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Abstract

In this paper, we target on the problem of estimating the

statistic of pedestrian travel time within a period from an

entrance to a destination in a crowded scene. Such estima-

tion is based on the global distributions of crowd densities

and velocities instead of complete trajectories of pedestri-

ans, which cannot be obtained in crowded scenes. The pro-

posed method is motivated by our statistical investigation

into the correlations between travel time and global proper-

ties of crowded scenes. Active regions are created for each

source-destination pair to model the probable walking re-

gions over the corresponding source-destination traffic flow.

Two sets of scene features are specially designed for model-

ing moving and stationary persons inside the active regions

and their influences on pedestrian travel time. The estima-

tion of pedestrian travel time provides valuable information

for both crowd scene understanding and pedestrian behav-

ior analysis, but was not sufficiently studied in literature.

The effectiveness of the proposed pedestrian travel time

estimation model is demonstrated through several surveil-

lance applications, including dynamic scene monitoring, lo-

calization of regions blocking traffics, and detection of ab-

normal pedestrian behaviors. Many more valuable applica-

tions based on our method are to be explored in the future.1

1. Introduction

Crowd scene understanding [19, 20, 22, 29] and pedes-

trian behavior analysis [1, 3, 10, 17] are important for video

surveillance. People would like to study scene properties

and understand what is happening in the scene. In the mean-

while, they are also interested in revealing the rules govern-

ing individual behaviors. Scene information and pedestrian

behaviors are correlated. Pedestrian travel time from an en-

trance to an exit is such a measurement that reflects infor-

mation from both sides.

In crowd surveillance and traffic management systems,

1Project webpage can be found at http://www.ee.cuhk.edu.hk/∼syi/.
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Figure 1. (a) Four examples of pedestrian walking routes from

source 9 to destination 3. (b) Travel time distribution of all the

297 pedestrians from source 9 to destination 3 in a one-hour

video. (c) The traffic flow from source 9 to destination 3 (shown

in green) is intersected by the moving traffic (shown in red). (d)

The traffic flow from source 9 to destination 3 (shown in green)

is blocked by stationary persons (shown in red). The frames are

extracted from the New York Grand Central Station dataset [30].

Ten source/destination regions are marked and numbered.

people care more about statistics of crowd population than

individuals. Thus we estimate the average travel time of

multiple pedestrians within a temporal window, such as one

minute, instead of each individual. Such statistic reflects

scene properties, and depends on scene structures, distribu-

tions of crowd densities and velocities. In crowded scenes,

it is impossible to simply estimate the travel time based on

the starting and ending points of pedestrian trajectories, be-

cause tracking fails frequently due to heavy occlusions. In-

stead, we will show that the travel time can be estimated

from scene features that encode global scene properties,

such as the spatial distributions of crowd densities and ve-

locities. Features used by us can be computed from highly

fragmented tracks and individual subjects are not required

to be tracked over periods.

Pedestrian travel time between entrances and exits indi-

cates traffic efficiency and travel cost of a scene, and thus at-

tracts great attention in surveillance applications. When the

travel time increases due to scene congestion, security ad-
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ministrators can take prompt actions, such as blocking some

entrances until the congested crowds disperse, or opening

extra exists, to control traffic. Travelers can also use such

information to make plans. Travel time itself can be also

regarded as an important feature to describe each individ-

ual’s behavior and determine whether a pedestrian behaves

normally or not.

However, estimating travel time is challenging, espe-

cially for scenes with crowds [7, 11]. Firstly, pedestrian

travel time shows large inter-person variation. Even under

the same situation and for the same source-destination pair,

the walking paths and speed of individuals might be quite

different, which leads to large variance of travel times. Fig-

ure 1(a) shows four examples of walking routes of pedes-

trians from source 9 to destination 3, with large diversity.

The distribution of travel times of all the 297 pedestrians

from source 9 to destination 3 in a one-hour video is shown

in Figure 1(b). The mean of travel time of these pedestri-

ans is 42.5 seconds, and the standard deviation is 13.5 sec-

onds. Secondly, pedestrian decision making is complex and

the travel time of individuals might be influenced by a vari-

ety of factors, such as the interactions with moving persons,

stationary persons, and the scene layout. For example, as

shown in Figure 1(c), the traffic flow from source 9 to desti-

nation 3 is intersected by the moving persons shown in red.

Another example is shown in Figure 1(d), the traffic flow is

blocked by the stationary persons shown in red. Both could

increase the travel time. Lastly, the problem becomes much

more challenging in crowded scenes, where existing com-

puter vision techniques, such as pedestrian detection, track-

ing, and re-identification, cannot provide accurate results.

Some computer vision techniques, e.g. pedestrian sim-

ulation [10] and tracking [13, 26], can simulate or predict

each individual’s walking behavior, which can be used to

obtain each individual’s travel time. These methods have

several limitations. Firstly, they rely on exact pedestrian in-

formation (e.g. speed, location, or appearance) to estimate

the walking path, while obtaining these cues is difficult,

especially in crowded situations. Secondly, they are local

methods for individuals, i.e. pedestrians making decisions

based on their local environment. However, the average

travel time within a temporal window is a global property

of many pedestrians and should be estimated with a global

view of the whole scene.

Our method is specially designed for travel time estima-

tion and it extracts features from the whole scene instead

of complete trajectories of individuals. The estimation of

travel time over source-destination traffic flows is regarded

as a global scene modeling problem. Our method only re-

quires fragmented trajectories (tracklets) and detection of

stationary groups, both of which can be obtained even from

crowded scenes. An active region is first computed for each

source-destination pair to model the possible walking re-

gions over the traffic flow. Features are then extracted from

moving and stationary persons inside the active regions to

describe scene properties and their influences on the travel

times. Second-order polynomial regression is then adopted

to map feature vectors to the values of travel time.

The contribution of this work is summarized as three-

fold. (1) We propose a new research problem of estimat-

ing the statistic of travel time between entrances and ex-

ists without complete trajectories of pedestrians in crowded

scenes. It provides useful information for both scene un-

derstanding and pedestrian behavior analysis. (2) A novel

method is proposed by designing two new sets of scene fea-

tures to describe the influences of moving and stationary

persons on the travel time. (3) Several surveillance appli-

cations based on travel time estimation are introduced, i.e.

monitoring scene dynamics, localizing of regions blocking

traffics and detecting abnormal behaviors.

2. Related work

Crowd scene understanding is important in video surveil-

lance. Multiple scene properties have been widely studied

and modeled from different perspectives. There are a large

number of works [2, 20, 24, 25, 29, 34, 35] proposed to dis-

cover major motion patterns of a scene and model scene dy-

namics. Some works [15, 27, 34, 38] focus on segmenting

scene semantic regions and learning scene structures. Zhou

et al. [37] and Shao et al. [23] studied scene-independent

generic properties of crowds such as collectiveness, unifor-

mity, purity and conflict. Studies on other important prop-

erties of crowd scenes include crowd counting [5, 8, 33],

crowd density estimation [6, 28], and crossing-line flow rate

estimation [14]. While most of these works focus on the

properties of mobile pedestrians, Yi et al. [31, 32] recently

showed that stationary groups play an equally important

role in crowd scene understanding. In this paper, we pro-

pose to study the correlations between scene properties and

pedestrian travel time, which can be viewed as a general de-

scription of the scene and can provide valuable information

for scene understanding.

Many works have been done on analyzing pedestrian be-

haviors and predicting pedestrian walking patterns. How-

ever, existing pedestrian behavior models mainly consider

where pedestrians are likely to walk instead of how long it

takes to pass through the scene. Agent-based models [4]

are a major category of behavior modeling techniques. The

social force model [10] has been used for pedestrian sim-

ulation [9], pedestrian tracking [18], pedestrian interaction

analysis [21], and abnormal behavior detection [16]. Statis-

tic on pedestrian travel time is a global property of the

whole scene while all these methods focus on the decision

making process at each individual time step. Although these

pedestrian behavior models can be used to estimate travel

time by simulating pedestrian behaviors, our experimental

3138



results show that they generate inferior results compared

with directly predicting the average travel time from other

crowd scene properties.

Some existing computer vision techniques such as track-

ing [26] and person re-identification [12, 36] can be used

for travel time estimation if they can provide the complete

trajectories of pedestrians or can accurately match pedestri-

ans at source and destination regions. However, they fail

frequently in crowded scenes. A tracking failure at a sin-

gle frame or a wrong matching of person re-identification

may lead to completely wrong estimation of the travel time,

which is also verified by our experiments.

3. Method

In this section, we introduce a method for estimating the

travel time of pedestrians. For each time point t, we es-

timate an average travel time T t
S,D within a short period

[t − τ, t + τ ], for pedestrians coming from a source S and

going to a destination D. T t
S,D can be considered as a prop-

erty of the scene. From the travel times between sources and

destinations, one can better understand the current status of

the scene. For clarity, we introduce our method by estimat-

ing the travel time between one source and one destination,

and T is used to denote T t
S,D in the rest of this section.

In Section 3.1, we first investigate the factors influencing

the travel time between a source and a destination through

statistical analysis. Such statistics on real data reveals valu-

able facts on travel time and crowds. Based on the statistical

results, an active region representing the areas correspond-

ing to the source-destination traffic flow is first estimated

(Section 3.2). Two sets of features are then computed in-

side the active region, and they are used to describe the

influences of moving persons (Section 3.3) and stationary

persons (Section 3.4) respectively. Our studies show that

moving persons and stationary groups influence traffic flows

and travel time in quite different ways. Finally, these fea-

tures are concatenated and a regression method is adopted

to map features to travel time values (Section 3.5).

3.1. Statistical study

Our method is motivated by the statistical study on which

factors have large influence on the travel time between

sources and destinations. The large-scale pedestrian walk-

ing path dataset proposed by Yi et al. [30] is utilized for

the statistical analysis. It provides manually annotated and

complete trajectories of all the pedestrians. The scene con-

tains ten source/destination regions as shown in Figure 1.

Table 1 lists eight statistics (i)-(viii) to be investigated.

The correlations between travel time and these statistics are

shown in Figure 2. One natural finding is that the travel

time has strong positive correlation with (i) the travel dis-

tance and has strong negative correlation with (iv) the initial

walking speed in the source region.

Index Description

(i) Travel distance

(ii) No. of stationary persons along the walking route

(iii) No. of moving persons along the walking route

(iv) Total No. of persons along the walking route

(v) No. of stationary persons in the whole scene

(vi) No. of moving persons in the whole scene

(vii) Total No. of persons in the whole scene

(viii) Pedestrian initial speed in the source region

Table 1. Eight statistics for correlation analysis.
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Figure 2. Correlations between travel time and statistics (i)-(viii).

(a) For pedestrians from source 1 to destination 6, the correla-

tions are 0.70, 0.37, 0.53, 0.52, 0.18, 0.19, 0.20, and −0.77. (b)

For pedestrians from source 1 to destination 8, the correlations are

0.72, 0.56, 0.35, 0.51, −0.00, −0.15, −0.13, and −0.44. Strong

positive correlations are shown in green, strong negative correla-

tions are shown in red, and weak correlations are shown in blue.

Compared with the strong positive correlations between

the travel time and statistics (ii)-(iv), i.e. the numbers of

moving and stationary persons along the walking routes, the

correlations between travel time and statistics (v)-(vii), i.e.

the numbers of moving and stationary persons in the whole

scene, are weak. It means that the traffic flow between a

source and a destination is mainly influenced by activities

near the walking routes. The influence of activities far away

from the corresponding traffic flow is negligible.

Moreover, moving and stationary pedestrians influence

travel time in different ways. When a person B is approach-

ing the walking route of person A, A would predict poten-

tial collision with B based on the location, moving direc-

tion and speed of B. If there is a potential collision, in most

cases, A and B would adjust their speed instead of mov-

ing directions to avoid collision. Differently, if there is a

stationary group on the way of person A, A is enforced to

detour or passes through the group (if the group density is

low). Therefore, walking directions are to be considered

when modeling the relation between travel time and mov-

ing pedestrians, while the influence of stationary groups on

travel time is related to the group size and the group density.

3.2. Active region

Since complete walking routes of pedestrians are not ob-

served when estimating travel time, we estimate an active

region R which covers the areas occupied by traffic flows

of most pedestrians traveling between the source and the
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(a) Source 1 to destination 8 (b) Source 8 to destination 1

(c) Source 3 to destination 9 (d) Source 9 to destination 3

Figure 3. Examples of active region maps. Regions shown in

warmer color indicate higher weights of RS,D .

destination. We only need to take the activities happening

inside R into account and extract features from these activ-

ities to estimate the travel time.

Different source-destination traffic flows have different

active regions, which may have overlap. The active regions

can be used to discover the underlying relationships be-

tween scene locations and source-destination traffic flows.

From the abnormal increase of travel time of some source-

destination flows, we can locate probable blocking areas in

the active region. On the other hand, if certain activities

happen at some locations inside the active region, we can

predict the probable increase of travel time of some source-

destination traffic.

The active region of one source-destination traffic flow

should be a weighted map, instead of a binary one. This is

because different locations inside the active region should

have different importance. For example, activities happen-

ing at some important locations on the main roads should

have greater influence on the travel time, and higher influ-

ence weights should be assigned to these locations.
Let CS,D be the collection of locations covered by walk-

ing routes of all pedestrians coming from the source S and
going to the destination D. The influence weight of the ac-
tive region map at location l is calculated as

RS,D(l) =
1

#CS,D

∑

l′∈CS,D

k(l, l′), (1)

where k(·, ·) is the Gaussian kernel and the kernel band-

width is defined as the size of one pedestrian. #CS,D counts

the number of elements in CS,D and is used as the normal-

ization term. CS,D can be obtained by clustering fragmented

tracklets between source and destination regions with the

dynamic agent-based model proposed in [39].

Several examples of active regions are shown in Figure

3. We observe that the active region of a source-destination

pair may contain multiple potential walking routes. More-

over, narrow areas (e.g. entrance regions and exit regions)

tend to have higher influence weights, which indicates more

Source

BA

a

b

Destination

A B

Figure 4. Illustration of moving pedestrian features. An active re-

gion map of a source-destination flow is shown on the top. Warmer

colors indicate higher active weights. Two locations (A, B) with

different active weights are marked by red rectangles. The walking

direction distributions at A and B are shown in the bottom.

attention should be paid to these areas in traffic manage-

ment. Note that the active region is not symmetric i.e.

R1,8 �= R8,1, R3,9 �= R9,3, which means traffic flows in

different directions might occupy different scene regions.

This is common in transportation systems where mixing of

traffic flows in opposite directions is avoided in order to in-

crease traffic efficiency and ensure safety.

3.3. Features on moving pedestrians

For the traffic flow from source S to destination D at

the current time point t, features are extracted from all

the moving pedestrians inside the active region. The loca-

tions of these moving pedestrians are denoted as l
mp
i , i =

1, ..., Nmp, and RS,D(lmp
i ) > 0. For each of these moving

pedestrians, two features are computed.
The active region weights at the locations of the Nmp

moving persons are used as the first feature. For the ith
moving pedestrian, the location feature is calculated as

M1
i = RS,D(lmp

i ). (2)

For example, an active region map and two locations (A and

B) are shown in Figure 4. Location A is in the main traffic

flow so the active weight at A is greater than that at B. A

moving pedestrian appearing at A plays a more important

role than that appearing at B.

The influence to travel time delay is also related to pedes-

trian’s walking direction θi, i = 1, ..., Nmp. As shown

in Figure 4, if a moving pedestrian appears at location A

and walks along the direction a, i.e. being opposite to the

source-destination traffic flow, the influence of this pedes-

trian should be significant. In contrast, if he/she walks along

the direction b, i.e. similar to the source-destination flow,

the influence should be small.
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A

Source

B

A

B

Other stationary

persons in the

same group

.

Current stationary

person .

Two stationary

group regions.

Destination

Figure 5. Illustration of stationary pedestrian features. An ac-

tive region map of a source-destination flow is shown on the top.

Warmer colors indicate higher active weights. Two stationary

groups (A, B) with different active weights are marked by the

red rectangles. The current stationary person spj is marked in red,

and the other stationary persons within the same group G(spj) are

marked in blue.

For all the locations inside the active region, the distri-
butions of walking directions of the source-destination flow
are first computed. Examples of such distributions com-
puted at location A and B are shown in Figure 4. The
second feature is proposed to describe the deviation of the
moving pedestrian’s walking direction from the speed di-
rectional distribution of the source-destination traffic flow.
For the ith moving pedestrian, the influence feature is cal-
culated as

M2
i =

∫

θ∗
φ(θ∗; lmp

i )[1− cos(θi − θ
∗)], (3)

where φ(θ; lmp
i ) is the directional distribution of the traffic

flow at the location l
mp
i .

3.4. Features on stationary pedestrians

Features are extracted from all the stationary pedestrians

spj , j = 1, ..., Nsp inside the active region, whose locations

are denoted by l
sp
j with RS,D(lspj ) > 0. For each stationary

pedestrian, three features are computed.
Stationary pedestrians at different locations have differ-

ent importance, which can be described by the map weights
of RS,D. An active region map and two stationary groups
are shown in Figure 5. Stationary pedestrians of group B

block the main source-destination traffic flow, which leads
to larger influence on the travel time than the stationary
pedestrians of group A. For the jth stationary pedestrian,
the location feature is calculated as

S1
j = RS,D(lspj ). (4)

There are two other influence features, S2

j and S3

j . S2

j

is related to the size of the stationary crowd group. It is
more likely for a pedestrian to change the route and detour a

longer way when facing a larger stationary group. As shown
in Figure 5, stationary pedestrians of group A should have
larger blocking effect on the traffic flow than those of group
B. The second stationary pedestrian feature describes the
size of a stationary group,

S2
j = #G(spj), (5)

where G(spj) is the collection of all the stationary persons

that form the same stationary crowd group with spj , and #
is the element counting operation.

The influence feature S3

j is related to the density of the
stationary crowd group. Stationary pedestrians of denser
groups should have larger blocking effect. If a stationary
group is small or sparse, some aggressive pedestrians may
choose to go through it instead of changing their routes.
The third stationary pedestrian feature therefore describes
the density of a stationary group,

S3
j =

1

#G(spj)

∑

p∈G(spj)

||lp − l
sp
j ||22, (6)

where p is a stationary pedestrian from the same stationary

group with spi, lp is the location of stationary pedestrian p,

and ||lp − lspj
||2
2

measures the distance between p and spj .

3.5. Travel time estimation

Features extracted from moving and stationary pedestri-
ans are concatenated into feature vectors and a regression
pipeline is adopted to map these feature vectors to travel
times. For a source-destination traffic flow at time point
t, moving features Mi, i = 1, ..., Nmp are extracted from
Nmp moving pedestrians inside the active region, and sta-
tionary features Sj , j = 1, ..., Nsp are extracted from Nsp

stationary pedestrians inside the active region, i.e.

Mi = [M1
i ,M

2
i , 1]

tr
, (7)

Sj = [S1
j ,S

2
j ,S

3
j , 1]

tr
, (8)

where tr denotes matrix transpose. In order to keep a fixed

number of features at each time point, only Nm∗ moving

pedestrians with top M1

i values and Ns∗ stationary pedes-

trians with top S1

j values are selected. These selected pedes-

trians are expected to have the most influences on travel

time as they have the largest active region weights, i.e.

they are at locations that significantly influences travel time.

Features of the selected persons are then used for regres-

sion. Zeros will be padded if Nm∗ > Nmp or Ns∗ > Nsp.
We assume the mapping function from moving features

to travel time should be the same for all the moving pedestri-
ans (denoted as fm). Similarly, the mapping function from
stationary features to travel time is denoted as fs. The travel
time can then be estimated as

T̂ =
∑

i∈Bmp

fm(Mi) +
∑

j∈Bsp

fs(Sj), (9)

where Bmp is the index set of moving pedestrians with top

M1

i values, and Bsp is the index set of stationary pedestri-

ans with top S1

j values.
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Dataset I [30] Dataset II [33]

Scene type Indoor square Outdoor aisle

Resolution (pixel) 1, 920× 1, 080 720× 576
No. of sources/destinations 10 3

Video duration (s) 4, 000 900
Frame rate (fps) 25 50

No. of annotated pedestrians 12, 684 1, 842
Average travel time (s) 27.1 15.6

Table 2. Details of the datasets used for evaluation.

(a) Dataset I [30] (b) Dataset II [33]

Figure 6. Example frames of the two datasets. Annotated walking

routes are shown in different colors.

In our method, the second-order polynomial regression
is used, and fm(Mi) and fs(Sj) can be written as,

fm(Mi) = Mtr
i WmMi, (10)

fs(Sj) = Str
j WsSj , (11)

where Wm and Ws are systemic matrices to be learned.

4. Experiments

4.1. Datasets

Two datasets are used to evaluate the proposed travel

time estimation method. One is the pedestrian walking path

dataset (Dataset I) proposed by Yi et al. [30], which con-

tains 12,684 ground truth walking paths. The other one is

a video clip of the Shanghai Expo Dataset (Dataset II) pro-

posed by Zhang et al. [33]. Pedestrian walking routes of

Dataset II are manually annotated by us because the walking

routes are not provided by the original dataset. The details

of the two datasets are listed in Table 2 and sample frames

of the annotated videos are shown in Figure 6.

4.2. Experimental setup

For each time point t, a temporal window [t − τ, t + τ ]
is adopted. τ is set as 30 seconds for both datasets. All

pedestrians from source S to destination D within the tem-

poral window will be considered. The average travel time

of these pedestrians µ(T t
S,D) is used as ground truth to train

the regression model. During testing stage, pedestrian travel

time T̂ t
S,D would be estimated for each time point based on

the extracted features of the current frame. Cross validation

is adopted for evaluation. The video frames are randomly

divided into ten folds for each source-destination flow.

4.3. Evaluation metrics

The average travel time µ(T t
S,D) and standard deviation

of travel time σ(T t
S,D) are used for evaluation. Three eval-

uation metrics are used to measure the performance of the

proposed method.

ET is calculated as the average estimation Error of travel
Time. ER1 and ER2 are calculated as the average esti-
mation Error Ratios of travel time with ground truth value
µ(T t

S,D) and ground truth variance σ(T t
S,D), respectively.

ET = Et,S,D

[∣∣∣T̂ t
S,D − μ(T t

S,D)
∣∣∣
]
, (12)

ER1 = Et,S,D

⎡

⎣

∣∣∣T̂ t
S,D − μ(T t

S,D)
∣∣∣

μ(T t
S,D)

⎤

⎦ , (13)

ER2 = Et,S,D

⎡

⎣

∣∣∣T̂ t
S,D − μ(T t

S,D)
∣∣∣

σ(T t
S,D)

⎤

⎦ , (14)

where T̂ t
S,D is the estimation result, µ(T t

S,D) is the ground

truth travel time, σ(T t
S,D) is the standard deviation of the

travel time of the observed pedestrians within the temporal

window, and Et,S,D [·] denotes the average among all the

time points and all the source-destination pairs.

4.4. The compared methods

In Section 3.1, we observe that statistic (ii) the number of

stationary persons along the walking route, and statistic (iii)

the number of moving persons along the walking route have

strong correlations with the pedestrian travel time. A base-

line feature set containing only these two statistic numbers

is designed for comparison.

In order to evaluate the effectiveness of each of the pro-

posed features, several feature subsets are used for compar-

ison, i.e. (a) only using the location features M1, S1; (b)

only using the influence features M2, S2, S3; (c) only us-

ing the moving person features M1, M2; and (d) only using

the stationary person features S1, S2, S3. The estimation

results of these comparisons on Dataset I and Dataset II are

listed in Table 3.

The problem of pedestrian travel time estimation is intro-

duced in this paper for the first time and there is no existing

work specially designed for or can be directly applied to this

problem. We select some existing computer vision tech-

niques, and evaluate them as baselines for the problem. (a)

The social force model [10] can simulate pedestrian behav-

iors and the simulated travel time can be estimated as pedes-

trian travel time.2 (b) Based on person re-identification [12],

the time interval of matched pedestrians in two frames can

be computed as travel time. (c) The pedestrian travel time

can also be calculated from the starting and ending points

of trajectories extracted from pedestrian tracking [26]. We

2 Parameters to be set in SFM: Reaction time is manually set as 0.8s,

which is the same as the time interval of our annotations. The other model

parameters are adaptively specified by adjusting simulation results as close

as real observations. 1% of the annotated ground truths are randomly se-

lected as the training samples.
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Feature Description
Results on Dataset I Results on Dataset II

ET ER1 ER2 ET ER1 ER2

Statistics (ii), (iii) Baseline features 6.58s 22.92% 282.52% 2.59s 17.29% 125.11%

M1, S1 (a) Location features 2.69s 9.39% 98.97% 1.52s 10.21% 77.01%

M2, S2, S3 (b) Influence features 2.76s 9.70% 105.03% 1.49s 10.22% 77.72%

M1, M2 (c) Moving features 2.76s 9.32% 101.61% 1.49s 10.02% 75.07%

S1, S2, S3 (d) Stationary features 2.75s 9.75% 105.95% 1.53s 11.22% 83.47%

M1, M2, S1, S2, S3 Proposed features 2.32s 8.00% 88.45% 1.40s 9.56% 73.45%

Table 3. Travel time estimation results on Dataset I and Dataset II by using different sets of features.

Method
Results on Dataset I Results on Dataset II

ET ER1 ER2 ET ER1 ER2

(a) Pedestrian simulation [10] 7.14s 21.60% 232.68% 4.13s 32.03% 206.31%

(b) Person re-identification [12] 11.60s 37.29% 388.87% 4.65s 37.82% 252.55%

(c) Pedestrian tracking [26] 9.45s 29.27% 332.28% 4.41s 35.17% 253.05%

(d) Motion pattern features [2] 7.33s 19.58% 123.41% 2.50s 28.32% 118.23%

(e) Stability features [24] 7.73s 21.45% 126.47% 2.62s 33.38% 158.09%

Proposed method 2.32s 8.00% 88.45% 1.40s 9.56% 73.45%

Table 4. Travel time estimation results on Dataset I and Dataset II by the proposed method and the comparisons.

also try some crowd related features, i.e. (d) motion pattern

features [2] and (e) stability features [24]. The features are

used to regress travel time. The estimation results of these

comparisons on both Datasets are shown in Table 4.

4.5. Experimental results

From the experimental results shown in Tables 3, we ob-

serve that the proposed feature set achieves much better per-

formance than the baseline features. This is because the

baseline features simply count the number of persons along

the walking routes, but the different roles and influences of

these persons are not modeled. The estimation errors in-

crease when using the subsets of the proposed features, .

It demonstrates the effectiveness of each of the proposed

features, including the location features, influence features,

moving features, and stationary features.

From Table 4, we can see better performance can be

achieved by the proposed method compared with (a) - (e).

It is partially because these methods are not specifically de-

signed for the travel time estimation task. Moreover, for

(a) and (c), they mainly focus on the pedestrians’ reactions

to local environments. However, global modeling of the

whole scene is needed when solving the travel time estima-

tion problem. For (b), it is quite challenging for person re-

identification algorithms when pedestrians are occluded by

each other frequently, which is common in crowded scenes.

Moreover, as the appearance of many pedestrians are quite

similar, person re-identification fails frequently.

Directly using existing motion features, the ones in (d)

and (e), cannot provide good results for a few reasons.

Firstly, without modeling active regions between source-

sink pairs, the influences of different locations on travel

time are not modeled. However, we showed that crowd den-

sities and velocities outside the active region have much less

influence on the travel time. Secondly, the conflict between

instantaneous velocities of individuals and main flow pat-

terns at different locations are not modeled ,while our ex-

plicit modeling makes estimation easier. Lastly, the infor-

mation of stationary crowds is not used. However, station-

ary crowds’ interaction with moving pedestrians, is quite

different from the interaction among moving pedestrians.

Such interaction is affected by the size and density of sta-

tionary groups, which was never considered. Overall, our

features are specially designed for travel time estimation,

well motivated by statistical analysis, and more effective

than generic crowd features.

5. Applications

As introduced in Section 1, the estimated travel time can

provide rich information for video surveillance, and vari-

ous applications can be implemented based on the proposed

travel time estimation pipeline, including crowd scene un-

derstanding and pedestrian behavior analysis.

5.1. Scene dynamic monitoring

The estimated travel time is an important indicator of

scene status and can be used to monitor whether the scene is

unobstructed or not. For pedestrians from source 1 to des-

tination 6, the dynamic curves of the estimated pedestrian

travel time T̂ t
S,D, together with the ground truth travel time

µ(T t
S,D), are plotted in Figure 7(a). Four example frames

are shown in Figure 7(b)-(e). At frame A, the scene is unob-

structed and the estimated travel time is short. However, at

frame B, the source-destination flow is intersected by mul-

tiple moving pedestrians (red arrows), which leads to the

increase of travel time. At frame C, region 6 is blocked by

the large dense stationary crowds (red rectangle), thus the
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A B C D

(a) The dynamic curves of ground truth and estimation result.

(b) Frame A, index = 2400 (c) Frame B, index = 2759

(d) Frame C, index = 4770 (e) Frame D, index = 4849

Figure 7. (a) The dynamic updates of ground truth travel time

(green curve) and the estimated travel time (red curve) for pedes-

trians from source 1 to destination 6. (b)-(e) Four example frames

marked in (a) as A-D.

estimated travel time increases significantly. When the sta-

tionary crowds disperse at frame D, the estimation of travel

time returns to normal value.

5.2. Blocking region localization

From Eq. (9), we can estimate the travel time by sum-

ming all the influences of moving and stationary pedestrians

inside the active region together. On the other way around,

we can also factorize the total travel time into different in-

fluence factors, and the time delay caused by each individ-

ual inside the active region can be inferred. In this way,

the regions that blocking traffics can be located by identi-

fying the moving/stationary persons that contribute most to

the estimation result of the travel time. Two examples are

shown in Figure 8.

5.3. Abnormal behavior detection

If we focus on each individual, we can determine

whether the pedestrian is walking in a normal way, i.e. the

travel time is close to the estimation result. Four pedes-

trians with abnormal travel times are shown in Figure 9.

Pedestrian (a) is walking too slowly (dense dots), so that

the actual travel time is significantly greater than the esti-

mation. Pedestrian (b) is running fast (sparse dots), which

leads to a much shorter travel time. Pedestrians (c) and (d)

are walking along tortuous routes, so the travel times are

greater than expected.

(a) Source 1 to destination 9 (b) Source 3 to destination 8

Figure 8. Examples of blocking region localization. Different in-

dividuals’ contribution to the travel time delay are represented by

colors. Blocking regions can be located as the regions with warm

colors. Active region boundaries are roughly outlined by red lines.

In (a), we can also observe that different walking directions (as

denoted by the arrows) have different influences on the travel time

delay. The red and green arrows point against and along the traffic

flow respectively and therefore have different influences.

(a) T̂ = 45s, T = 117s (b) T̂ = 43s, T = 23s

(c) T̂ = 47s, T = 94s (d) T̂ = 40s, T = 83s

Figure 9. Examples of four pedestrians with abnormal travel times.

The estimated time T̂ and actual travel time T are shown. One red

dot is plotted at the pedestrian location for each second.

6. Conclusion

The problem of pedestrian travel time estimation is intro-

duced for the first time in this paper. A novel travel time es-

timation method is proposed for the challenging task, which

consists of active region generation, moving/stationary fea-

ture design, and regression. The estimated travel time pro-

vides rich information for crowd scene understanding and

pedestrian behavior analysis. Three applications based on

the proposed technique are introduced in this paper and

more interesting applications about travel time information

are yet to be discovered.
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