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Abstract

The visual perception of object affordances has emerged
as a useful ingredient for building powerful computer vi-
sion and robotic applications [31]. In this paper we intro-
duce a novel approach to reason about liquid containability
- the affordance of containing liquid. Our approach ana-
lyzes container objects based on two simple physical pro-
cesses: the Fill and Transfer of liquid. First, it reasons
about whether a given 3D object is a liquid container and
its best filling direction. Second, it proposes directions to
transfer its contained liquid to the outside while avoiding
spillage. We compare our simplified model with a common
fluid dynamics simulation and demonstrate that our algo-
rithm makes human-like choices about the best directions
to fill containers and transfer liquid from them. We apply
our approach to reason about the containability of several
real-world objects acquired using a consumer-grade depth
camera.

1. Introduction

One of the fundamental metrics to categorize man-made
objects is functionality, also called object affordance [11,
13], which Gibson defined as the opportunities for action
provided by a particular object. Object affordance is an im-
portant concept in the field of visual perception. The human
cognition system possesses subtle yet powerful reasoning
ability when it comes to analyzing the affordances of ev-
eryday objects in a scene. This ability enables humans to
correctly manipulate objects to finish daily tasks.

Most of the man-made objects in our living environment
are designed to possess certain object affordances. Pointed
out by Sullivan [34] as a famous design postulate, “form
ever follows function”. Tversky [35] further noted, “func-
tion can often be inferred from form, in part because form
can determine function”. This indeed explains why the
pitcher in Figure 1(a) has a narrow mouth (so that liquid
can be poured out steadily via its mouth), and why the hole-
ridden tray in Figure 1(b) is not designed for holding liquid
(as liquid can leak through its holes).

Figure 1(c) shows a collection of different types of ob-
jects, whose visual appearance varies significantly in terms
of geometry and surface reflectance. However, all these
objects share the same object affordance of containability.
Figure 1(d) shows a plate and a cup, each able to contain
liquid. However, for carrying liquid, one usually prefers to
use the cup instead of the plate, because the plate will spill
the liquid if perturbed even slightly but the cup will not. Our
goal is to devise a simple approach that enables computers

(a) (b)

(c) (d)
Figure 1. Some non-trivial questions that our simple approach can
answer given a 3D object. (a) Which direction shall we tilt the
pitcher to pour the water out? (b) Shall we use this container to
hold water? (c) Which object is a good liquid container? (d) Shall
we use a plate or a cup to carry water?

to make these choices without expensive computation.
Recent advancement of consumer-grade 3D depth sen-

sors (e.g. Occipital Structure Sensor1) allows even gen-
eral users to easily acquire full-view 3D data of every-
day objects, using a mobile device. The growing avail-
ability of good-quality 3D data increases the level of vi-
sual analysis that computers can perform to understand ob-
jects and scenes, for example, by physics-based reason-
ing [15, 40, 41]. Current vision research aims to use this
data to enable computers to understand and manipulate ev-
eryday objects as naturally as humans do.

We share the same stance as in qualitative physics [9]:
simple physics-based models can be more suitable than pre-
cise numerical simulations for reasoning about many prac-
tical daily situations. This stance can be justified by the fact
that humans can interact seamlessly with the objects in their
everyday surroundings, without knowing the equations and
numerical parameters required by traditional physics to de-
scribe the physical interactions happening.

To this end, we propose a simplified physics-based ap-
proach to perform containability analysis of objects. We
demonstrate that our approach can answer non-trivial ques-
tions about containability (Figure 1) and hence make the
right manipulation decisions. We experimentally verify our
approach by comparing its outputs with human preferences
and with a common fluid dynamics simulation.

1http://structure.io
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2. Related Work

Containability. Containability has been categorized as one
of the common functional affordance features. The affor-
dance network [36] defines containability as the ability of

objects to hold solids or liquids transferred to it2. Ge-
ometrically, containability is defined using the criteria of
”high convexity”. Examples include bowls, cups and pots.
However, this simple definition does not provide sufficient
reasoning power to distinguish between different types of
containers nor provide information about how the container
should be manipulated to accomplish various related tasks.
Our novelty lies in devising a computational approach to
perform such containability analysis, such that the fill and
transfer direction of a possible container can be automati-
cally deduced. To the best of our knowledge, no existing
work has tackled this exact problem.

Physics-based Reasoning. There are recent successes [2,
15, 40, 41] in using physics to reason about object prop-
erties and scenes in computer vision and robotics commu-
nities. For example, physics-based stability reasoning can
effectively improve scene segmentation and support detec-
tion. Battaglia et al. [2] used simulation as a reasoning en-
gine to perform physical scene understanding. Their exper-
iments verified that humans do rough physical simulation
when trying to understand or make predictions about the
physical world, which resonates with the observations by
McCloskey on intuitive physics [27]. Our work is inspired
by these, in which we do simplified physics-based reason-
ing to analyse containability. Our work also coincides with
the research direction of qualitative physics [9], which is
about developing computational representations and models
that capture the ways by which people reason about prop-
erties in the physical world, in our case, the containability
of objects. Our work is also motivated by psychological
research [3, 28] which finds that, humans, even as infants,
categorize objects according to their affordance.

Affordance Prior. There are also recent breakthroughs in
computer vision about using affordance prior [1, 12, 14, 16,
17, 19, 22] to analyze the functionality of objects or scenes.
Grabner et al. [12] demonstrated that by using human sit-
ting poses as priors, one can effectively distinguish between
chairs and non-chairs in a 3D object database. Gupta et
al. [14] introduced an approach for understanding a scene
in terms of what affordances it supports. The method builds
a joint space which can effectively predict a set of possible
human poses from a single image. Kim et al. [19] used hu-
man pose priors to perform human-centric shape analysis on
3D models of man-made objects. Zhao and Zhu [39] pro-
posed an integrated framework to perform 3D scene pars-
ing by jointly reasoning about functionality, geometry and
appearance of the 3D scene. Yu et al. [38] synthesized fea-
sible indoor scenes by incorporating common functionality
priors. There are also recent successes in using affordance
priors to detect or reason about functionality regions of ob-
jects in 2D images [37, 42]. Refer to [7] for a comprehen-
sive review.

Object Manipulation. An important goal in computer vi-
sion is to enable computers to automatically understand and

2In this work, we do not consider containability closure as defined
in [36]. A tetrapak is an example of such.

Point cloud Voxelized Fill Transfer
Figure 2. Overview of our approach. Cyan voxels refer to the con-
tainer, blue voxels refer to the containee. Our approach automat-
ically identifies containers and determines its fill and transfer di-
rections.

reason about daily objects and scenes, even for the intrin-
sic object properties and physical relations, like humans do
on a daily basis [4, 15]. Such reasoning ability has direct
applications, for example, it can enable robots to manipu-
late with living environments like humans do, such as to
open new doors [20], to grasp novel objects [29, 30], and to
manipulate objects according to their perceived affordances
in general [18, 21]. Our approach also progresses towards
this goal, by automatically detecting container objects and
reasoning about their manipulation.

With regard to container manipulation, Brandl et al. [5]
used warped parameters to transfer pouring actions from a
source object to a target object. The source object is manu-
ally annotated with semantic labels, which are transferred to
the target object by warping the source object to match the
target. The fill and transfer directions are predefined spe-
cific to the semantic labels (e.g. handle, rim) of the mug-like
containers used. Kunze et al. [23] proposed to use physical
simulation to reason about object manipulation. In their ex-
ample of pouring liquids, the container is prefilled and the
transfer direction is predefined. Compared to these works,
our approach does not require any annotation and focuses
on automatically deducing both the filling and transfer di-
rections for general containers. Recently, Liang et al. [26]
also found that physical simulation is a good approxima-
tion for evaluating human cognition of containing relations,
through a series of interesting simulation experiments

3. Overview

Figure 2 shows an overview of our approach. Our con-
tainability analysis is motivated by the following high-level
tasks which are commonly performed by humans on liquid
containers. Fill refers to filling a container with the con-
tainee substance. Transfer refers to manipulating a con-
tainer filled with the containee substance so that some or
all of the containee substance is transferred elsewhere, ei-
ther to another container or to the external environment. Al-
though these tasks are simple to describe, several non-trivial
questions must be answered in order to carry them out sat-
isfactorily: How to identify a container? How to fill up a
container? And how to manipulate the filled-up container?

In our approach, we simplify our problem by only con-
sidering the gravitational force, and the normal forces ex-
erted by the container. The former prevents a containee
from going upward, and the latter prevents a containee from
passing through the container. Without violating these re-
strictions, a containee will try to go as downwards as possi-
ble to lower its gravitational potential energy.
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Figure 3. Computing the containee volume. Initial: all the voxels
at height level h = 0 are preset to have state Air. Intermediate: our
algorithm propagates state Air by flood-fill at the current height
level (voxel layer just below the red dashed line). All the voxels
not flood-filled have state Containee. End: After flood-filling all
the height level, the containee volume is found by counting all the
Containee voxels.

4. Approach

4.1. Voxel Representation

Our approach works in the voxel domain. The input can
be a point cloud of a 3D model, or a 3D CAD model in
mesh format which we convert to a point cloud by running
a ray-casting style virtual scanner that samples points on
the model’s surface. We voxelize the world into a 3D grid
of equal-sized, cubic voxels. The size of the world is de-
fined such that it encloses the entire bounding box of the
container under all possible self-rotations. To facilitate sub-
sequent computations, we enlarge the tight bounding box
defined above by padding three voxels at its sides.

We use a simple voxelization scheme. Let W be the vol-
ume containing all the voxels in the defined world. Each
voxel Wx,y,z is indexed by its location along the x, y
and z axes. At the beginning, each voxel has two states:
Container and Unknown. Container indicates that the voxel
is part of the container. Unknown indicates that the voxel is
not part of the container and its state is yet to be determined.
Our goal is to set all the Unknown states into Containee or
Air. Containee indicates that the voxel is filled with the con-
tainee substance, e.g., liquid. Air indicates that the voxel is
not filled with the containee substance. Initially, we set all
the voxels at the lowest level to have state Air, as this will
facilitate our algorithm’s execution.

4.2. Fill

In this part, our algorithm searches for the direction to fill
up the container that results in the maximum containee vol-
ume, which we refer to as the best filling axis. To achieve
this, our algorithm makes various attempts to fill up the
container along different filling axes (poses), guided by a
smoothing-based optimization. We first detail our algorithm
for computing containee volume under a particular pose.
After that we can search for the best filling axis (pose) that
gives the maximum containee volume.

Computing Containee Volume. Given a container in its
current pose, and suppose the gravitational force is acting

downwards ([0,−1, 0]T ), we want to compute the volume
of containees that can fill up the container without leakage

Algorithm 1 Compute Containee Volume

Input:Voxel state grid W.

for h = 1 to H do
Set empty queue Queue;
foreach Wx,h,z do

if Wx,h,z is Unknown and Wx,h−1,z is Air then
Push Wx,h,z to Queue;

1) Push corner voxel W0,h,0 to Queue;
2) Do flood-fill on height level h using Queue, set
each flood-filled voxel to have state Air;
3) Set each Wx,h,z with state Unknown to Containee;

4) Compute Containee volume V (W) as the total
number of Containee;
5) Update h∗ = h if V (W) is changed

Output:V (W) and h∗.

Figure 4. Pseudocode for computing the containee volume.

and the corresponding height level h∗. We refer to this vol-
ume as the containee volume V (W) of the container.

We propose a remarkably simple algorithm without any
fluid simulation to perform this task. Instead of pouring
Containee (liquid) from the top, we flood fill the Air from
the bottom. The key insight is that, although we do not
know which voxels belong to the “inside” of the container to
contain the containee, we know that the voxel at the lower-
left corner at the current height level h must belong to Air,
because we have padded the world such that it is larger than
the bounding box of the container under any self-rotation
(Section 4.1). Therefore, when we flood-fill from the lower-
left corner to propagate the Air state, any adjacent Unknown
voxel will become Air. However, the Container voxels will
block the Air from flood-filling into its “inside”, preserving
the Unknown voxels.

Therefore, when the flood-fill is done, any voxel at the
current height level h either has state Air, Container or Un-
known. All the Unknown voxels are turned into Containee.
Our algorithm starts from height level h = 1 and runs in-
crementally at each height level until h = H where H is
the maximum height in W. Notice that the previous height
level will not be affected by the current height level. To
speed up, our algorithm re-uses the states determined at the
previous height level when computing for the current height
level. This is done by pushing all the Unknown voxels with
an underneath Air voxel to the flood-fill queue, before the
flood-fill begins. Refer to Figure 3 for an illustration and
Figure 4 (Algorithm 1) for the pseudocode. The complex-
ity of Algorithm 1 is O(|W|), where |W| denotes the num-
ber of voxels used, as each voxel is processed at most once.

In short, our algorithm goes through each height level to
determine the Containee voxels in W. Finally it outputs the
containee volume V (W) as the total number of Containee
voxels, and the corresponding height level h∗.

Best Filling Axis Search. In general, a container object
does not carry any notion of how it should be filled. Given
a filling axis f , we want to find out the corresponding con-
tainee volume assuming the gravitational force is acting to-

wards [0,−1, 0]T . In practice, this is equivalent to rotating
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Figure 5. Left: before alignment. Right: after alignment. Rotating
the container object by Rf→p aligns f with p. The container ob-
ject can then be filled up assuming the gravitational force is acting

towards [0,−1, 0]T .

the object such that f aligns with [0, 1, 0]T and then per-
forming the filling.

Define p = [0, 1, 0]T . Since both f and p are known,
computing the rotation function Rf→p is trivial. Rf→p is
parametrized by only one rotation angle θr along the rota-
tional axis r perpendicular to the plane spanned by f and p,

i.e., r = p×f

||p×f || and θr = −2 cos−1(pT f). Figure 5 denotes

their relationships.
Once we rotate the container by Rf→p, we can compute

the containee volume V (W) by Algorithm 1. The best
filling axis f∗ is defined as the filling axis f which results in
the maximum containee volume:

f∗ = argmax
f

V (Rf→p(W)) (1)

We use a smoothing-based optimization [25] to guide the
search for the best filling axis f∗, as follows:
Initialization. We uniformly sample 12 filling axes over the
surface of a unit sphere and compute their corresponding
containee volumes. We choose the filling axis correspond-
ing to the largest containee volume as our initialization.
Optimization. Starting with the initial filling axis, the
smoothing-based optimization proceeds iteratively. At the
current iteration t, it performs two updates: 1) the current

filling axis estimate, f (t); 2) the variance of the current esti-

mate, (σ(t))2. The optimization stops when the variance is
smaller than a threshold, that is, when we are very certain
that the current filling axis estimate is close to an optimum.

Both practically and theoretically [25], the optimization
process represents the estimate using a Gaussian distribu-
tion from which samples are drawn to update the estimate
and variance. This is non-trivial in our scenario where our
estimates are constrained to be the directions over a unit
sphere. In other words, given the current filling axis esti-

mate f (t), which is taken as the mean of a Gaussian distri-
bution, and the variance of the current estimate, we need to
sample directions over the unit sphere from this Gaussian
distribution.

While Gaussian sampling over the unit sphere is non-
trivial, we can instead perform Gaussian sampling over the
tangent plane at the intersection of the current filling axis es-

timate f (t) and the unit sphere, and project the samples back
from the tangent plane to the unit sphere. This is motivated
by the recent work of Straub et al. [33] which proposed an
elegant representation to encode scene normals as clusters
of distributions over a unit sphere.

Specifically, at iteration t of the optimization pro-

cess, given the current filling axis estimate, f (t), and

Notations Before Projection After Projection
Figure 6. Left: notations. Right: projecting the Gaussian samples
(blue) from the tangent plane (gray) about the current filling axis
estimate (red) to the unit sphere surface, via the Riemannian loga-
rithm map Q. The projected samples (green) are shown.

the variance of the current estimate, (σ(t))2, we sam-
ple points s1, s2, ..., sk from the 2D Gaussian distribution

N (f (t), (σ(t))2I) defined over the tangent plane about f (t)

(I is the identity matrix). Denote ui = si − f (t). Each of
these sample points si are then projected back to a point ŝi
on the unit sphere via the Riemannian logarithm map3 Q
[6, 8] (Figure 6):

ŝi = Q(f (t),ui) = f (t) cos(||ui||) +
ui

||ui||
sin(||ui||) (2)

Gaussian samples can hence be generated on the tangent
plane and used for the smoothing-based optimization. At
each iteration during the optimization, we sample points
s1, s2, ..., sk to perform updates.

Current Filling Axis Update. We update the current filling
axis by:

ui = si − f (t) (3)

ŝi = Q(f (t),ui) (4)

ū =

∑k

i=1 V (Rŝi→p(W))ui
∑k

i=1 V (Rŝi→p(W))
(5)

f (t+1) = Q(f (t), ū) (6)

In our experiments we used k = 5 sample axis directions
drawn from the Gaussian distribution on the tangent plane

about axis f (t). The above equations essentially compute
the new axis from the projection of the weighted sum of
the Gaussian samples, and we use the containee volumes
(computed by Algorithm 1) corresponding to each sample
axis direction as the weights.
Current Variance Update. we update the variance of the
current estimate by:

(σ(t+1))2 =
1

2

∑k

i=1 V (Rŝi→p(W))ui
Tui

∑k

i=1 V (Rŝi→p(W))
(7)

At each iteration, the variance tells us how certain our
current estimate is and this certainty is automatically up-
dated based on the neighborhood, a very useful property
of smoothing-based optimization. The optimization stops
when the variance is smaller than a threshold (0.1 in our ex-
periments). It usually stops in about 4-5 iterations in our
experiments. Figure 7 shows an example.

3Refer to the supplementary material for a proof.
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Input Initialization

V = 58 V = 2229

(σ(t))2 = 0.60

Iteration 3 Iteration 5

V = 2949 V = 3082

(σ(t))2 = 0.15 (σ(t))2 = 0.06

Figure 7. Containee volume and variance over iterations.

Identifying Containers. Our algorithm makes use of the
best filling axis and the corresponding maximum containee
volume, to determine whether an object is a container. This
is done by computing the percentage of the maximum con-
tainee volume out of the total volume of the container plus
containee. If the percentage is smaller than a threshold
(10% in our experiments), we consider that the object is not
a container. Otherwise it proceeds to the next step to deduce
the transfer directions. Figure 10 shows some examples.

4.3. Transfer

Figure 8. Notations.

Next we reason about the Trans-
fer part, that is, the manipulation
of the filled-up container such that
some or all of its containees are
transferred to a destination. We
suppose that a desirable transfer
should avoid spillage, i.e. all of the
transferred containees should end up
at the destination rather than else-
where. To reduce the chance of
spillage, one possible measure is that
the cross-sectional area of the flow of liquid from the con-
tainer to the destination should be minimized, so that the
overlap with the destination is maximized. Refer to our
supplementary material for assumptions and justification.
Our approach approximately calculates the cross-sectional
area in the voxel domain by counting the number of voxels
that the “leaking” containee voxels will pass through as they
transfer from the container.

Assume the container has already been rotated to stand
upright according to the best filling axis as described in Sec-
tion 4.2. Formally each transfer direction is described as a
tilt axis. We want to determine the tendency of containees
leaking out as the container is being tilted about different tilt
axes. It is intuitive to again use an axis-angle representation
to represent the tilt motion. Specifically, each tilt motion

can be described by a tilt axis gα = [cos(α), 0, sin(α)]T

lying on the x-z plane and a tilt angle φ. Our goal is to
compute a transfer metric for each tilt axis gα, and make
use of the transfer metrics to deduce the best tilt axis(s) for
Transfer.
Transfer Metrics Computation. We propose to use a sim-
ple metric, by counting the number of voxels N at the leak-
age boundary (Figure 9 Right) if we add one more layer of

After Algorithm 1 Add Layer Count N Zoom

Figure 9. Computing N (Algorithm 2). Left: our algorithm first
applies Algorithm 1 to fill the container up to height level h∗.
Middle: it then grows a layer of Imaginary voxels at height level
h∗+1. Right: it computes N by counting the number of Imaginary
voxels at the leakage boundary (i.e.Imaginary voxels adjacent to
an Air voxel at height level h∗ + 1).

Bowl Hole-ridden tray
Figure 10. Identifying containers. Left: the bowl is identified as a
container. Right: the hole-ridden tray which cannot be filled up by
containee is identified as a non-container.

Algorithm 2 Compute N

Input:Voxel state grid W of the container tilted about
tilt axis gα by angle φ.
Initialize:
Run Algorithm 1 to fill up the container and set states in
W. Get height level h∗;
Set empty queue Queue;
foreach Wx,h∗+1,z do

if Wx,h∗+1,z is Air and Wx,h∗,z is Containee then
Push Wx,h∗+1,z to Queue;

Do flood-fill on height level h∗ + 1 using Queue, as
follow:

• set each flood-filled voxel to have state Imaginary.

• push neighbor voxel to Queue if neighbor voxel is
supported by a Container underneath.

Output:N as the number of Imaginary voxels at the
leakage boundary.

Figure 11. Pseudocode for computing N .

containee under the tilted status.
Suppose the container is tilted about axis gα by angle φ.

We fill up the container to the maximum containee volume
following Algorithm 1, and get the corresponding height
level h∗. Now, consider an imaginary layer of containee
voxels added at height level h∗ + 1, i.e., we assign a new
state Imaginary to the Air voxels as long as their underneath
voxels are Containee, and this is followed by a flood-fill
(Figure 9 Middle). State Imaginary refers to those imag-
inary voxels that had just leaked under the current tilting
motion.

Now, we compute N by counting the number of Imag-
inary voxels that have an adjacent Air voxel at the same
height level h∗ + 1. See Figure 9 for illustration and Fig-
ure 11 (Algorithm 2) for the pseudocode. The complexity
of Algorithm 2 is O(|W|), where |W| is the number of
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voxels used, since each voxel is processed at most once.
Figure 12 visualizes the leakage voxels under different tilt
axes with φ = 25◦. Figure 13 shows N along different tilt
axes at different tilt angles.

We will use N to define our transfer metric Zg. For nota-
tional convenience, we drop the subscript α of gα in the fol-
lowing, as we are referring to a fixed tilt axis. For each tilt
axis g, we compute the sum Zg =

∑
φ Ng,φ, where Ng,φ

refers to the N obtained as the container is tilted about axis
g by angle φ. Intuitively, a larger Zg means that there will
be more leakage voxels, i.e., a larger surface area to leak as
the container is tilted about tilt axis g at different tilt angles.
Determining Transfer Directions. In our experiments,
we sample the tilt axis gα = [cos(α), 0, sin(α)], where
α = 0◦, 10◦, ..., 360◦, and the tilt angle φ = 0◦, 1◦, ..., 45◦,
unless otherwise specified. We compute Zg for each tilt
axis. To alleviate the quantization problem caused by dis-
crete sampling as can be observed in Figure 13, we smooth
the sums Zg by a Hann window of size 10. To find out
if the Zg of all the tilt axes are similar, we compute the
normalized standard deviation of all the Zg. If the normal-
ized standard deviation is smaller than 0.1, we conclude that
there is no particular preference and hence all the tilt axes
(transfer directions) are equally-likely. Otherwise, we lo-
cate the local minimum(s) of Zg, and propose the set of tilt

axis(s) {gα} corresponding to the local minimum(s) as the
tilt axis(s) that the container should be tilted about to trans-
fer. Figure 14 shows an illustration.

5. Experiments

5.1. Data

We first perform our experiments on a dataset of 3D
models obtained from the Princeton Shape Benchmark [32]
and the Trimble 3D Warehouse. This dataset consists of 72
objects, including 44 common household container objects
(from keywords e.g.’pitcher’, ’cup’) and 28 random objects.
User Annotations. As there is no notion of containabil-
ity defined on these 3D models, we resort to human users
to provide the ground-truth annotations. We recruit 50 hu-
man users to annotate the dataset. Each human user an-
notates half of the dataset, via a 3D user interface. The
user is shown the objects one by one. For each object, the

user first determines whether it is a container or not4. If
it is a container, s(he) annotates its best filling axis. Then
s(he) is asked to transfer liquid from the filled-up con-
tainer to another container, while avoiding spillage. S(he) is
asked whether all the transfer directions are equally-likely,
or s(he) has some preferred transfer directions. In the lat-
ter case, s(he) annotates all the preferred transfer directions.
Figure 16 shows some objects and results computed by our
approach. Please refer to the supplementary material for the
full list of the annotated objects and results.

5.2. Results

Implementation. We implemented our algorithms using
C++ and Python. We performed our experiments on a lap-
top running Intel Core i7-4800MQ @ 2.7GHz CPU with

4We asked users to fill up the object as possible by only considering the
object’s geometry, as our approach only considers geometry.

(a) g0◦ (b) g90◦ (c) g180◦

Figure 12. Tilting a container. Green refers to the imaginary layer
of leakage voxels. Yellow refers to the voxels at the leakage
boundary. (a–c) Tilting about tilt axes g0◦ , g90◦ and g180◦ re-
spectively by tilt angle φ = 25◦.

Figure 13. N vs. tilt angle φ about different tilt axes. Blue, green,
red curves correspond to Figure 12 (a), (b) and (c).

Pitcher Bowl

Figure 14. Determining the preferred tilt axis. The plots show the
smoothed Zg (i.e. N sum) of different tilt axes. Left: plot of the
pitcher. The blue, green, and red lines corresponds to Figure 12
(a), (b) and (c) respectively. The tilt axis g180◦ is chosen, which
corresponds to the local minimum (red). Right: plot of the bowl.
All tilt axes are equally-likely, as indicated by the small normal-
ized SD (< 0.1) of its smoothed Zg.

Figure 15. A comparison with fluid simulation (LBM). Left: a
pitcher being tilted about a fixed tilt axis. Right: the corresponding
normalized containee volumes found by Algorithm 1 and LBM.
The curves show similar trends.

8GB RAM. Overall, our unoptimized implementation takes
about 2 minutes to analyse each object.
Fluid Simulation. Our approach relies on numerous eval-
uations of Algorithm 1 to obtain the containee volumes.
To verify its correctness, we compare Algorithm 1 with a
physics-based fluid simulation algorithm, the Lattice Boltz-
mann Method (LBM), commonly used in computational

fluid dynamics. We use the LBM solver5 provided by

5http://wiki.blender.org/index.php/Doc:2.6/
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Figure 16. Containability analysis of some objects in our dataset.

Blender. For each object in our dataset, we tilt it about
a fixed tilt axis and run LBM to obtain the containee vol-
umes. Figure 15 shows the results of tilting a pitcher. The
curves obtained from Algorithm 1 and LBM show simi-
lar trends. To compare, we normalize each curve and cal-
culate the absolute difference between the normalized vol-
umes at each tilt angle. The average difference per tilt angle
is 0.083 over all the objects. On average, one simulation
by LBM takes 543 seconds (9 minutes) while Algorithm 1
takes 0.06 seconds. Algorithm 1 requires significantly less
time and hence is a more favorable choice for our contain-
ability analysis which requires numerous evaluations.
User Annotations Comparison. We compare the outputs
of our approach with the user annotations. Table 1 shows
the accuracy of identifying containers, using our simple
heuristic of computing the ratio of the maximum containee
volume to the object size (Sec 4.2 and Figure 10). The over-
all accuracy is 94.44%.

Next we compare the best filling direction found by our
approach to those annotated by the users. The user annota-
tions on the best filling directions agree quite well in gen-
eral, with a standard deviation of about 21.14◦. We use the
average of the user-annotated best filling directions as the
ground-truth. Our average angular error drops from 30.52◦

at initialization to 16.64◦ after optimization.
Table 2 shows the accuracy of our approach in choos-

ing whether all transfer directions are equally likely or if
one or more are preferred. For objects annotated with pref-
erence(s), Figure 17 (Left) shows the accuracy of our ap-
proach via precision and recall. For each of our proposed
tilt axes, we check if its deviation from any user-annotated
tilt axis is less than the angular error tolerance. If so we
count it as a match. Our approach achieves a precision of
about 0.75 when the tolerance is 10◦, and the precision rises
to 0.82 when the tolerance is 20◦. Please refer to the sup-
plementary material for details of the user study settings,
the results of each object and some observations.
Adding Noise. We analyze the robustness of our approach
by adding varying levels of Gaussian noise to the input point
clouds. Refer to Figure 17 for the effects of noise in the ac-
curacy of identifying containers and estimating the tilt axis.
Our approach performs reasonably well. For a standard de-
viation of 0.5 voxel length, the overall accuracy of identify-
ing containers falls to 84.72% and the precision in choosing
transfer direction falls to 0.70 (using angular error tolerance
of 20◦). Please refer to the supplementary material for de-
tails of the analyses.

Manual/Physics/Fluid/Technical_details

Overall Accuracy False-Positive False Negative
94.44% 2.78% 2.78%

Table 1. Accuracy of identifying containers.

Equally-likely (users) Preference (users)
Equally-likely (ours) 100.00% 20.00%
Preference (ours) 0.00% 80.00%

Table 2. Comparison between user choices and our automatic out-
put on whether all the transfer directions are equally-likely or if
there is(are) preference(s).

Figure 17. Left: Precision and recall versus angular error tolerance
in tilt axis estimation. Markers refer to the results from noise-free
data. Box plots refer to the results from data contaminated with
Gaussian noises of SD in [0.0, 1.0]. Right: Accuracy of identify-
ing containers versus Gaussian noise SD.

Real-world Scenes. We apply our approach to analyse ob-
jects in real-world scenes captured by a consumer-grade
depth camera. Figure 18(a) shows one indoor scene from
the UW RGB-D Scene Dataset [24] captured by Kinect.
Figure 18(b)-(g) shows other scenes and objects captured
by a Structure Sensor attached on an iPad, which can ac-
quire full-view 3D data. We use the segmentation function-
ality provided by the Structure SDK to extract segmented
objects from the scenes. Our approach can identify the con-
tainers within the clutter of objects and deduce the filling
and tilt axes.
Choosing between Containers. Our simplified physics-
based approach can help computers answer other
containability-related questions. For example, by rea-
soning about simple tilting motions, computers can
recognize an important difference between containers.
Figure 18(b) shows an example to choose between a cup
and a plate for transferring liquid. The cup is a better
choice, because as it is tilted, the rate of decrease of its
containee volume is smaller compared to that of the plate.
Therefore the cup’s ability to contain liquid is more robust
to perturbation which usually happens during transfer.

6. Discussion

Assumptions and Limitations. We discuss the limitations
of our approach resulting from the assumptions we make to
scope our problem.

In the Fill part, our approach assumes that a container
can always be filled by liquid from the outside. In other
words, it does not handle containability closure [36], hence
it classifies the sealed can in Figure 18(a) as a non-container.
Our approach also assumes that a container has only one
filling direction, hence it may not work on a container with
multiple regions for holding liquid, as the filling directions
for different regions may be conflicting. Further, depending
on the resolution of the 3D data acquisition device, small
holes may not be captured and considered. Figure 19 (Left)
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(a) (b) (c)

(d) (e) (f) (g)
Figure 18. Real-world examples. (a) An input scene showing a sealed can, a bowl and a cereal box on a table. Our algorithm suggests that
the bowl is a container and all its transfer directions are equally-likely, and that the table after being inverted is also a possible container. (b)
An input scene showing a cup, a plate, two speakers and a piece of cloth. The cup and plate are identified as possible containers. The cup
is found to be more robust to slight perturbation, as it has a smaller rate of decrease of containee volume (V ) when slightly tilted. (c)-(g)
Results on other real-world objects captured by a Structure Sensor. The hole-ridden tray in (g) is identified as a non-container.

Figure 19. Failure cases. Left: a strainer whose small holes are not
captured by the sensor is being filled up. Right: the internal flow
of liquid between the cells in a bento box is treated as a transfer.

shows a failure case where a strainer is wrongly filled up as
if it was a container.

In the Transfer part, our approach only analyzes simple
tilting motion, and it assumes that the liquid transfer pro-
cess should avoid spillage. While we believe this is a rea-
sonable and useful assumption, it may not hold in some sit-
uations, particularly when the destination is large compared
to the container. For example, when pouring water out of
a container to put out a fire, one may just pour the water
out as quickly as possible without caring about the spillage.
We believe that a voxel-based simulation approach can still
be adopted to reason about such situations. On the other
hand, liquid may flow from one region to another region
within a container, such as for the bento box shown in Fig-
ure 19 (Right). This may confuse our approach in deducing
the direction to transfer liquid to the outside.

Our approach does not consider human priors, which
can be useful cues for deducing containability: a container
should be graspable by a human hand; when pouring liq-
uid out of a handled cup, one would probably grasp the
handle and pour liquid in a direction opposite of the han-
dle’s location. A container should also have a reasonable
size and weight that a human can manipulate. Without con-
sidering these, our approach classifies the inverted table in
Figure 18(a) as a possible container.

Our approach assumes that the container has a static ge-
ometry which is structurally strong enough to hold the liq-
uid. Our approach does not consider the container’s mate-
rial, which can be important in affordance reasoning. For
example, one would probably not fill up a paper bag with
water, though its shape suggests that it can be a container,
because paper absorbs water and the paper bag’s geometry
would deform. Finally, our approach does not handle par-
tial 3D data (obtained from a RGB-D image) in general due
to the difficulty of deciding between real holes and missing
data. We believe a learning-based approach may tackle this
limitation better and we leave it for future work.
Other Features. Other physical or geometric features may

be helpful in deducing containability. For example, one
may deduce the upright orientation (filling direction) of a
container by assuming that it should stand stably on a flat
surface [10]. Our approach instead uses the maximum con-
tainee volume to deduce the filling direction, as this mea-
sure is more directly aligned with our goal and can be used
to distinguish between containers and non-containers. Ad-
ditionally, geometric symmetry may be helpful for deducing
the transfer direction, since the transfer motion is often a ro-
tation about the plane of bilateral symmetry. Our approach
partially considers symmetry by comparing the volume of
liquid poured out in each direction (Figure 14). To speed
up the approach, one may perform stability and symmetry
analysis on the object in a preprocessing step, to rule out un-
stable orientations and redundant transfer directions to save
computational time.

7. Future Work and Conclusion

We presented a novel, simplified physics-based approach
to analyse containability, to automatically identify contain-
ers and deduce the fill and transfer directions. We are inter-
ested in devising physics-based approaches to reason about
other common affordances too. We believe the ultimate
goal of this research direction is to grant visual systems the
cognitive power that human beings have in reasoning about
and interacting with everyday objects and scenes.
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