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Abstract

One of the fundamental problems in image search is

to learn the ranking functions, i.e., similarity between the

query and image. The research on this topic has evolved

through two paradigms: feature-based vector model and

image ranker learning. The former relies on the image sur-

rounding texts, while the latter learns a ranker based on

human labeled query-image pairs. Each of the paradigm-

s has its own limitation. The vector model is sensitive to

the quality of text descriptions, and the learning paradig-

m is difficult to be scaled up as human labeling is always

too expensive to obtain. We demonstrate in this paper that

the above two limitations can be well mitigated by jointly

exploring subspace learning and the use of click-through

data. Specifically, we propose a novel Ranking Canonical

Correlation Analysis (RCCA) for learning query and im-

age similarities. RCCA initially finds a common subspace

between query and image views by maximizing their corre-

lations, and further simultaneously learns a bilinear query-

image similarity function and adjusts the subspace to pre-

serve the preference relations implicit in the click-through

data. Once the subspace is finalized, query-image similarity

can be computed by the bilinear similarity function on their

mappings in this subspace. On a large-scale click-based

image dataset with 11.7 million queries and one million im-

ages, RCCA is shown to be powerful for image search with

superior performance over several state-of-the-art methods

on both keyword-based and query-by-example tasks.

1. Introduction

Similarity function plays a key role in Web image search.

Given a textual query, the objective is to retrieve the most

relevant images and rank them by their degrees of relevance

to the query. The relevance between the query and image

can be viewed as a kind of similarity.

As textual queries and images are of two different views,

they cannot be directly compared. As a result, existing

search engines to date highly rely on the surrounding texts

associated with images. The similarity between a query and

an image is then defined based on their textual feature vec-

tors. The relevance models, including Vector Space Model

[24], BM25 [21], and Language Models [28], can all be

used as similarity functions. However, the text descrip-

tion may not precisely describe salient visual content, not

to mention that some images do not even associate with any

text. Consequently, the similarity from the feature-based

vector model may suffer from robustness problem. Another

solution of similarity measure is to learn image rankers on

query-image pairs which are usually labeled by human ex-

perts. However, human labeling is always too expensive to

obtain, making it hard to scale up. Even so called “experts”

often find it hard to judge query-image relevance, resulting

in noisy labeled training data.

Our similarity learning method addresses the aforemen-

tioned two issues. First, we consider the cross-view (i.e.,

text to image) similarity by learning a common latent sub-

space that allows direct comparison of textual queries and

visual images in a low-dimensional space. The image rep-

resentations are visual features extracted directly from the

images, rather than textual features. By learning two lin-

ear mappings, the similarity between queries and images in

the original two incomparable different spaces can be di-

rectly computed in the shared subspace. Moreover, the di-

mensionality of the latent subspace is significantly reduced

compared with that of any original views, leading to saving

in memory cost for search systems.

Second, the click-through data, which can be viewed as

the footprints of user searching behavior, is explored as an

effective means of understanding both the query and the us-

er’s intent for image search [12]. As most image search en-

gines display results as thumbnails, the user can browse the

entire image search results before clicking on a specific im-

age. As such, users predominantly tend to click on images

that are relevant to their query. Therefore, the click-through

data can serve as a reliable and implicit feedback for im-
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age search. More importantly, relative similarity between

different images and a common query is also manifested in

the click-through data, which is further taken into account

to learn similarity function here.

By jointly integrating subspace learning and click-

through data, this paper presents a novel Ranking Canonical

Correlation Analysis (RCCA) approach for similarity learn-

ing, as shown in Figure 1. Specifically, a bipartite graph be-

tween queries and images is constructed based on the image

click-through data from a real image search engine. The

query and image spaces are then formed, where a corre-

sponding link between a query and an image is established,

if the users who issue the query clicked the image. Nex-

t, Canonical Correlation Analysis (CCA) is performed for

mapping the two views, represented by visual and textual

features, into a common subspace where the correlation be-

tween the two views is maximized. Furthermore, as click-

through data conveys relative relevance judgements indicat-

ed by different click counts on images in response to an i-

dentical query, a bilinear similarity function is learnt simul-

taneously while the subspace is fine tuned to respect these

preference relations. Finally, the query and image similari-

ty is measured by this bilinear similarity function. It is also

worth noticing that the image-image and query-query simi-

larities can be defined as dot products on the final subspace.

The remaining sections are organized as follows. Sec-

tion 2 describes related work on similarity learning. Sec-

tion 3 presents our ranking canonical correlation analysis

similarity learning method. Section 4 provides empirical

evaluations, followed by the conclusions in Section 5.

2. Related Work

Similarity learning is a fundamental problem in Web

search and information retrieval. The research in this di-

rection has proceeded along two dimensions: feature-based

[2, 13, 20, 29] and learning-based [1, 7, 10, 18, 19, 23, 26].

Feature-based methods make use of features extracted

from objects to measure similarity. Vector Space Model

[24], BM25 [21], and Language Models [28] are three clas-

sical retrieval models for computing query-document simi-

larity on term or n-gram feature vectors. In [29], queries are

represented as n-grams and then the cosine similarity is uti-

lized as the similarity function. Similar in spirit, Broder et

al. proposed calculating query similarity with term and n-

gram features enriched with a taxonomy of semantic classes

[2]. Moreover, recent works on image representations are

by encoding local descriptors, such as the vector of local-

ly aggregated descriptors (VLAD) [13] and Fisher vector

(FV) [20]. Any standard distance computed on the repre-

sentations is further considered as image similarity.

Different from feature-based methods, learning-based

approaches aim to directly learn the similarity between

pairs of objects, particularly, in a shared common sub-

space. Canonical correlation analysis (CCA) [10], a classi-

cal and successful technique, explores the mapping matrices

by maximizing the correlation between the projections in

the subspace. As a nonlinear extension of CCA, Kernel C-

CA (KCCA) is to provide nonlinear mappings such that the

correlation between two objects is maximized [7]. An al-

ternative scheme to KCCA is Kernel Principal Componen-

t Analysis with CCA (KPCA-CCA), which was proposed

by Nakayama et al. in [18]. Instead of directly learning

the nonlinear mappings in KCCA, KPCA-CCA embeds the

nonlinear metrics via KPCA and generates the new input

for CCA. Recently, Gong et al. further incorporated a third

view in CCA framework by minimizing the distances in the

resulting common space between each pair of views of the

same data [8]. Similarly, Partial Least Squares (PLS) also

aims to model the relations between two or more sets of data

by projecting them into the latent subspace [23]. The differ-

ence between CCA and PLS is that CCA utilizes cosine as

the similarity function while PLS learns dot product. Lat-

er in [1], polynomial semantic indexing (PSI) is performed

by learning two low-rank mapping matrices in a learning to

rank framework, and then a polynomial model is considered

to measure the relevance between query and document.

In addition, by further leveraging the click-through da-

ta for similarity learning, Wu et al. extended the PLS to

Multi-view PLS by combining multiple features for learn-

ing query-document similarity on a click-through bipartite

graph [26]. In another work by Yao et al. [27], by combin-

ing click-through and video document features for deriving

a latent subspace, the dot product of the mappings in the

latent subspace is taken as the similarity between videos.

Recently, Pan et al. formulated image search as a click-

through-based cross-view problem by learning a common

subspace, in which the l2 distance between query and im-

age mappings is minimized and the structures in original

spaces are preserved [19].

Our work belongs to learning-based similarity approach-

es. Different from the aforementioned learning-based work-

s, our proposed method integrates the learning of the shared

subspace and the bilinear similarity defined in the subspace

simultaneously, which we show can better measure the sim-

ilarity between views.

3. Similarity Learning From Click-through

The basic idea of this work is to facilitate similarity

learning between query and image from click-through da-

ta by constructing a common latent subspace. In this way,

the original incomparable textual query and visual image

could be directly compared in the shared subspace. More-

over, the learning of the subspace and bilinear similarity in

the subspace is integrated into an overall optimization prob-

lem simultaneously to better reflect the preference relations

implicit in the click-through data. After we obtain the la-
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Figure 1. Ranking canonical correlation analysis based image search framework. (a) Latent subspace learning between textual query and

visual image spaces. A CCA-based space is first learnt on the query-image correspondences exist in the click-through bipartite graph

extracted from image search logs. Then a RCCA-based space is formed to adjust the CCA-based space to preserve the preference relations

implicit in the click-through data, and simultaneously a bilinear similarity function is learnt to measure the query-image similarity in this

space. (b) With the learnt RCCA-based space, keyword-based and query-by-example image search tasks can be directly implemented on

the similarities measured between the projections on this subspace. For better viewing, please see original color pdf file.

tent subspace and bilinear similarity function, the similarity

between query and image is then measured by using this bi-

linear function on their mappings. The approach overview

is demonstrated in Figure 1.

We begin this Section by presenting the click-through

bipartite graph that naturally encodes user actions in the

query log, followed by the learning of an initial subspace

using standard canonical correlation analysis (CCA). Then

our ranking canonical correlation analysis (RCCA) is pro-

posed by simultaneously adjusting the initial subspace and

learning a bilinear similarity function in the subspace, so as

to model the preference relations in the click-through data.

Finally, the algorithm for both keyword-based and query-

by-example image search is presented.

3.1. Notation

Let G = (V , E) denote a click-through bipartite graph.

V = Q ∪ V is the set of vertices, which consists of a

query set Q and an image set V . E is the set of edges

between the query and image vertices. The number asso-

ciated with an edge represents the number of times that an

image is clicked given a query. Suppose there are n triads

{qi, vi, ci}
n
i=1 generated from the click-through bipartite in

total, where ci is the click counts of image vi in response

to query qi. Let Q = {q1,q2, . . . ,qn}
⊤ ∈ R

n×dq and

V = {v1,v2, . . . ,vn}
⊤ ∈ R

n×dv denote the query and

image feature matrix, where qi and vi are the textual and

visual feature of query qi and image vi, and dq and dv are

the feature dimensionality, respectively.

3.2. Canonical Correlation Analysis

From the click-through bipartite, each query establish-

es a link with each clicked image, which makes a natural

correspondence between query and image spaces. The sim-

ilarity in between, nevertheless, could not be directly com-

puted since the representations of query and image are ab-

solutely heterogenous. One solution, that we pursue in this

work, is to rely on subspace learning, which assumes that

a low-dimensional common subspace exists for the repre-

sentations of query and image. Subspace learning methods

typically produce linear transformations which are easy to

implement and deploy. Inspired by the effectiveness of C-

CA [10] in cross-modal retrieval or multi-view embedding

[8], we choose it to learn a shared common subspace be-

tween query and image spaces.

CCA is a technique for learning a shared subspace which

reflects the correlations between the heterogeneous repre-

sentations across two (or more) original spaces. The linear

mapping function can be derived from this subspace by

f(qi) = qiW
0
q , and f(vi) = viW

0
v, (1)

where d is the dimensionality of the common subspace, and

W0
q ∈ R

dq×d and W0
v ∈ R

dv×d are the transformation

matrices that project the query textual semantics and image

content into the common subspace, respectively.

To learn the two linear projections W0
q and W0

v , the ob-

jective of CCA is to make (QW0
q ,VW0

v) maximally cor-
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related as

(W0
q ,W

0
v) = argmax

W0
q,W0

v

corr(QW0
q,VW0

v)

= argmax
W0

q,W0
v

〈

QW0
q,VW0

v

〉

∥

∥

∥QW0
q

∥

∥

∥‖VW0
v‖

.
(2)

Let CQQ and CV V represent the empirical covariance

matrices for query and image space respectively, while let

CQV denote the cross-covariance. The above optimization

problem can be rewritten as

(W0

q ,W
0

v) = argmax
W0

q,W0
v

∥

∥

∥
W0⊤

q CQV W0
v

∥

∥

∥

√

∥

∥

∥W0⊤

q CQQW0
q

∥

∥

∥

∥

∥

∥W0⊤

v CV V W0
v

∥

∥

∥

. (3)

The optimization of Eq.(3) can be solved by the follow-

ing generalized eigenvalue problem

(

Q⊤Q Q⊤V

V⊤Q V⊤V

)(

w0
q

w0
v

)

= λ

(

Q⊤Q 0

0 V⊤V

)(

w0
q

w0
v

)

,

(4)

where w0
q and w0

v is a column of W0
q and W0

v , respectively.

The size of this problem is (dq + dv)× (dq + dv).
In order to obtain a d-dimensional subspace, we form the

projection matrices W0
q and W0

v from the top d eigenvec-

tors corresponding to each w0
q and w0

v , respectively. Once

the projection matrices are learnt, the respective projection

matrix is applied to each original space separately.

3.3. Ranking Canonical Correlation Analysis

The correspondence of each query and image pair linked

in click-through bipartite is considered equally in learning

CCA, regardless of different image click counts in response

to an identical query. On the other hand, the preference re-

lations like “for query q, image va should be ranked higher

than image vb,” are conveyed in the click-through that im-

age va receives higher click counts than vb in answering

the query q and have been proved to be effective in learn-

ing search functions [5, 14]. Inspired by the idea of jointly

learning the subspace and decision function in classification

[16], we develop a ranking canonical correlation analysis

(RCCA) model, which aims to adjust the subspace learnt

by CCA to further preserve the preference relations implic-

it in the click data. Moreover, to better reflect the relative

preference relations in terms of query-image similarity, a

bilinear similarity function is simultaneously learnt. With

this, query-image similarity can be calculated by the bilin-

ear similarity function on their mappings in the subspace.

Formally, given a query q and an image v, we wish to

learn two mappings, which can map query q from query

space and image v from image space into a common la-

tent space. Meanwhile, a query-image similarity function

s(q, v,Wq,Wv,W) is presented to measure the similarity

of v given q in the latent space. We consider a parametric

similarity function that has a bilinear form as

s(q, v,Wq,Wv,W) = (qWq)W(vWv)
⊤
, (5)

where W ∈ R
d×d is the bilinear similarity matrix, Wq ∈

R
dq×d and Wv ∈ R

dv×d are the transformation matrices

that project the query and image space into the common

subspace, respectively.

The overall objective function of our RCCA is as

argmin
Wq ,Wv,W

L(s(q, v,Wq,Wv,W)) + µ

2
‖W‖2

+
(

γ

2

∥

∥Wq −W0
q

∥

∥

2
+ η

2

∥

∥Wv −W0
v

∥

∥

2
)

,
(6)

where L(•) is a general loss function, W0
q and W0

v are the

initial transformation matrices learnt by CCA presented in

Section 3.2, µ, γ, and η are tradeoff parameters.

In particular, the objective function is composed of three

components. The first term is to minimize the ranking loss

on the click-through bipartite. Specifically, we can eas-

ily obtain a set of triplets T from our click-through da-

ta, where each tuple (q, v+, v−) consists of a query q, an

image v+ with higher clicks and a lower clicked image

v−. To preserve these preference relations in the triplet-

s, we aim to optimize Wq, Wv and W which makes

s(q, v+,Wq,Wv,W) > s(q, v−,Wq,Wv,W), i.e., im-

age v+ is assigned a higher similarity score to query q than

v−. It is worth noticing that it is a good choice by involv-

ing some images not clicked by query q as v− in the triplets,

enforcing the projections of images with different semantics

become far away in the learnt subspace. Thus, the similar-

ities between the mappings of images in the subspace will

be capable of distinguishing images with different seman-

tics. The margin ranking loss [11] which has been used in

information retrieval [3, 14] is employed and defined as

L(s(q, v,Wq,Wv,W)) =
∑

T

max(0, 1 − s(q, v+,Wq,Wv,W) + s(q, v−,Wq,Wv,W)).

(7)

In order to avoid overfitting, it is necessary to add the other

two regularization terms, i.e., the last two terms in Eq. (6).

The term ‖W‖2 is to explicitly penalize overly complex

matrix, while the last term results in better generalization of

RCCA approach by seeking the new subspace that is close

to the subspace learnt by using CCA.

To address the optimization problem in Eq.(6), we use

stochastic gradient descent in this work due to its efficien-

cy and capability of applying to highly scalable problems.

Readers can refer to [3] for details. After the optimization

of Wq , Wv and W, we can obtain the similarity function

defined in Eq.(5). Next, given a test query and image pair

(q̂, v̂), we compute the similarity between the pair as

s(q̂, v̂,Wq,Wv,W) = (q̂Wq)W(v̂Wv)
⊤
. (8)

This value reflects how relevant the given image could be

in answering a query, with higher score indicating higher

relevance. Thus, given a textual query, a rank list of images

is produced by sorting the scores of query-image pairs.
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Algorithm 1 RCCA for Image Search

1: Input: Click-through bipartite G = (V, E). Query feature q

and image feature v.

2: Generate a set of triplets (q, v+, v−) as labeled data based on

the click-through. Initialize the matrices Wq and Wv using

a normal distribution with mean zero and standard deviation

one. Initialize the matrix W with the identity matrix I. Set

the learning rate α, and three tradeoff parameters µ, γ and η.

3: for all the triplets do

4: W = (1− αµ)W
Wq = (1− αγ)Wq + αγW0

q

Wv = (1− αη)Wv + αηW0
v

5: if 1− s(q, v+,Wq,Wv,W)+ s(q, v−,Wq,Wv,W) ≻
0 then

6: W = W + αW⊤

q q⊤(v+ − v−)Wv

Wq = Wq + αq⊤(v+ − v−)WvW
⊤

Wv = Wv + α(v+ − v−)⊤qWqW

7: end if

8: end for

9: Output:

Query-image similarity function:

∀q̂, v̂, s(q̂, v̂,Wq,Wv,W) = (q̂Wq)W(v̂Wv)
⊤

Image-image similarity function:

∀v′, v̂, g(v′, v̂,Wv) = (v′Wv)(v̂Wv)
⊤

Moreover, when given an image example as query, the

similarity between an image pair (v′, v̂) is computed as

g(v′, v̂,Wv) = (v′Wv)(v̂Wv)
⊤
. (9)

Therefore, query-by-example image search can also be per-

formed in a similar fashion, by sorting similarity scores to

produce an image rank list. The additional consideration

of preference relations provides better measurement in the

subspace, such that visually similar but semantically dif-

ferent images will receive lower similarity scores. Note

that query-query relations, which are useful for applica-

tions, such as query suggestion, query expansion and query

rewriting tasks, can also be computed. Algorithm 1 summa-

rizes the major steps in RCCA for image search.

3.4. Complexity Analysis

The complexity of our proposed RCCA approach is

O(|T | × dq × dv × d), where |T | represents the number

of the training triplets. The training of 1.5 million triplets

with dq = 50, 000, dv = 1, 000 and d = 80 in our experi-

ments can be finished within five days on one server. More

importantly, the training complexity is linear to the number

of triplets, which makes the incremental update with new

triplets very fast. For online search, RCCA takes less than

one second to finish computing the similarities for 1,000

query-image pairs on a regular PC (Intel dual-core 3.5GHz

CPU and 16 GB RAM). In other words, computing the sim-

ilarity of each query-image pair only takes 1.0 millisecond.

Clearly, the speed is fast enough for instant response.

Figure 2. Examples in Clickture dataset. Each row lists the click

counts of images in response to the query shown in the first row.

4. Experiments

We conducted our experiments on the Clickture dataset

[12] and evaluated our approach on both keyword-based and

query-by-example image search.

4.1. Dataset

The dataset, Clickture, is a large-scale click based im-

age dataset [12]. It was collected from one year click-

through data of one commercial image search engine. The

dataset comprises two parts, i.e., the training and devel-

opment (dev) sets. The training set consists of 23.1 mil-

lion {query, image, click} triads, where query is a textual

word or phrase, image is a base64 encoded JPEG image

thumbnail, and click is an integer of value no less than one.

The training set contains 11.7 millions of distinct queries

and 1.0 million unique images. Figure 2 shows a few ex-

emplary queries with their clicked images and click counts

in the Clickture. For example, the first image receives 25

clicks when retrieved by the query “cardinal logo.” We can

easily find that images with higher clicks are more rele-

vant to the query than that with lower clicks. The de-

v dataset contains 79,926 〈query, image〉 pairs generated

from 1,000 queries. The relevancy of each image to query

was manually annotated on a three point ordinal scale: Ex-

cellent, Good, and Bad.

Each query is represented as a vector of words, and

each word is weighted by term frequency (tf ). Words are

stemmed and stop words are removed. In our experiments,

we use the top 50,000 most frequent words as the word

vocabulary. Inspired by the success of deep convolution-

al neural networks (DCNN) [4, 17], we take the output of

1000-way fc8 classification layer by using DeCAF [6] as

the image representation in this work, which is a 1000-

dimensional feature vector.

4.2. Keywordbased Image Search

We first investigate our RCCA method on keyword-

based image search task. The task is to estimate the sim-

ilarity of each query-image pair in the dev set, and then for

each query, we order the images based on their similarities.

Compared Approaches. We compare the following ap-

proaches for performance evaluation:

(1) N-Gram SVM (NGS) trains a SVM model for each
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query in the training set, by treating the clicked images as

positive examples. Negative samples for classifier learning

are randomly drawn. The result for a given test query is

obtained by linearly fusing the rank lists of the classifiers

whose queries share common n-grams with the test query.

(2) Graph-based Label Propagation (GLP) employs the

nearest neighbors search [25] on an image similarity graph

constructed by visual representations for finding Top K sim-

ilar training images to the test image. The queries in the

training set, which have clicks on these found training im-

ages, are then aggregated to predict the relevance of the test

query-image pair.

(3) Passive-Aggressive Model [9] (PA) measures the

match between a query-image pair by projecting the query

into the image space. The learning of the mapping matrix

from query to image space is performed by adapting the

Passive-Aggressive algorithm.

(4) Polynomial Semantic Indexing [1] (PSI) first choos-

es a low dimensional representation space for query and im-

age. A polynomial model is then discriminatively learnt for

mapping between query-image pair and relevance score.

(5) Canonical Correlation Analysis [8, 10] (CCA) aims to

maximize the correlation between the projections of images

and queries in the subspace. Its two variants, i.e., Kernel

CCA (KCCA) [7] and Kernel PCA with CCA (KPCA-CCA)

[18] are also compared. The former directly learns the non-

linear projections in CCA, while the latter first maps the

inputs via KPCA and then feeds the new inputs into CCA.

(6) Click-through-based Cross-view Learning [19] (C-

CL) learns the subspace by jointly minimizing the distance

between the mappings of query and image in the latent sub-

space while preserving the structure in original space.

(7) Ranking Canonical Correlation Analysis (RCCA) is

our proposed approach described in Algorithm 1.

Parameter Settings. NGS and GLP are two baselines,

which predict the relevance score on the original visual fea-

ture. PA directly projects query into the image space. The

final feature dimensionality is thus equal to that of visu-

al feature. For the other six subspace learning methods,

the dimensionality of the latent subspace is in the range of

{40, 60, 80, 100}. We set the learning rate α = 0.07, and

three tradeoff parameters µ = γ = η = 1.0 in our RCCA

algorithm by using a validation set.

Evaluation Metrics. For the evaluation of image

search, we adopted Normalized Discounted Cumulative

Gain (NDCG) as the performance metric. Given an im-

age ranked list, the NDCG score at the depth of d in the

ranked list is defined by: NDCG@d = Zd

∑d

j=1
2r

j
−1

log(1+j) ,

where rj = {Excellent = 3, Good = 2, Bad = 0} is

the manually judged relevance for each image with respect

to the query. Zd is a normalizer factor to make the score

for d Excellent results 1. The final metric is the average of

NDCG@d for all the queries in the dev set.

0.48
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Figure 3. The NDCG of different approaches for keyword-based

image search. The numbers in the brackets represent the feature

dimension used in each approach.

Performance Comparison. Figure 3 shows the NDCG

performances on image search of nine runs averaged over

1,000 queries in Clickture dev dataset. It is worth noting

that the predictions of NGS, GLP and PA are performed on

the original image visual features of 1,000 dimensions and

for other six methods, the performances are given by choos-

ing 80 as the dimensionality of the latent subspace.

Overall, our proposed RCCA consistently outperform-

s the other runs across different depths of NDCG. In

particular, the NDCG@25 of RCCA can achieve 0.5112,

making the improvement over NGS model by 4.3%, which

is so far the highest performance reported on Clickture

dataset. More importantly, by learning a low-dimensional

latent subspace, the dimension of the mapped textual query

and visual image is reduced by several orders of magni-

tude. GLP, which performs nearest neighbor search, is ef-

fective in finding the top relevant images. However, the per-

formance gain of GLP against NGS is gradually decreased

when going deeper into the list. Furthermore, RCCA by

additionally incorporating the preference relations leads to

a performance boost against CCL, CCA, KPCA-CCA, and

KCCA. RCCA outperforms PSI and PA. Although the three

runs involve the utilization of the preference relations, dif-

ferent strategies are used for learning the mapping matri-

ces. The learning of PSI and PA solely depends on the rel-

ative relations, while RCCA additionally preserves the cor-

relations between two views making it more generalizable.

Moreover, the similarity functions are different in the way

that PSI and PA both use dot product, and RCCA is by learn-

ing a bilinear similarity function. The result basically indi-

cates the advantage of learning the subspace and similarity

function simultaneously by preserving the preference rela-

tions in the click-through data.

There is a performance gap between PA and PSI. Al-

though both runs attempt to learn linear mapping projec-

tions based on the preference relations, the defined com-

mon subspaces are different that PSI learns a new common

subspace, while PA directly projects the query into image

space and considers the image space as the common space.

Moreover, CCL by further preserving the structure in origi-

nal spaces is superior to CCA. KPCA-CCA and KCCA, both

of which extract nonlinear relations, slightly improve CCA,
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Figure 4. Examples showing the top ten image search results by different methods of queries “1967 mustang restomod,” and “ryan good”

(better viewed in color). The relevance scale is provided at the top left corner for each image.
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Figure 5. The NDCG@25 performance with different dimension-

alities of the latent subspace.

but the performances are still lower than RCCA. The result

indicates that RCCA is benefited from the utilization of rela-

tive preference, and capable of differentiating visually sim-

ilar images in response to an identical query. Another ob-

servation is that the performance gain of RCCA is almost

consistent when going deeper into the list. This further con-

firms the effectiveness of RCCA. In addition, to verify that

the performance of different approaches is not by chance,

we conducted significance test using the randomization test

[22]. The number of iterations used in the randomization is

100,000 and at 0.05 significance level. RCCA is found to be

significantly better than others.

Figure 4 shows the top ten image search results by dif-

ferent approaches for the query “1967 mustang restomod,”

and “ryan good.” We can see the proposed RCCA method

gets the most satisfying ranking results. Specifically, for

the query “1967 mustang restomod,” RCCA retrieves eight

excellent images in the returned top ten results, which is

significantly better than other baselines.

Effect of the Dimensionality of the Latent Subspace.

In order to show the relationship between the performance

and the dimensionality of the latent subspace, we compared

the results of the dimension in the range of 40, 60, 80, and

100. Note that only the six subspace learning methods are

included in this comparison. The results are shown in Fig-

ure 5. Compared to the other five runs, performance im-
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Figure 6. The NDCG@25 performance of RCCA with the increase

of the number of training triplets.

provement is consistently observed at each dimensionali-

ty of the latent subspace by our proposed RCCA method.

Furthermore, RCCA achieves the best result at the laten-

t subspace dimensionality of 80, and the results at other di-

mensionalities are close to the best one. This observation

basically verifies that RCCA has a good property of being

not sensitive to the change of dimensionality of the laten-

t space. In addition, the performance trends of NDCG at

other depths are similar with that of NDCG@25.

Varying the number of training triplets. Next, we

conducted experiments to evaluate the performance of R-

CCA by varying the number of training triplets from 10K

to 1.5 millions. Note that the training time grows linearly

with the number of triplets. NDCG@25 performances with

the increase of the number of training triplets are reported

by using different dimensionalities of the latent subspace in

Figure 6. Not surprisingly, we can observe that the perfor-

mance is consistently improved with the increase of triplets

at each dimensionality of the subspace. Furthermore, after

learning a number of triplets (1.0 million in our case), the

performances of RCCA change very smoothly.

4.3. QuerybyExample Image Search

The second experiment was conducted on query-by-

example image search task. In particular, an image from

dev set is taken as an image example to search semantically

similar images in the training set. For each image example,
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Figure 7. Examples showing the top ten image search results by different methods in response to two query images (better viewed in color).

In each row, the first image with a red bounding box is the query image.
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Figure 8. The NDCG of different approaches for query-by-

example image search. The numbers in the brackets represent the

feature dimension used in each approach.

we sort the images by their similarities to the query image.

Ground Truth. For objective evaluation, ground truth

is generated directly from click-through data. Specifical-

ly, 1K unique images that are annotated as “Excellent” to

their respective queries in the dev set are randomly select-

ed as the test image examples. For each image example,

the images clicked by the same query in the training set are

taken as “Excellent” ones to the image example. In addi-

tion, for training queries that share more than one common

noun phase with the query of the test image example, their

clicked images are regarded as “Good” ones. The other im-

ages in the training set are all treated as “Bad” ones. Note

that all the query terms are already stemmed and stop word-

s are removed. The averaged NDCG over 1K test image

examples are finally reported.

Compared Approaches. As NGS, GLP and PA are all

based on original image visual features, we report the three

as one, called Cos, which measures the Cosine similarity

between original visual features. In addition to PSI, CCA

and CCL, PCA which first performs Principal Component

Analysis [15] (PCA) on visual features and then computes

Cosine similarity between the principle components is fur-

ther considered as another baseline.

Performance Comparison. Figure 8 shows the perfor-

mance of different approaches in terms of NDCG at differ-

ent depths. Overall, RCCA consistently exhibits better per-

formance than other approaches. Compared to Cos, RCCA

raises the NDCG@10 from 0.455 to 0.48 while reducing

the feature dimension by more than ten times. CCA, as a

cross-view version of PCA, outperforms PCA. This some-

what reveals that by maximizing the query and image cor-

relations in CCA, the similarities between image mappings

could better reflect their semantics relations. By further in-

corporating preference relations in click-through data, RC-

CA is capable of separating the images with different se-

mantics and thus leads to a better performance. Similar to

the observations in keyword-based image search, CCL ex-

hibits better performance than CCA, but shows worse per-

formance than RCCA. Moreover, RCCA again shows statis-

tically better performance than the others according to ran-

domization test [22]. Figure 7 further illustrates the top ten

image search results by different methods in response to two

query images. We can clearly see that the images retrieved

by our RCCA approach are more similar in semantics with

the query images. Take the first query image as an example,

RCCA could better distinguish the images of “crib” from

“chairs” which are visually very similar.

5. Conclusions

In this paper, we have investigated the similarity learn-

ing between textual query and visual image by leverag-

ing both click data and subspace learning techniques. We

have proposed a novel ranking canonical correlation analy-

sis method for similarity learning. Specifically, two linear

projections of query and image spaces to a common sub-

space are initially learnt by maximizing their correlation.

The two projections are further adjusted and simultaneous-

ly a bilinear similarity function is learnt in the subspace

by preserving the preference relations implicit in the click-

through data. Then the learnt similarity in the subspace is

taken as the query-image and image-image similarity and

evaluated in the context of both keyword-based and query-

by-example image search. Our future works are as follows.

First, the learnt query-query similarity in the subspace will

be explored for applications such as query expansion, query

suggestion, and query rewriting. Furthermore, we will in-

vestigate the kernel version of our method.
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