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Abstract

Catadioptric imaging systems use curved mirrors to cap-

ture wide fields of view. However, due to the curvature of the

mirror, these systems tend to have very limited depth of field

(DOF), with the point spread function (PSF) varying dra-

matically over the field of view and as a function of scene

depth. In recent years, focal sweep has been used exten-

sively to extend the DOF of conventional imaging systems.

It has been shown that focal sweep produces an integrated

point spread function (IPSF) that is nearly space-invariant

and depth-invariant, enabling the recovery of an extended

depth of field (EDOF) image by deconvolving the captured

focal sweep image with a single IPSF. In this paper, we use

focal sweep to extend the DOF of a catadioptric imaging

system. We show that while the IPSF is spatially vary-

ing when a curved mirror is used, it remains quasi depth-

invariant over the wide field of view of the imaging system.

We have developed a focal sweep system where mirrors of

different shapes can be used to capture wide field of view

EDOF images. In particular, we show experimental results

using spherical and paraboloidal mirrors.

1. Introduction

Capturing images with wide fields of view is highly ben-

eficial in applications such as surveillance, teleconferenc-

ing, and autonomous navigation [21, 22, 23, 28, 29]. Fish-

eye lenses and anamorphic lenses are often used to cap-

ture a wide field of view (FOV). However, they require

the use of a large number of lenses to correct for various

optical aberrations, and are difficult to design when the

FOV is greater than a hemisphere. In contrast, catadiop-

tric imaging systems, which use a combination of mirrors

and lenses, provide the designer with significantly greater

flexibility in terms of resolution and FOV [21, 22, 23, 28].

Since the optical properties of mirrors are independent of

the wavelength of light, they do not produce chromatic aber-
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rations like lenses do, which is a major advantage. How-

ever, when a curved mirror is used, the optical system suf-

fers from greater field curvature and astigmatism which, in

turn, severely limits the depth of field (DOF).

An image formed via a curved mirror, such as a spheri-

cal or a paraboloidal mirror, has spatially varying blur [1],

which means that the entire FOV cannot be captured in fo-

cus with a single image. This problem is aggravated in

low-light conditions, where the system needs to be oper-

ated with a low F-number (large aperture). The problem be-

comes even more prominent when the system uses an image

sensor with a high resolution. One way to reduce the image

blur caused by a curved mirror is to use additional (correc-

tive) lenses, or multiple mirrors that offset each other’s field

curvature effects [25]. This, however, causes the system to

be bulky and expensive.

A well-studied approach to extending the DOF of a con-

ventional imaging system is focal sweep [2, 18, 20], in

which the focal plane is translated during the exposure time

of the image. It has been shown that a point spread function

(PSF) of the captured image is both nearly space-invariant

and nearly depth-invariant [20]. This PSF is called the in-

tegrated PSF (IPSF) and is used to deconvolve the captured

image to obtain one that has large DOF, without a signifi-

cant reduction in signal-to-noise ratio (SNR).

The goal of this paper is to explore the use of focal sweep

to extend the DOF of a catadioptric imaging system. Un-

like the IPSF of a conventional imaging system, the IPSF

of a catadioptric one with a curved mirror is spatially vary-

ing. To determine the suitability of focal sweep for extended

DOF (EDOF) catadioptric imaging, we seek to address the

following questions: (a) For any given point in the image,

what is the IPSF produced by a pre-selected focal sweep

range? (b) How much scene information is preserved by

this IPSF and how depth-invariant is it? (c) How does the

IPSF vary over the space of the image? (d) What is the op-

timal sweep range for a desired DOF?

We begin by developing a ray-tracing system for com-

puting the PSF of a catadioptric imaging system with given

optical parameters. We use our ray-tracer to compute the
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IPSF as a function of both image coordinates and focal

sweep range. Next, we provide metrics for evaluating

the sharpness of an IPSF and for determining how depth-

invariant it is. These results indicate that for catadioptric

system with curved mirrors, focal sweep can indeed be ef-

fective in extending DOF. We also develop a framework for

deriving the optimal sweep range while taking field curva-

ture and astigmatism into account.

We conducted several experiments to validate the prac-

tical feasibility of our approach. Using an SLR camera, a

motorized linear stage, and an Arduino controller, we built

a focal sweep camera that allows us to control the sweep

range and the exposure time. Using this system, we have

extended the DOF of catadioptric systems that use spheri-

cal and paraboloidal mirrors. We conclude the paper with a

comparison between catadioptric images captured with and

without focal sweep.

2. Related Work

2.1. Extended Depth of Field

Several methods have been proposed to extend the DOF

of imaging systems [4, 7, 8, 9, 12]. One approach is to use a

coded aperture [19, 26, 27, 30], where a specially designed

aperture is used to capture high frequency components of

the scene. An EDOF image is recovered by deconvolving

the captured image with a depth-dependent PSF. In addition

to requiring prior knowledge regarding the 3D structure of

the scene, this approach suffers from lower light efficiency

as any coded aperture acts like a partial attenuator.

Focal sweep is another way to extend DOF [2, 6, 10,

17, 18]. Nagahara et al. [20] used a camera that translates

the image sensor during the exposure time of the sensor.

They showed that the IPSF of their focal sweep camera is

nearly space-invariant and depth-invariant. An EDOF im-

age is computed by deconvolving the captured image with

the IPSF. In contrast to all of the above work, our goal is

to investigate the viability of focal sweep for extending the

DOF of catadioptric imaging systems.

The simplest way to achieve EDOF is to simply stop

down the aperture. However, Cossairt et al. [5] found that

computational imaging methods that use optical coding and

decoding such as focal sweep achieve better performance

(in terms of SNR) than stopped-down apertures at low light

levels (e.g., lower than 125 lux). Moreover, a stopped-down

aperture lowers image quality due to diffraction. In Sec. 5,

we demonstrate the advantage of using focal sweep over a

stopped-down aperture at low light levels.

2.2. Catadioptric Imaging Systems

Catadioptric imaging systems with curved mirrors suffer

from two types of optical aberrations that arise due to the

mirrors’ curvature and the finite lens aperture: (a) field cur-

Sagittal

Focal Image
World Point

Mirror Surface

Meridional

Focal Image

Wavefront of 

Reflected Ray

Meridional Plane

Sagittal Plane

Chief Ray

Astigmatic

Difference

Figure 1: Astigmatism caused by a reflective mirror. A pen-

cil of light rays that is emitted from a world point and re-

flected on a curved mirror produces two line-shaped virtual

images, which are mutually-perpendicular, at different posi-

tions provided the incident direction of a chief ray is oblique

to the mirror’s axis of rotation.

vature, which causes space-varying blur over the extent of

the mirror; and (b) astigmatism, which forms two separated

focal images for a pencil of light rays emitted from a single

point. A detailed analysis by Baker and Nayar [1] describes

the properties of the blurring caused by a curved mirror.

The first aberration, field curvature, is a common optical

problem, where the curvature of the mirror causes the fo-

cal surface to be curved. Fig. 1 illustrates the effect of the

second aberration, astigmatism. Assuming the mirror is ro-

tationally symmetric, the plane containing both the chief ray

(which is the light ray passing through the center of a cam-

era’s aperture) and the mirror’s axis of rotation is called the

meridional plane (or tangential plane), and the plane con-

taining the chief ray which is perpendicular to the merid-

ional plane is called sagittal plane [11]. As Fig. 1 shows,

an oblique pencil of light rays emitted from a world point

produces two separated focal images: the meridional and

the sagittal images. Now consider all world points within

the FOV of the imaging system that are at the same dis-

tance from the mirror surface. The envelopes of the merid-

ional and sagittal focal images produced by this entire set

of world points are referred to as the meridional and sagittal

focal surfaces, respectively.

Swaminathan [24] used caustics to model the meridional

focal image produced by catadioptric imaging systems. He

found that an infinite range of scene depths produces merid-

ional focal images that are contained within a finite volume

called the caustic volume. However, the sagittal focal im-

age was not considered in his study. Based on the caus-

tic volume, Li and Li [16] developed a method to extend

the DOF of catadioptric imaging systems by capturing a fo-

cal stack (a set of images corresponding to different focus

settings) and then combining the best-focused annuli from

the images in the stack. Although they addressed the prob-

lem of field curvature, they did not consider astigmatism.

Kuthirummal [14] deblurred images captured by a catadiop-

tric imaging system with spatially varying PSFs to extend

DOF, but this approach cannot fully recover frequencies that
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are lost due to strong blurring in some image regions.

In this paper, we overcome the effects of both field cur-

vature and astigmatism by using a single image captured

during focal sweep. As the focal plane is swept across the

curved mirror, the high frequency content corresponding

to each region on the mirror is guaranteed to be captured

during the sweep. We also develop a method for deriving

the optimal focal sweep range by analyzing the locations of

both the meridional and sagittal focal surfaces.

3. Analysis of PSFs of Catadioptric Cameras

An EDOF image is obtained by deconvolving the cap-

tured focal sweep image with an IPSF, which can vary sig-

nificantly over the surface of the mirror. In this section,

we analyze the IPSF for a spherical and a paraboloidal mir-

ror by using ray tracing to confirm that the IPSF produced

at each location on the mirror is quasi depth-invariant and

hence useful for EDOF. A metric is provided to evaluate the

quality (sharpness and depth-invariance) of the IPSF.

3.1. PSFs for a Curved Mirror

Fig. 2 illustrates the imaging model we have used for our

analysis. A camera is placed above a rotationally symmetric

curved mirror. The lens is assumed to obey the thin lens

equation:
1

f
=

1

i
+

1

o
, (1)

where f is the focal length of the lens, i is distance between

the lens and the image plane, and o is distance between the

lens and the focal plane.

Fig. 3 shows the simulated PSFs for a spherical mir-

ror captured by the camera. The diameter of the mirror

is 50 mm and its center is placed 352 mm from the lens.

Several world points (point light sources) are placed 50 cm

from each reflecting point. The focal length of the lens

is 50 mm and F-number is 2.8. When the image sensor

is translated in the vertical direction, the focal plane also

moves in the vertical direction, and the size and shape of the

image blur varies. Due to astigmatism, none of the image

points (except the one that lies at the center of the mirror) is

perfectly focused for any position of the image sensor. The

PSFs in the periphery of the mirror change significantly in

the tangential and the radial directions because of the gap

between the meridional and sagittal focal images. The line-

shaped PSFs shown in the red frames in Figs. 3b and 3d

correspond to the meridional and the sagittal focal images,

respectively. Note that these images are severely blurred

along one direction, whereas high frequency content along

the perpendicular direction is preserved.

Fig. 4a shows the IPSFs of this spherical setup. We ob-

tained them by adding the PSFs for 26 focal planes between

339 mm and 364 mm. The second column shows magni-

fied IPSFs calculated for world points placed 50 cm from

World Point

Sagittal Focal Image

Meridional Focal Image

Lens Center

Reflecting Point

Focal Plane of Camera

Lens

Aperture

Mirror Surface

Image Sensor

Chief Ray

Figure 2: Cross-section of imaging model along meridional

plane. A camera is placed above a rotationally symmetric

mirror. The optical axis of the camera is assumed to be coin-

cident with the mirror’s axis of rotation. A light ray emitted

from a world point is reflected at a point pr on the mirror

surface. The distance between the world point and pr is

l. The reflected ray is captured by the camera after passing

through the lens center located at pc. Meridional and sagit-

tal focal images are produced at distance of dm and ds from

the reflecting point along the reflection direction, respec-

tively. A vector n̂ is a unit normal vector of the mirror at

the reflecting point, r̂ is a unit vector of reflection direction,

and v̂ is a unit vector of the camera’s viewing direction.

the mirror surface, and the plots on the right show cross-

sections of IPSFs for the same mirror locations but different

world point distances. The shapes of the IPSFs are spa-

tially varying, as seen in Fig. 4a. Fig. 4a also shows that the

shapes of the IPSFs corresponding to the same mirror lo-

cation but different depths are almost depth-invariant (quasi

depth-invariant), which suggests that they can be used for

deconvolution of the focal sweep image to achieve EDOF.

Note that the shape of the IPSF is determined only by the ra-

dial distance of the image point from the center—the IPSF

simply rotates in the tangential direction.

In another simulation, the vertex of a paraboloidal mir-

ror with diameter of 56.5 mm, focal length of 14.1 mm

and height of 14.1 mm, is placed 352 mm from the lens.

Fig. 4b shows IPSFs for this setup, which is obtained by

adding the PSFs for 22 focal planes between 366 mm and

387 mm. Fig. 4c shows IPSFs for the paraboloidal mirror

tilted around its vertex at an angle of 30◦, which is obtained

by adding the PSFs for 27 focal planes between 363 mm

and 389 mm. The IPSFs are quasi depth-invariant in the

case of the paraboloidal mirror and the tilted one as well.

For the on-axis paraboloidal mirror, the IPSFs do not vary

across the mirror surface as much as in the spherical and

tilted paraboloidal cases because the astigmatism is lower.

While the IPSF is almost always cross-shaped (irrespective
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(a) Focused at 339 mm. (b) Focused at 346 mm. (c) Focused at 359 mm. (d) Focused at 372 mm.

Figure 3: PSF for spherical mirror for different focal plane distances. The center of a spherical mirror of diameter 50 mm is

placed 352 mm from the lens. Note that there is no focal plane position for which all points on the mirror are in focus. The

peripheral part of the mirror has particularly strong blur. The PSF is squashed along the radial direction in (b), while it is

squashed along the tangential direction in (d).

(a) IPSFs for spherical mirror.

(b) IPSFs for paraboloidal mirror.

(c) IPSFs for tilted paraboloidal mirror.

Figure 4: The first column shows the relative positions of the image sensor, the lens and the mirror. The second column shows

magnified IPSFs calculated for world points placed 50 cm from the mirror surface. The magnifications are different for each

mirror and each IPSF is normalized by its maximum value for display purposes. The plots on the right are cross-sections of

IPSFs along the radial direction of the mirror for the same mirror locations but different world point distances of 50 cm, 5 m

and 50 m. Each IPSF is normalized by its area.

of the mirror shape and tilt), the one shown in the blue frame

in Fig. 4c is large in the tangential direction. This indicates

that in this region of the image the acquired focal sweep im-

age will not capture high frequency content along the tan-

gential direction unless the focal sweep range is enlarged.

3.2. Characteristics of IPSF and the Sweep Range

We now explore the relationship between the structure

of the IPSF and the sweep range. Fig. 5 illustrates cross-

sections of the IPSF for different sweep ranges and scene

depths when a spherical mirror is placed at the same posi-

tion as in Sec. 3.1. The sharper the IPSF, the more high fre-

quency components it preserves, whereas an IPSF with low

sharpness will produce image artifacts when it is used for

deconvolution. As the sweep range increases, the sharpness

of the IPSF at the center of the mirror decreases slightly,

while the sharpness in the tangential direction for points in

the periphery increases, and the peak value of the cross-
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Figure 5: Cross-sections of IPSFs for spherical mirror for

different sweep ranges and scene depths. The sweep range

represents the distance swept by the focal plane, where the

distance is measured from the lens. The IPSFs shown in

red and blue correspond to tangential and radial directions

in the image, respectively. The left plot of each column

shows the IPSF at the center of the mirror, and the right plot

shows the IPSF in the periphery. The vertical axis for the

peripheral IPSF is scaled by 40. In all the simulations, the

same exposure time is assumed.

Sweep

Range

[mm]

IPSF
Depth

Variance

IPSF Sharpness (Kurtosis)

Image Center Image Periphery

Tangential Radial Tangential Radial

339− 348 3.2× 102 117.5 117.5 1.28 50.6
339− 357 4.6× 102 116.4 116.4 1.34 21.8
339− 374 1.6× 102 115.9 115.9 1.99 2.12

Table 1: IPSF variance due to depth measured using L2

norm of the Wiener reconstruction error and sharpness of

IPSF measured using kurtosis.

section along the radial direction in the periphery remains

approximately constant. This result demonstrates that by

using a large sweep range, it is possible to achieve EDOF

over a large FOV. We also note that shape of each IPSF is

approximately depth-invariant.

We verify some of the above observations using quanti-

tative metrics. The sharpness of the IPSF can be quantified

using kurtosis, which is a measure of the sharpness of any

given distribution. The kurtosis has a value of 3 for the

standard normal distribution, with values greater than 3 in-

dicating higher sharpness. The average kurtoses of the IPSF

cross-sections over depths of 50 cm, 1 m, 5 m, and 10 m are

shown in Table 1. The sharpness in the tangential direction

for the periphery increases as the sweep range increases. At

the same time, the sharpness along both directions at the

center of the mirror and that of the radial direction for the

periphery decreases. This effect captured a trade-off inher-

ent to focal sweep—to increase image quality in the periph-

ery, image quality in the center must be sacrificed.

The variation of the IPSF over a depth range (IPSF vari-

ance due to depth) can be quantified using the distance be-

tween the IPSFs. We use the L2 norm of the Wiener re-

construction error when an image is blurred with one IPSF

and deconvolved with another. The following metric was

introduced by Kuthirummal et al. [15]:

V
(

p1(x, y), p2(x, y)
)

=
∑

u,v

(

∣

∣P1(u, v)− P2(u, v)
∣

∣

2

∣

∣P1(u, v)
∣

∣

2

+ ǫ
+

∣

∣P1(u, v)− P2(u, v)
∣

∣

2

∣

∣P2(u, v)
∣

∣

2

+ ǫ

)

∣

∣W (u, v)
∣

∣

2

,

(2)

where Pn(u, v) is the Fourier transform of the IPSF

pn(x, y), W (u, v) is a weighting term that accounts for the

power fall-off for natural images, and ǫ is a small positive

constant to ensure that the denominators are not zero. IPSFs

at 19 equally-spaced locations along the radius of the mir-

ror are simulated. The average of the IPSF variance due to

depth for each sweep range is computed:

Vavg =
1

4

4
∑

j=1

1

19

19
∑

k=1

V
(

pj,k(x, y), p1,k(x, y)
)

, (3)

where pj,k(x, y) is the IPSF for depth {dj}={50 cm, 1 m,

5 m, 10 m} and location {lk} on the mirror. The computed

values are shown in Table 1. Kuthirummal et al. [15] have

shown that for a conventional imaging system (not using a

curved mirror) the value of V in Eq. (2) for a range of scene

depths that is similar to our case is of the order of 1.0×104.

In comparison the values of Vavg (Eq. 3) shown in Table 1

are small, implying that our IPSFs are quasi depth-invariant.

4. Optimal Focal Sweep Range

The optimal sweep range is derived so as to preserve high

frequency components within the desired DOF by sweeping

the focal plane through both the meridional and sagittal fo-

cal surfaces. In this section, we derive the positions of the

two focal surfaces formed by a curved mirror and develop a

framework for deriving the optimal sweep range.

The Coddington equations [13], which calculate the po-

sitions of the meridional and the sagittal focal images for

a spherical refractive surface, are well-known in the optics

community. Burkhard and Shealy [3] used differential ge-

ometry to generalize these equations so that they can be ap-

plied to both refractive and reflective surfaces of arbitrary

shape. Consider a rotationally symmetric mirror which is

obtained by rotating a curve z = f(ρ) around the z axis,

where ρ denotes the radial distance from any point on the

mirror surface to the z axis. Note that the range of ρ de-

termines the FOV of the catadioptric imaging system. Once

again, consider Fig. 2. If the chief ray lies on the meridional
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Figure 6: Meridional and sagittal focal surfaces for differ-

ent scene depths: 0 mm, 20 mm, and infinity. The green-

colored lines, which denote the focal surfaces for scene

depth 0 mm, are located exactly on each mirror surface.

plane, the generalized Coddington equations are:

dm = (lRmn̂ · r̂)
/

(2l +Rmn̂ · r̂),

Rm =
[

1 +
(

f ′(ρ)
)2]

3

2

/

f ′′(ρ),
(4)

ds = lRs

/

(2ln̂ · r̂ +Rs),

Rs = ρ
[

1 +
(

f ′(ρ)
)2]

1

2

/

f ′(ρ),
(5)

where, dm is distance from the reflecting point to the merid-

ional focal image, Rm is the principal radius of curvature of

the reflecting surface for the meridional plane, ds is distance

from the reflecting point to the sagittal focal image, Rs is

the principal radius of curvature of the reflecting surface

for the sagittal plane, and l is distance between the world

point and the reflecting point. Taking the limit l → ∞ in

Eq. (4) yields dm = (Rmn̂ · r̂)
/

2, which forms a surface

equivalent to the boundary of the caustic volume derived by

Swaminathan [24]. Fig. 6 illustrates the cross-sections of

the meridional and sagittal focal surfaces along the merid-

ional plane for different scene depths. The shapes and the

positions of the mirrors are identical to those used in Sec. 3.

The distances from the lens to the meridional and sagittal

focal images along the camera’s optical axis are given by:

Dm(ρ, l) =
∣

∣(pr − dmr̂ − pc) · v̂
∣

∣, (6)

Ds(ρ, l) =
∣

∣(pr − dsr̂ − pc) · v̂
∣

∣. (7)

The optimal sweep range [D
opt
min

, Dopt
max

] for desired range

of ρ and l is determined as:

D
opt
min

= min
ρ∈P,l∈L

{

Dm(ρ, l), Ds(ρ, l)
}

, (8)

Dopt
max

= max
ρ∈P,l∈L

{

Dm(ρ, l), Ds(ρ, l)
}

, (9)

where P = [ρmin, ρmax] and L = [lmin, lmax]. In this paper,

ρmin is assumed to be zero. Once P (i.e., FOV) and L (i.e.,

depth range) are provided, the optimal sweep range is de-

termined using Eqs. (4)–(9). Note that this framework can

be extended to any catadioptric imaging system (consisting

of a mirror with an arbitrary shape) by using Burkhard and

Linear Stage

Lens

Arduino

Remote

Controller

SLR Camera

(a) Focal sweep camera.

Focal Sweep

Camera

Mirror

(b) Experimental setup.

Figure 7: A conventional SLR camera body is combined

with a motorized linear stage as shown in (a), which enables

it to sweep the focal plane by translating the image sensor.

(b) Experimental setup. The curved mirror is put in front of

the focal sweep camera.

Shealy’s method [3] instead of Eqs. (4) and (5).

5. Experiments

In this section, we show several experiments to demon-

strate the practical feasibility of our framework. Our cata-

dioptric systems use spherical and paraboloidal mirrors. As

a result, we obtain EDOF images by deconvolving the focal

sweep images with pre-computed IPSFs.

5.1. Focal Sweep System with Curved Mirrors

The hardware setup for our focal sweep camera is shown

in Fig. 7. It uses an SLR camera body and a 50 mm, f/2.8

lens. The camera body can be translated with respect to

the lens using a motorized linear stage. The velocity of

the stage was set to 1 mm/sec in all our experiments. A

shutter trigger is generated by a remote controller which is

connected to an Arduino controller. The Arduino and the

linear stage are connected to a PC to synchronize image ex-

posure and camera translation. The shapes and the positions

of the mirrors are identical with those used for our analysis

in Sec. 3. The distances of scene objects from the mirror

range from about 10 cm to about 3 m.

Fig. 8 illustrates the processing pipeline for obtaining an

EDOF image. (a) First, we pre-compute IPSFs for scene

depth of 50 cm for 19 equally-spaced locations along the

radius of the mirror. (b) The IPSFs image is converted from

Cartesian to polar coordinates. (c) The focal sweep image

captured with our camera is converted from Cartesian to po-

lar coordinates. (d) Then, we deconvolve the captured im-

age (using Wiener filtering) with a single cropped IPSF for

each line since the shapes of the IPSFs for any given radial

distance from the center of the mirror are exactly the same

in Cartesian coordinates. (e) Finally, The deconvolved im-

age is converted back from polar to Cartesian coordinates.

In the tilted paraboloidal case, where the optical axis of the

camera is not coincident with the mirror’s axis of rotation,

we compute 970 spatially varying IPSFs for the entire sur-
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Focal sweep image 

Conversion to polar coordinate

Conversion to cartesian coordinate

Conversion to polar coordinate

Simulated IPSF(a)

(b)

(c)

(d)

(e)

Figure 8: Processing pipeline.

face of the mirror, then use them to deconvolve the focal

sweep image in Cartesian coordinates. The same IPSF is

used in each small image region assuming that the blurs are

nearly invariant in each region.

5.2. EDOF Images of Curved Mirrors

For the spherical mirror, for an FOV of 237◦and depth

range of 30 cm–10 m, the optimal sweep range was found

to be 339–364 mm using Eqs. (4)–(9). The corresponding

translation distance of the image sensor is 0.69 mm, which

is determined using Eq. (1). An example EDOF image is

shown in Fig. 9b. As Fig. 9a shows, the image captured with

a normal camera has a lot of blurring, especially in the pe-

riphery. Straight lines along the radial direction are strongly

blurred, and only the straight lines along the tangential di-

rection are more or less preserved because they are prin-

cipally blurred along the tangential direction (see Fig. 3a).

In contrast, Fig. 9b shows that the peripheral region in the

EDOF image retains high frequency components in both

the radial and the tangential directions. Hence, sweeping

the focal plane across the meridional and the sagittal focal

surfaces enables the deconvolution to preserve the high fre-

quency components in both directions.

For the paraboloidal mirror, for an FOV of 167◦and

depth range of 30 cm–10 m, the optimal sweep range was

found to be 366–387 mm. The corresponding translation

distance of the image sensor is 0.50 mm. An example

EDOF image is shown in Fig. 9d. For the tilted paraboloidal

mirror, for an FOV of 147◦along the meridional plane and

depth range of 30 cm–10 m, the optimal sweep range was

found to be 363–389 mm. The corresponding translation

distance of the image sensor is 0.60 mm. Fig. 9f shows

the result, which proves the effectiveness of our method

in a case where the optical axis of the camera and the

mirror’s axis of rotation are not coincident. The blurring

caused by the on-axis paraboloidal mirror is reduced more

Figure 10: Comparison between EDOF image captured us-

ing our method (top row) and image captured with a normal

camera using a stopped-down aperture (bottom row) for a

scene brightness of about 50 lux. The former is captured

with F2.8, 0.6 sec, and ISO100. The latter is captured with

F11, 0.6 sec, and ISO1600.

than the blurring due to the spherical mirror and the tilted

paraboloidal mirror (see Fig. 9) because the astigmatism

is lower in this case (see Fig. 6). Note that, in all cases,

the central regions of the EDOF images are blurred slightly

more than the central region of the image captured with a

normal camera: this is the inherent trade-off in using focal

sweep, as described in Sec. 3.2.

Fig. 10 compares an image captured using focal sweep

(using the paraboloidal mirror) with one captured using

aperture-stopping for a dimly lit scene. The EDOF image

using focal sweep has less noise than that using a stopped-

down aperture because its light throughput is higher.

6. Conclusion

In this paper, we presented a novel framework for ex-

tending the DOF of catadioptric imaging systems consist-

ing of curved mirrors by using focal sweep. Using a ray-

tracer for computing IPSFs, we showed that while the IPSF

is spatially varying when a curved mirror is used, it remains

quasi depth-invariant over the wide FOV of the imaging sys-

tem. We presented metrics for evaluating the quality (sharp-

ness and depth-invariance) of the IPSF. We also developed

a framework for finding the optimal sweep range by ana-

lyzing the locations of both the meridional and the sagittal

focal surfaces, both of which are effected by field curvature

and astigmatism. Using a prototype focal sweep camera, we

conducted several experiments to demonstrate the practical

feasibility of our approach. We showed EDOF images cap-

tured by spherical and paraboloidal (both on-axis and off-

axis) catadioptric systems. Focal sweep enabled the system

to preserve high frequency information over the entire FOV.

Our results are applicable to any given catadioptric imag-

ing system. Once the mirror shape, camera parameters, de-

sired FOV and depth range are specified, our framework can

be used to evaluate the IPSF of the system and determine

the optimal focal sweep range. From a broader perspective,

our results can be used to reduce the optical complexity of

catadioptric imaging systems.
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70 cm

2.5 m 30 cm

(a) Spherical mirror: Conventional.

70 cm

2.5 m 30 cm

(b) Spherical mirror: Focal sweep (EDOF).

40 cm 30 cm

2.5 m

(c) Paraboloidal mirror: Conventional.

40 cm 30 cm

2.5 m

(d) Paraboloidal mirror: Focal sweep (EDOF).

2.5 m 1.0 m

30 cm

(e) Tilted paraboloidal mirror: Conventional.

2.5 m 1.0 m

30 cm

(f) Tilted paraboloidal mirror: Focal sweep (EDOF).

Figure 9: The left column shows images captured with a normal camera by focusing at the center of the mirror. The

right column shows EDOF images computed by deconvolving focal sweep images captured using our camera with the pre-

computed IPSFs. The approximate distances of the magnified regions from the mirror surface are noted in each image.
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