This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Fill and Transfer:
A Simple Physics-based Approach for Containability Reasoning

Lap-Fai Yu!
!University of Massachusetts Boston,

Noah Duncan? Sai-Kit Yeung?

2University of California, Los Angeles,

3Singapore University of Technology and Design

Abstract

The visual perception of object affordances has emerged
as a useful ingredient for building powerful computer vi-
sion and robotic applications [31]. In this paper we intro-
duce a novel approach to reason about liquid containability
- the affordance of containing liquid. Our approach ana-
lyzes container objects based on two simple physical pro-
cesses: the Fill and Transfer of liquid. First, it reasons
about whether a given 3D object is a liquid container and
its best filling direction. Second, it proposes directions to
transfer its contained liquid to the outside while avoiding
spillage. We compare our simplified model with a common
fluid dynamics simulation and demonstrate that our algo-
rithm makes human-like choices about the best directions
to fill containers and transfer liquid from them. We apply
our approach to reason about the containability of several
real-world objects acquired using a consumer-grade depth
camera.

1. Introduction

One of the fundamental metrics to categorize man-made
objects is functionality, also called object affordance [11,

], which Gibson defined as the opportunities for action
provided by a particular object. Object affordance is an im-
portant concept in the field of visual perception. The human
cognition system possesses subtle yet powerful reasoning
ability when it comes to analyzing the affordances of ev-
eryday objects in a scene. This ability enables humans to
correctly manipulate objects to finish daily tasks.

Most of the man-made objects in our living environment
are designed to possess certain object affordances. Pointed
out by Sullivan [34] as a famous design postulate, “form
ever follows function”. Tversky [35] further noted, “func-
tion can often be inferred from form, in part because form
can determine function”. This indeed explains why the
pitcher in Figure 1(a) has a narrow mouth (so that liquid
can be poured out steadily via its mouth), and why the hole-
ridden tray in Figure 1(b) is not designed for holding liquid
(as liquid can leak through its holes).

Figure 1(c) shows a collection of different types of ob-
jects, whose visual appearance varies significantly in terms
of geometry and surface reflectance. However, all these
objects share the same object affordance of containability.
Figure 1(d) shows a plate and a cup, each able to contain
liquid. However, for carrying liquid, one usually prefers to
use the cup instead of the plate, because the plate will spill
the liquid if perturbed even slightly but the cup will not. Our
goal is to devise a simple approach that enables computers

Figure 1. Some non-trivial questions that our simple approach can
answer given a 3D object. (a) Which direction shall we tilt the
pitcher to pour the water out? (b) Shall we use this container to
hold water? (c) Which object is a good liquid container? (d) Shall
we use a plate or a cup to carry water?

to make these choices without expensive computation.

Recent advancement of consumer-grade 3D depth sen-
sors (e.g. Occipital Structure Sensor') allows even gen-
eral users to easily acquire full-view 3D data of every-
day objects, using a mobile device. The growing avail-
ability of good-quality 3D data increases the level of vi-
sual analysis that computers can perform to understand ob-
jects and scenes, for example, by physics-based reason-
ing [15, 40, 41]. Current vision research aims to use this
data to enable computers to understand and manipulate ev-
eryday objects as naturally as humans do.

We share the same stance as in qualitative physics [9]:
simple physics-based models can be more suitable than pre-
cise numerical simulations for reasoning about many prac-
tical daily situations. This stance can be justified by the fact
that humans can interact seamlessly with the objects in their
everyday surroundings, without knowing the equations and
numerical parameters required by traditional physics to de-
scribe the physical interactions happening.

To this end, we propose a simplified physics-based ap-
proach to perform containability analysis of objects. We
demonstrate that our approach can answer non-trivial ques-
tions about containability (Figure 1) and hence make the
right manipulation decisions. We experimentally verify our
approach by comparing its outputs with human preferences
and with a common fluid dynamics simulation.

http://structure.io

711

http://structure.io

2. Related Work

Containability. Containability has been categorized as one
of the common functional affordance features. The affor-
dance network [36] defines containability as the ability of
objects to hold solids or liquids transferred to it’>. Ge-
ometrically, containability is defined using the criteria of
“high convexity”. Examples include bowls, cups and pots.
However, this simple definition does not provide sufficient
reasoning power to distinguish between different types of
containers nor provide information about how the container
should be manipulated to accomplish various related tasks.
Our novelty lies in devising a computational approach to
perform such containability analysis, such that the fill and
transfer direction of a possible container can be automati-
cally deduced. To the best of our knowledge, no existing
work has tackled this exact problem.
Physics-based Reasoning. There are recent successes [2,
, 40, 41] in using physics to reason about object prop-
erties and scenes in computer vision and robotics commu-
nities. For example, physics-based stability reasoning can
effectively improve scene segmentation and support detec-
tion. Battaglia et al. [2] used simulation as a reasoning en-
gine to perform physical scene understanding. Their exper-
iments verified that humans do rough physical simulation
when trying to understand or make predictions about the
physical world, which resonates with the observations by
McCloskey on intuitive physics [27]. Our work is inspired
by these, in which we do simplified physics-based reason-
ing to analyse containability. Our work also coincides with
the research direction of qualitative physics [9], which is
about developing computational representations and models
that capture the ways by which people reason about prop-
erties in the physical world, in our case, the containability
of objects. Our work is also motivated by psychological
research [3, 28] which finds that, humans, even as infants,
categorize objects according to their affordance.
Affordance Prior. There are also recent breakthroughs in
computer vision about using affordance prior [1, 12, 14, 16,
, 19, 22] to analyze the functionality of objects or scenes.
Grabner et al. [12] demonstrated that by using human sit-
ting poses as priors, one can effectively distinguish between
chairs and non-chairs in a 3D object database. Gupta et
al. [14] introduced an approach for understanding a scene
in terms of what affordances it supports. The method builds
a joint space which can effectively predict a set of possible
human poses from a single image. Kim et al. [19] used hu-
man pose priors to perform human-centric shape analysis on
3D models of man-made objects. Zhao and Zhu [39] pro-
posed an integrated framework to perform 3D scene pars-
ing by jointly reasoning about functionality, geometry and
appearance of the 3D scene. Yu et al. [38] synthesized fea-
sible indoor scenes by incorporating common functionality
priors. There are also recent successes in using affordance
priors to detect or reason about functionality regions of ob-
jects in 2D images [37, 42]. Refer to [7] for a comprehen-
sive review.
Object Manipulation. An important goal in computer vi-
sion is to enable computers to automatically understand and

2In this work, we do not consider containability closure as defined
in [36]. A tetrapak is an example of such.

Point cloud Voxelized Fill Transfer
Figure 2. Overview of our approach. Cyan voxels refer to the con-
tainer, blue voxels refer to the containee. Our approach automat-
ically identifies containers and determines its fill and transfer di-
rections.

reason about daily objects and scenes, even for the intrin-
sic object properties and physical relations, like humans do
on a daily basis [4, 15]. Such reasoning ability has direct
applications, for example, it can enable robots to manipu-
late with living environments like humans do, such as to
open new doors [20], to grasp novel objects [29, 30], and to
manipulate objects according to their perceived affordances
in general [18, 21]. Our approach also progresses towards
this goal, by automatically detecting container objects and
reasoning about their manipulation.

With regard to container manipulation, Brandl et al. [5]
used warped parameters to transfer pouring actions from a
source object to a target object. The source object is manu-
ally annotated with semantic labels, which are transferred to
the target object by warping the source object to match the
target. The fill and transfer directions are predefined spe-
cific to the semantic labels (e.g. handle, rim) of the mug-like
containers used. Kunze et al. [23] proposed to use physical
simulation to reason about object manipulation. In their ex-
ample of pouring liquids, the container is prefilled and the
transfer direction is predefined. Compared to these works,
our approach does not require any annotation and focuses
on automatically deducing both the filling and transfer di-
rections for general containers. Recently, Liang et al. [26]
also found that physical simulation is a good approxima-
tion for evaluating human cognition of containing relations,
through a series of interesting simulation experiments

3. Overview

Figure 2 shows an overview of our approach. Our con-
tainability analysis is motivated by the following high-level
tasks which are commonly performed by humans on liquid
containers. Fill refers to filling a container with the con-
tainee substance. Transfer refers to manipulating a con-
tainer filled with the containee substance so that some or
all of the containee substance is transferred elsewhere, ei-
ther to another container or to the external environment. Al-
though these tasks are simple to describe, several non-trivial
questions must be answered in order to carry them out sat-
isfactorily: How to identify a container? How to fill up a
container? And how to manipulate the filled-up container?

In our approach, we simplify our problem by only con-
sidering the gravitational force, and the normal forces ex-
erted by the container. The former prevents a containee
from going upward, and the latter prevents a containee from
passing through the container. Without violating these re-
strictions, a containee will try to go as downwards as possi-
ble to lower its gravitational potential energy.

712

Initial Intermediate End

|:| Container . Containge D Unknown |:| Air

Figure 3. Computing the containee volume. Initial: all the voxels
at height level h = 0 are preset to have state Air. Intermediate: our
algorithm propagates state Air by flood-fill at the current height
level (voxel layer just below the red dashed line). All the voxels
not flood-filled have state Containee. End: After flood-filling all
the height level, the containee volume is found by counting all the
Containee voxels.

4. Approach
4.1. Voxel Representation

Our approach works in the voxel domain. The input can
be a point cloud of a 3D model, or a 3D CAD model in
mesh format which we convert to a point cloud by running
a ray-casting style virtual scanner that samples points on
the model’s surface. We voxelize the world into a 3D grid
of equal-sized, cubic voxels. The size of the world is de-
fined such that it encloses the entire bounding box of the
container under all possible self-rotations. To facilitate sub-
sequent computations, we enlarge the tight bounding box
defined above by padding three voxels at its sides.

We use a simple voxelization scheme. Let W be the vol-
ume containing all the voxels in the defined world. Each
voxel W, , . is indexed by its location along the z, y
and z axes. At the beginning, each voxel has two states:
Container and Unknown. Container indicates that the voxel
is part of the container. Unknown indicates that the voxel is
not part of the container and its state is yet to be determined.
Our goal is to set all the Unknown states into Containee or
Air. Containee indicates that the voxel is filled with the con-
tainee substance, e.g., liquid. Air indicates that the voxel is
not filled with the containee substance. Initially, we set all
the voxels at the lowest level to have state Air, as this will
facilitate our algorithm’s execution.

4.2. Fill

In this part, our algorithm searches for the direction to fill
up the container that results in the maximum containee vol-
ume, which we refer to as the best filling axis. To achieve
this, our algorithm makes various attempts to fill up the
container along different filling axes (poses), guided by a
smoothing-based optimization. We first detail our algorithm
for computing containee volume under a particular pose.
After that we can search for the best filling axis (pose) that
gives the maximum containee volume.

Computing Containee Volume. Given a container in its
current pose, and suppose the gravitational force is acting
downwards ([0, —1,0]7), we want to compute the volume
of containees that can fill up the container without leakage

Algorithm 1 Compute Containee Volume

Input:Voxel state grid W.

for h =1to H do
Set empty queue Queue;
foreach W, ;, . do
if Wy 1. is Unknown and Wy 1,1 . is Air then
L | Push W 3 . to Queue;

1) Push corner voxel Wy j, o to Queue;

2) Do flood-fill on height level h using Queue, set
each flood-filled voxel to have state Air;

3) Set each W, 3, . with state Unknown to Containee;
4) Compute Containee volume V(W) as the total
number of Containee;

5) Update h* = h if V(W) is changed

Output:V (W) and /.

Figure 4. Pseudocode for computing the containee volume.

and the corresponding height level i*. We refer to this vol-
ume as the containee volume V' (W) of the container.

We propose a remarkably simple algorithm without any
fluid simulation to perform this task. Instead of pouring
Containee (liquid) from the top, we flood fill the Air from
the bottom. The key insight is that, although we do not
know which voxels belong to the “inside” of the container to
contain the containee, we know that the voxel at the lower-
left corner at the current height level /» must belong to Air,
because we have padded the world such that it is larger than
the bounding box of the container under any self-rotation
(Section 4.1). Therefore, when we flood-fill from the lower-
left corner to propagate the Air state, any adjacent Unknown
voxel will become Air. However, the Container voxels will
block the Air from flood-filling into its “inside”, preserving
the Unknown voxels.

Therefore, when the flood-fill is done, any voxel at the
current height level h either has state Air, Container or Un-
known. All the Unknown voxels are turned into Containee.
Our algorithm starts from height level h = 1 and runs in-
crementally at each height level until h = H where H is
the maximum height in W. Notice that the previous height
level will not be affected by the current height level. To
speed up, our algorithm re-uses the states determined at the
previous height level when computing for the current height
level. This is done by pushing all the Unknown voxels with
an underneath Air voxel to the flood-fill queue, before the
flood-fill begins. Refer to Figure 3 for an illustration and
Figure 4 (Algorithm 1) for the pseudocode. The complex-
ity of Algorithm 1is O(|W|), where [W | denotes the num-
ber of voxels used, as each voxel is processed at most once.

In short, our algorithm goes through each height level to
determine the Containee voxels in W. Finally it outputs the
containee volume V(W) as the total number of Containee
voxels, and the corresponding height level h*.

Best Filling Axis Search. In general, a container object
does not carry any notion of how it should be filled. Given
a filling axis f, we want to find out the corresponding con-
tainee volume assuming the gravitational force is acting to-
wards [0, —1,0]%. In practice, this is equivalent to rotating

713

p f.p

(aligned)

T
Figure 5. Left: before alignment. Right: after alignment. Rotating
the container object by Re_,, aligns f with p. The container ob-
ject can then be filled up assuming the gravitational force is acting

towards [0, —1,0]"".

the object such that f aligns with [0,1,0]7 and then per-
forming the filling.

Define p = [0,1,0]7. Since both f and p are known,
computing the rotation function Re_,, is trivial. Rg_,p, is
parametrized by only one rotation angle 6, along the rota-

tional axis r perpendicular to the plane spanned by f and p,

ie,r= Hgiitf"H and 0, = —2cos~!(p”'f). Figure 5 denotes

their relationships.

Once we rotate the container by R¢_,,, we can compute
the containee volume V(W) by Algorithm 1. The best
filling axis f* is defined as the filling axis f which results in
the maximum containee volume:

f* = argmax V(Re_,p(W)) (1
f

We use a smoothing-based optimization [25] to guide the
search for the best filling axis £*, as follows:
Initialization. We uniformly sample 12 filling axes over the
surface of a unit sphere and compute their corresponding
containee volumes. We choose the filling axis correspond-
ing to the largest containee volume as our initialization.
Optimization. Starting with the initial filling axis, the
smoothing-based optimization proceeds iteratively. At the
current iteration ¢, it performs two updates: 1) the current
filling axis estimate, f ®). 2) the variance of the current esti-
mate, (0(*))2. The optimization stops when the variance is
smaller than a threshold, that is, when we are very certain
that the current filling axis estimate is close to an optimum.

Both practically and theoretically [25], the optimization
process represents the estimate using a Gaussian distribu-
tion from which samples are drawn to update the estimate
and variance. This is non-trivial in our scenario where our
estimates are constrained to be the directions over a unit
sphere. In other words, given the current filling axis esti-
mate £(*), which is taken as the mean of a Gaussian distri-
bution, and the variance of the current estimate, we need to
sample directions over the unit sphere from this Gaussian
distribution.

While Gaussian sampling over the unit sphere is non-
trivial, we can instead perform Gaussian sampling over the
tangent plane at the intersection of the current filling axis es-
timate £(*) and the unit sphere, and project the samples back
from the tangent plane to the unit sphere. This is motivated
by the recent work of Straub et al. [33] which proposed an
elegant representation to encode scene normals as clusters
of distributions over a unit sphere.

Specifically, at iteration ¢ of the optimization pro-

cess, given the current filling axis estimate, £ and

Notations Before Projection After Projection
Figure 6. Left: notations. Right: projecting the Gaussian samples
(blue) from the tangent plane (gray) about the current filling axis
estimate (red) to the unit sphere surface, via the Riemannian loga-
rithm map Q. The projected samples (green) are shown.

the variance of the current estimate, (O'(t))2, we sam-
ple points s1,sa, ..., sk from the 2D Gaussian distribution

N(f® | (c®)21) defined over the tangent plane about f(*)
(I is the identity matrix). Denote u; = s; — f (), Each of
these sample points s; are then projected back to a point s;

on the unit sphere via the Riemannian logarithm map® Q
[6, 8] (Figure 6):

§i = QD) = £O cos(|[wy]) + ”“—H sin(||wil) ()
u;

Gaussian samples can hence be generated on the tangent
plane and used for the smoothing-based optimization. At
each iteration during the optimization, we sample points
S1, S2, ..., Sk to perform updates.

Current Filling Axis Update. We update the current filling
axis by:
uj = Sj — f(t) (3)

§ = Q(fY) 4)

SF L V(Rsop(W))u
S V(Rsop(W))
£ = Q(f", 1) (©)

In our experiments we used k = 5 sample axis directions
drawn from the Gaussian distribution on the tangent plane
about axis f(*). The above equations essentially compute
the new axis from the projection of the weighted sum of
the Gaussian samples, and we use the containee volumes
(computed by Algorithm 1) corresponding to each sample
axis direction as the weights.

Current Variance Update. we update the variance of the
current estimate by:

(U(t+1))2 — 12§:1 V(Rei—p(W))ui"
2 Zf:l V(Rs’;%p(w))

At each iteration, the variance tells us how certain our
current estimate is and this certainty is automatically up-
dated based on the neighborhood, a very useful property
of smoothing-based optimization. The optimization stops
when the variance is smaller than a threshold (0.1 in our ex-
periments). It usually stops in about 4-5 iterations in our
experiments. Figure 7 shows an example.

u=

®)

)

3Refer to the supplementary material for a proof.

714

Input Initialization
V =58 V = 2229
(e'Y)2 = 0.60

-

Iteration 5
V = 3082
(e!Y)2 =0.06

Iteration 3
V = 2949
(62 =0.15

Figure 7. Containee volume and variance over iterations.

Identifying Containers. Our algorithm makes use of the
best filling axis and the corresponding maximum containee
volume, to determine whether an object is a container. This
is done by computing the percentage of the maximum con-
tainee volume out of the total volume of the container plus
containee. If the percentage is smaller than a threshold
(10% in our experiments), we consider that the object is not
a container. Otherwise it proceeds to the next step to deduce
the transfer directions. Figure 10 shows some examples.

4.3. Transfer

Next we reason about the Trans-
fer part, that is, the manipulation
of the filled-up container such that
some or all of its containees are
transferred to a destination. We
suppose that a desirable transfer
should avoid spillage, i.e. all of the
transferred containees should end up
at the destination rather than else- 3
where. To reduce the chance of Fjgyre 8. Notations.
spillage, one possible measure is that
the cross-sectional area of the flow of liquid from the con-
tainer to the destination should be minimized, so that the
overlap with the destination is maximized. Refer to our
supplementary material for assumptions and justification.
Our approach approximately calculates the cross-sectional
area in the voxel domain by counting the number of voxels
that the “leaking” containee voxels will pass through as they
transfer from the container.

Assume the container has already been rotated to stand
upright according to the best filling axis as described in Sec-
tion 4.2. Formally each transfer direction is described as a
tilt axis. We want to determine the tendency of containees
leaking out as the container is being tilted about different tilt
axes. It is intuitive to again use an axis-angle representation
to represent the tilt motion. Specifically, each tilt motion
can be described by a tilt axis g, = [cos(a), 0, sin(a)]”
lying on the x-z plane and a tilt angle ¢. Our goal is to
compute a transfer metric for each tilt axis g,, and make
use of the transfer metrics to deduce the best tilt axis(s) for
Transfer.

Transfer Metrics Computation. We propose to use a sim-
ple metric, by counting the number of voxels N at the leak-
age boundary (Figure 9 Right) if we add one more layer of

Sl
w

After Algorithm 1 Add Layer

Figure 9. Computing N (Algorithm 2). Left: our algorithm first
applies Algorithm 1 to fill the container up to height level h™.
Middle: it then grows a layer of Imaginary voxels at height level
h*+1. Right: it computes N by counting the number of Imaginary
voxels at the leakage boundary (i.e.Imaginary voxels adjacent to
an Air voxel at height level A* + 1).

Bowl Hole-ridden tray
Figure 10. Identifying containers. Left: the bowl is identified as a
container. Right: the hole-ridden tray which cannot be filled up by
containee is identified as a non-container.

Count N Zoom

Algorithm 2 Compute N

Input:Voxel state grid W of the container tilted about
tilt axis g, by angle ¢.
Initialize:
Run Algorithm 1 to fill up the container and set states in
‘W. Get height level h*;
Set empty queue Queue;
foreach W, ;, ;1 . do
if Wy 41,18 Airand Wy, is Containee then
L | Push Wy 5 41, to Queue;

Do flood-fill on height level A* + 1 using Queue, as
follow:

e set each flood-filled voxel to have state Imaginary.
e push neighbor voxel to Queue if neighbor voxel is
supported by a Container underneath.

Output: N as the number of Imaginary voxels at the
leakage boundary.

Figure 11. Pseudocode for computing N.

containee under the tilted status.

Suppose the container is tilted about axis g, by angle ¢.
We fill up the container to the maximum containee volume
following Algorithm 1, and get the corresponding height
level h*. Now, consider an imaginary layer of containee
voxels added at height level h* + 1, i.e., we assign a new
state Imaginary to the Air voxels as long as their underneath
voxels are Containee, and this is followed by a flood-fill
(Figure 9 Middle). State Imaginary refers to those imag-
inary voxels that had just leaked under the current tilting
motion.

Now, we compute N by counting the number of Imag-
inary voxels that have an adjacent Air voxel at the same
height level h* + 1. See Figure 9 for illustration and Fig-
ure 11 (Algorithm 2) for the pseudocode. The complexity
of Algorithm 2 is O(|W]), where |W]| is the number of

715

