function to predict their order. If R(xm) > R(xn),
then image m exhibits the attribute more than image n, and

vice versa. As discussed above, despite the occasional use

of unordered pairs for training 1, it is assumed in prior work

that all test images will be orderable. However, the real-

valued output of the ranking function will virtually never

be equal for two distinct inputs. Therefore, even though

existing methods may learn to produce similar rank scores

for equal pairs, it is non-trivial to determine when a novel

pair is “close enough” to be considered un-orderable.

3.2. A Local Bayesian Model of Distinguishability

The most straightforward approach to infer whether a

novel image pair is distinguishable would be to impose a

threshold on their rank differences, i.e., to predict “indis-

tinguishable” if |R(xm) − R(xn)| ≤ ǫ. The problem is

that unless the rank space is uniform, a global threshold ǫ

is inadequate. In other words, the rank margin for indistin-

guishable pairs need not be constant across the entire fea-

ture space. By testing multiple variants of this basic idea,

our empirical results confirm this is indeed an issue, as we

will see in Sec. 4.

1Empirically, we found the inclusion of unordered pairs during training

in [19] to have negligible impact at test time.
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Figure 3: Overview of our approach. (1) Learn a ranking function R using all annotated training pairs. (2) Estimate the likelihood densities of the equal

and ordered pairs, respectively, using the pairwise distances in relative attribute space. (3) Determine the local prior by counting the labels of the analogous

pairs in the image descriptor space. (4) Combine the results to predict whether the novel pair is distinguishable (not depicted). Best viewed in color.

Our key insight is to formulate distinguishability predic-

tion in a probabilistic, local learning manner. Mindful of

the non-uniformity of relative attribute space, our approach

uses distributions tailored to the data in the proximity of a

novel test pair. Furthermore, we treat the relative attribute

ranks as an imperfect mid-level representation on top of

which we can learn to target the actual (sparse) human judg-

ments about distinguishability.

Let D ∈ {0, 1} be a binary random variable representing

the distinguishability of an image pair. For a distinguishable

pair, D = 1. Given a novel test pair (xm,xn), we are

interested in the posterior:

P (D|xm,xn) ∝ P (xm,xn|D)P (D), (3)

to estimate of how likely two images are distinguishable.

To make a hard decision we take the maximum a posteriori

estimate over the two classes, i.e., d∗ = argmaxd P (D =
d|xm,xn).

At test time, our method can further be used in a two-

stage cascade. If the test pair appears distinguishable, we

return the response “more” or “less” according to whether

R(xm) < R(xn). Otherwise, we say the test pair is indis-

tinguishable. In this way we unify relative attributes with

JND, generating partially ordered predictions in spite of the

ranker’s inherent totally ordered outputs.

Next, we derive models for the likelihood and prior in

Eq. 3, accounting for the challenges described above.

3.2.1 Likelihood model

We use a kernel density estimator (KDE) to represent the

distinguishability likelihood over image pairs. The likeli-

hood captures the link between the observed rank differ-

ences and the human-judged just noticeable differences.

Let ∆m,n denote the difference in attribute ranks for im-

ages m and n:

∆m,n = |R(xm)−R(xn)|. (4)

We compute the rank differences for all training pairs in Po

and Pe, and fit a non-parametric Parzen density:

P (xm,xn|D) =
1

|P|

∑

i,j∈P

Kh (∆i,j −∆m,n) , (5)

for each set in turn. Here P refers to the ordered pairs Po

when representing distinguishability (D = 1), and the equal

pairs Pe when representing indistinguishability (D = 0).

The Parzen density estimator [20] superimposes a kernel

function Kh at each data pair. It integrates local estimates

of the distribution and resists overfitting. The KDE has a

smoothing parameter h that controls the model complexity.

To ensure that all density is contained within the positive ab-

solute margins, we apply a positive support to the estimator.

Namely, we transform ∆i,j using a log function, estimate

the density of the transformed values, and then transform

back to the original scale. See step 2 in Figure 3.

The likelihood reflects how well the equal and ordered

pairs are separated in the attribute space. However, criti-

cally, P (xm,xn|D = 1) need not decrease monotonically

as a function of rank differences. In other words, the model

permits returning a higher likelihood for certain pairs sep-

arated by smaller margins. This is a direct consequence of

our choice of the non-parametric KDE, which preserves lo-

cal models of the original training data. This is valuable

for our problem setting because in principle it means our

method can correct imperfections in the original learned

ranks and account for the non-uniformity of the space.

3.2.2 Prior model

Finally, we need to represent the prior over distinguishabil-

ity. The prior could simply count the training pairs, i.e., let

P (D = 1) be the fraction of all training pairs that were

distinguishable. However, we again aim to account for the

non-uniformity of the visual feature space. Thus, we esti-

mate the prior based only on a subset of data near the input

images. Intuitively, this achieves a simple prior for the label
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distribution in multiple pockets of the feature space:

P (D = 1) =
1

K
|P ′

o|, (6)

where P ′
o ⊂ Po denotes the set of K neighboring ordered

training pairs. P (D = 0) is defined similarly for the in-

distinguishable pairs Pe. Note that while the likelihood is

computed over the pair’s rank difference, the locality of the

prior is with respect to the image descriptor space. See step

3 in Figure 3.

To localize the relevant pocket of the image space, we

adopt the metric learning strategy developed in prior work

for comparing fine-grained attributes [27]. Briefly, it works

as follows. First, a Mahalanobis distance metric f : X ×
X → ℜ is trained to return small distances for images per-

ceptually similar according to the attribute, and large dis-

tances for images that are dissimilar. Using that metric,

pairs analogous to (xm,xn) are retrieved based on a prod-

uct of their individual Mahalonobis distances, so as to find

pairs whose members both align. See [27] for details.

3.3. Discussion

An alternative approach to represent partial orders is or-

dinal regression, where training data would consist of or-

dered equivalence classes of data. However, ordinal re-

gression has severe shortcomings for our problem setting.

First, it requires a consistent ordering of all training data

(via the equivalence classes). This is less convenient for hu-

man annotators and more challenging to scale than the dis-

tributed approach offered by learning-to-rank, which pools

any available paired comparisons. For similar reasons,

learning-to-rank is much better suited to crowdsourcing

annotations and learning universal (as opposed to person-

specific [3, 1]) predictors. Finally, ordinal regression re-

quires committing to a fixed number of buckets. This makes

incremental supervision updates problematic. Furthermore,

to represent very subtle differences, the number of buckets

would need to be quite large.

Our approach offers a way to learn a computational

model for just noticeable differences. While we borrow

the term JND from psychophysics to motivate our task, of

course the analogy is not 100% faithful. In particular, psy-

chophysical experiments to elicit JND often permit system-

atically varying a perceptual signal until a human detects

a change, e.g., a color light source, a sound wave ampli-

tude, or a compression factor. In contrast, the space of all

visual attribute instantiations does not permit such a sim-

ple generative sampling. Instead, our method extrapolates

from relatively few human-provided comparisons (fewer

than 1,000 per attribute in our experiments) to obtain a sta-

tistical model for distinguishability, which generalizes to

novel pairs based on their visual properties.

JND models for attributes appear most relevant for

category-specific attributes. Within a category domain (e.g.,

faces, cars, handbags, etc.), attributes describe fine-grained

properties, and it is valuable to represent any perceptible

differences (or realize there are none). In contrast, compar-

ative questions about very unrelated things or extra-domain

attributes can be nonsensical. For example, do we need to

model whether the shoes and the table are “equally ornate”?

or whether the dog or the towel is “more fluffy”? Accord-

ingly, we focus our experiments below on two domains with

rich vocabularies of fine-grained attributes, faces and shoes.

4. Experiments

With two challenging datasets, we present results on the

core JND detection task (Sec. 4.1) and demonstrate its im-

pact on an existing image search application (Sec. 4.2).

Datasets and establishing JND ground truth Our task

requires attribute datasets that (1) have instance-level rela-

tive supervision, meaning annotators were asked to judge

attribute comparisons on individual pairs of images, not

object categories as a whole and (2) have pairs labeled

as “equal” and “more/less”. To our knowledge, UT-

Zap50K [27] and LFW-10 [23] are the only existing datasets

satisfying those conditions.

To train and evaluate just noticeable differences, we must

have annotations of utmost precision. Therefore, we take

extra care in establishing the (in)distinguishable ground

truth for both datasets. We perform pre-processing steps to

discard unreliable pairs, as we explain next. This decreases

the total volume of available data, but it is essential to have

trustworthy results.

The UT-Zap50K dataset [27] consists of 50,025 total

catalog shoes images from Zappos.com.2 It contains 4 rela-

tive attributes, open, pointy, sporty, and comfort, with 3,000

annotated pairs each. Each pair was labeled by 5 work-

ers on Mechanical Turk (MTurk). The labeled image pairs

are partitioned into two sets—coarser pairs and fine-grained

pairs—as determined by a two-stage crowdsourcing proce-

dure to discover subtle pairs. As ordered pairs Po, we use all

coarse and fine-grained pairs for which all 5 workers agreed

and had high confidence. Even though the fine-grained pairs

might be visually similar, if all 5 workers could come to

agreement with high confidence, then the images are most

likely distinguishable. As equal pairs Pe, we use all fine-

grained pairs with 3 or 4 workers in agreement and only

medium confidence. Since the fine-grained pairs have al-

ready been presented to the workers twice (see [27]), if the

workers are still unable to come to an consensus with high

confidence, then the images are most likely indistinguish-

able. The resulting dataset has 4,778 total annotated pairs,

consisting of on average 800 ordered and 350 indistinguish-

able (equal) pairs per attribute.

2vision.cs.utexas.edu/projects/finegrained/utzap50k
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