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Abstract

In perspective cameras, images of a frontal-parallel 3D

object preserve its aspect ratio invariant to its depth. Such

an invariance is useful in photography but is unique to per-

spective projection. In this paper, we show that alterna-

tive non-perspective cameras such as the crossed-slit or XS-

lit cameras exhibit a different depth-dependent aspect ra-

tio (DDAR) property that can be used to 3D recovery. We

first conduct a comprehensive analysis to characterize D-

DAR, infer object depth from its AR, and model recoverable

depth range, sensitivity, and error. We show that repeated

shape patterns in real Manhattan World scenes can be used

for 3D reconstruction using a single XSlit image. We also

extend our analysis to model slopes of lines. Specifically,

parallel 3D lines exhibit depth-dependent slopes (DDS) on

their images which can also be used to infer their depth-

s. We validate our analyses using real XSlit cameras, XSlit

panoramas, and catadioptric mirrors. Experiments show

that DDAR and DDS provide important depth cues and en-

able effective single-image scene reconstruction.

1. Introduction

A single perspective image exhibits scale ambiguity: 3D

objects of difference sizes can have images of an identical

size under perspective projection, as shown in Fig. 1. In

photography and architecture, the forced perspective tech-

nique employs this optical illusion to make an object ap-

pear farther away, closer, larger or smaller than its actual

size while preserving the aspect ratio. Fig. 2 shows an ex-

ample in the film “The Lord of the Rings” where characters

apparently standing next to each other would be displaced

by several feet in depth from the camera. For computer vi-

sion, however, such an invariance provides little help, if not

harm, to scene reconstruction.

Prior approaches on resolving the scale ambiguity range

from imposing shape priors [3, 10], extracting local de-

scriptors [16] to analyzing the vanishing points [13]. In

this paper, we approach the problem from a different an-

gle: we analyze aspect ratio changes of an object with re-
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Figure 1: Images of the same object lying at different depths

have an identical aspect ratio (AR) in a perspective camera

(Top) but have very different ARs in an XSlit image (Bot-

tom).

spect to its depth. Consider a frontal-parallel rectangle R

of size sh × sv located d away from the sensor and d > f
where f is the camera’s focal length. Under perspective

projection, its image is an rectangle R
′ similar to R of size

[s′h, s
′

v] =
f

d−f
[sh, sv]. This implies that the aspect ratio

r = sv/sh of R and R
′ remain the same. The property

can termed as aspect-ratio invariance (ARI). ARI is an im-

portant property of perspective projection. ARI, however,

no longer holds under non-centric projections, exhibiting

depth-dependent aspect-ratio (DDAR).

In this paper, we explore DDAR in a special type of non-

centric cameras called the crossed-slit or XSlit camera [29].

Earlier work in XSlit imaging includes the pushbroom cam-

era used in satellite imaging and XSlit panoramas by stitch-

ing a sequence of perspective images. The General Lin-

ear Camera theory [28] has shown that the XSlit camera

is generic enough to describe a broad range of non-centric

cameras. In fact, pushbroom, orthographic and perspective

cameras can all be viewed as special XSlit entities. Geo-

metrically, an XSlit camera collects rays that simultaneous-

ly pass through two oblique (neither parallel nor coplanar)

slits in 3D space, in contrast to a pinhole camera whose rays
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Figure 2: The perspective trick used in the movie “The Lord

of the Rings”.

pass through a common 3D point. Ye et al.[27] has further

proposed a practical realization by relaying a pair of cylin-

drical lenses coupled with slit-shaped apertures.

We show that the XSlit camera exhibits DDAR that can

help resolve scale ambiguity. Consider two 3D rectangles of

an identical size lying at different depth with their images

being R1 and R2 respectively. Different from the pinhole

case, the AR of R1 and R2 will be different, as shown in

Fig. 1. We first develop a comprehensive analysis to char-

acterize DDAR in the XSlit camera. This derivation leads

to a simple but effective graph-cut based scheme to recov-

er object depths from a single XSlit image and an effective

formulation to model recoverable depth range, sensitivity,

and errors. In particular, we show how to exploit repeated

shape patterns exhibiting in real Manhattan World scenes to

conduct 3D reconstruction.

Our DDAR analysis can further be extended to model

the slopes of lines. Specifically, for parallel 3D lines of a

common direction, we show that as far as the direction is d-

ifferent from both slits, their projections will exhibit depth-

dependent slopes or DDS, i.e., the projected 2D lines will

have different slopes depending on their depths. DDS and

DDAR can be combined to further improve 3D reconstruc-

tion accuracy. We validate our theories and algorithms on

both synthetic and real data. For real scenes, we experi-

ment on different types of XSlit images including the ones

captured by the XSlit lens [27] and synthesized as stitched

panoramas [21]. In addition, our scheme can be applied to

catadioptric mirrors by modeling reflections off the mirrors

as XSlit images. Experiments show that DDAR and DDS

provide important depth cues and enable effective single-

image scene reconstruction.

2. Related Work

Our work is most related to Manhattan World reconstruc-

tion and non-centric imaging.

A major task of computer vision is to infer 3D geome-

try of scenes using as fewer images as possible. Tremen-

dous efforts have focused on recovering a special class of

scene called the Manhattan World (MW) [4]. MW is com-

posed of repeated planar surfaces and parallel lines aligned

with three mutually orthogonal principal axes and fits well

to many man-made (interior/exterior) environments. Under

the MW assumption, one can simultaneously conduct 3D

scene reconstruction [6, 10] and camera calibration [22].

MW generally exhibits repeated line patterns but lack-

s textures and therefore traditional stereo matching is less

suitable for reconstruction. Instead, prior-based modeling

is more widely adopted. For example, Furukawa et al. [10]

assign a plane to each pixel and then apply graph-cut on

discretized plane parameters. Other monocular cues such

as the vanishing points [5] and the reference planes (e.g. the

ground) have also been used to better approximate scene

geometry. Hoime et al. [12, 11] use image attributes (color,

edge orientation, etc.) to label image regions with differ-

ent geometric classes (sky, ground, and vertical) and then

“pop-up” the vertical regions to generate visually pleasing

3D reconstructions. Similar approaches have been used to

handle indoor scenes [6]. Machine learning techniques have

also been used to infer depths from image features and the

location and orientation of planar regions [19, 20]. Lee et

al. [14] and Flint et al. [9] search for the most feasible com-

bination of line segments for indoor MW understanding.

Our paper explores a different and previously overlooked

properties of MW: the scene contains multiple objects with

an identical aspect ratio or size (e.g., windows) but lie at dif-

ferent depths. In a perspective view, these patterns will map

to 2D images of an identical aspect ratio. In contrast, we

show that the aspect ratio changes with respect to depth if

one adopts a non-centric or multi-perspective camera. Such

imaging models widely exist in nature, e.g., a compound in-

sect eye, reflections and refractions of curved specular sur-

faces, images seen through volumetric gas such as a mirage,

etc. Rays in these cameras generally do not pass through a

common CoP and hence do not follow pinhole geometry.

Consequently, they lose some nice properties of the per-

spective camera (e.g., lines no longer project to lines); at

the same time they also gain some unique properties such

as the coplanar common points [25], special shaped curves

[26], etc. In this paper, we focus on the depth-dependent

aspect ratio (DDAR) property for inferring 3D geometry.

The special non-centric camera we employ here is the

crossed-slit or XSlit camera. An XSlit camera collects rays

simultaneously passing through two oblique lines (slits) in

3D space. The projection geometry of an XSlit has been

examined in various forms in previous studies, e.g., as pro-

jection model in [29], as general linear constraints in [28],

and as ray regulus in [18]. For long the XSlit camera has

been restricted to a theoretical model as it is physically d-

ifficult to acquire ray geometry following the slit structure.

The only exception is the XSlit panoramas [23, 17] where

an XSlit panorama can be stitched from a translational se-

quence of images or more precisely a 3D light field [15].

Recently, Ye et al.[27] presented a practical XSlit camer-
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Figure 3: XSlit camera geometry: rays collected by the

camera should simultaneously pass through two slits at d-

ifferent depths.

a. Their approach relays two cylindrical lenses with per-

pendicular axes, each coupled with a slit shaped aperture to

achieve in-focus imaging.

3. Depth Dependent Aspect Ratio

We first analyze how aspect ratio of an object changes

with respect to its depth in an XSlit camera. We call this

property Depth-Dependent Aspect Ratio or DDAR.

3.1. XSlit Camera Geometry

A XSlit camera collects rays that pass through two

oblique slits (neither coplanar nor parallel) simultaneous-

ly. For simplicity, we align the sensor plane to be paral-

lel to both slits and corresponds to the x-y plane. Such

a setup is consistent with the real XSlit design [27] and

the XSlit panoramas [29]. Further, we assume the origin

of the coordinate system corresponds to the intersection of

the two slits’ orthogonal projections on the sensor plane, as

shown in Fig. 3. The two slits lie at depth z1 and z2 and

have angle θ1 and θ2 w.r.t the x-axis, where z2 > z1 and

θ1 6= θ2. Under this setup, the z components along the two

slits are 0. And the x-y directions are v1[cos θ1, sin θ1] and

v2[cos θ2, sin θ2] that spans R2 space.

Previous approaches study projection using XSlit projec-

tion matrix [29], light field parametrization[28], and linear

oblique[17]. Since our analysis focuses on aspect ratio, we

introduce a simpler projection model analogous to pinhole

projection. Consider a 3D point p to p′. The process can be

described as follows: first decompose the x-y components

of p into two basis vectors, v1, v2 and write it as [κx, κy, z].
Next project individual component to [κu, κv]. Each com-

ponent can be viewed as pinhole projection as they are par-

allel to either slits. Finally obtain the mapping from p to

p′.

We first represent p on the basis of v1 and v2

[

x
y

]

= κxv1 + κyv2

We then project κxv1 and κyv2 independently. Notice

the two components are at depth z. And κxv1 is parallel

to slit 1 and κyv2 is parallel to slit 2. Their projections

imitate the pinhole projection except that the focal lengths

are different:

κu = −
z2

z − z2
κx, κv = −

z1
z − z1

κy (1)

Notice the XSlit mapping is linear, we can combine κu

and κu to compute p′.

p′ = κuv1 + κvv2

κu and κv are also the linear representations of p′ on

basis of v1 and v2.

3.2. Aspect Ratio Analysis

Equation 1 reveals that κx and κy are projected to κu

and κv with different scale on the two directions parallel to

the slits. In other words, with the change of depth, the ratio

will be change accordingly. Specifically, we can compute

the ratio as:

κu

κv

=
z2(z − z1)

z1(z − z2)

κx

κy

(2)

This is fundamentally different from the pin-

hole/perspective case where the ratio remains static

across depth. To understand why it is the case, recall that

the pinhole camera can be viewed as a special XSlit camera

where the two slits intersect, i.e., they are at the same depth

z1 = z2. In that case, Eqn. degenerates to κx/κy = κu/κv ,

i.e., the aspect ratio is invariant to depth.

For the rest of the paper, we use ro = κx

κy
to represent

the base aspect ratio and ri =
κu

κv
represents the aspect ratio

after XSlit projection. From Eqn. 2, we can derive the depth

from the aspect ratio as:

z =
z1z2(ri − ro)

z1ri − z2ro
(3)

Monotonicity: Given a fixed XSlit camera, Eqn. 3 reveals

that the AR monotonically decreases with respect to z. In

fact, we can compute the derivative of z with respect to ri:

∂z

∂ri
=

z1z2(z1 − z2)ro
(z1ri − z2ro)2

(4)

Since z1 < z2, we have ∂z
∂ri

< 0, i.e., the depth z decrease

monotonically with ri. In fact the minimum and the maxi-

mum ARs correspond to:
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rmin
i = ri|z→∞ =

z2
z1

ro, r
max
i = ri|z→z2 = ∞ (5)

Depth Sensitivity: Another important property we ad-

dress here is depth sensitivity. We compute the partial

derivative of ri respect to z for z ranging from z2 to ∞
and we have:

∂ri
∂z

=
z2(z1 − z2)

z1(z − z2)2
ro (6)

The sensitivity is the absolute value of ∂ri
∂z

and it de-

crease monotonically for z > z2. This implies that as ob-

jects get further away, the depth accuracy recoverable from

the AR also decreases. According to Eqn. 6, the sensitivity

is positively related to z2
z1

and z1−z2. Farther separated slit-

s and greater ratio between two slits distances corresponds

to higher sensitivity. This phenomenon resembles classical

stereo matching using two perspective cameras where the

deeper the object, the smaller the disparity and the less ac-

curacy that stereo matching can produce.

Depth Range: We can further compute the maximum dis-

cernable depth zmax. To do so, we first compute ri when

z → ∞ as r∞i = z2
z1
ro. Next we change r∞i with ǫ, the

smallest ratio change that is discernable in image. We have

r∗i = z2
z1
ro + ǫ. The lower bound of ǫ is 1/L, L is the

image width or height, without considering subpixel accu-

racy. Sine the depth changes monotonically with ri, the

maximum discernable depth is correspond to r∗i . Finally

we compute the depth use Eqn. 3:

zmax =
z2
z1

[z1 + (z2 − z1)
ro
ǫ
] (7)

Eqn. 7 indicates that the larger slit distance ratio z2
z1

and

bigger separating distance of two slits z2−z1 correspond to

a larger discernable depth range.

4. Depth Inference from DDAR

Our analysis reveals that if we know ro in prior, i.e., the

base aspect of the object, we can directly infer the object’s

depth from its aspect ratio in the XSlit camera. A typical

example is using an Parallel-Orthogonal XSlit camera (PO-

XSlit) to capture an up-right rectangle. In a PO-XSlit cam-

era, the slits are orthogonal and axis aligned. In this case, ro
directly corresponds to the aspect ratio of the rectangle and

ri corresponds to the observed AR of the project rectangle.

The simplest case is to capture a up-right square whose

aspect ratio ro = 1. From the AR change, we can directly

infer its depth using Eqn. 3. In practice, we do not know the

AR of the object in prior. However, many natural scenes

92.4 cm111.4 cm 61.5 cm

5.5
6

yκ
=

8
.7
4

x
κ

=

Depth

Undistorted

1.32
u

κ =

0
.9
6

v
κ

=

0.81
u

κ =

0
.6
2

v
κ

=

0.66
u

κ =

0
.5
2

v
κ

=

Cards with Shape Prior

Figure 4: Depth-from-DDAR: Top shows a scene that con-

tains multiple cards of an identical but unknown size. Bot-

tom shows their recovered depths and original size using

our scheme from this single image.

contain (rectangular) objects of identical sizes (e.g., win-

dows of buildings) and we can infer their depth even with-

out knowing their ground truth AR.

Shape Prior Specifically, consider K rectangles of an i-

dentical but unknown sizes and hence ARs. Assume they

lie at different depths zj . According to Eqn. 1, we have two

equations for each rectangle:

κj
uz

j + z2κx = z2κ
j
u

κj
vz

j + z1κy = z1κ
j
v

(8)

Where j = 1..K, zj , κx and κy are unknowns. And κu

and κv are computed from the image. For K identical rect-

angles, we have K + 2 unknowns and 2K equations. The

problem can be solved using SVD when two or more iden-

tical rectangles are present. Fig. 4 shows several examples

using our technique recovering depth of multiple cards of an

identical size. The depth along with the exact scale can be

extracted from a single XSlit image under the shape prior.

Depth Prior If the objects are of identical aspect ratios

but of different sizes, there is still ambiguity. According

to Eqn. 2, there are K equations and K + 1 unknowns (as-

sume K objects). One useful prior that can be imposed here

is the distribution of depth of objects. In real man-made en-

vironment, objects are likely to be evenly distributed. We

assume that these rectangles are with equal distance along

the z direction.

In this scenario/case, we obtain the AR equation for each

object:

zjro − rji
z1
z2

zj − z1ro = −z1r
j
i , j = 1..K (9)
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map to 2D lines of different slopes in an XSlit image. Bot-

tom: the slopes can be used to infer the depths of the lines.

Furthermore, the equal distance prior gives us the con-

straint zj − zj−1 = zj+1 − zj , for j = 2...(K − 1). For K
objects in the scene, we have 2K − 2 equations, and K + 1
unknowns. The problem is determined if we have 3 rectan-

gles in the scene. And it’s over-determined if we have more

than 3 objects.

It is very important to note that inferring depth under the

same setting is not possible in the perspective camera case.

In pinhole image z1 = z2 and ri = ro, hence Eqn. 8 and

Eqn. 9 degenerate. As shown in the introduction, scaling

the scene and adjusting the distance from the scene to the

pinhole camera accordingly will result in a same projected

image as the ground truth scene dose.

4.1. Line Slope Analysis

Section 4 reveals that inferring depth from DDAR is that

we need to obtain some prior knowledge of either the base

AR ro or the depth distribution of multiple identities. Fur-

ther, the rectangular shape needs to be in the up-right posi-

tion to align with the two slits. In this section, we extend the

AR analysis to study the slope of lines and we show that this

analysis leads to a more effective depth inference scheme.

We treat a line frontal parallel to the XSlit camera as the

diagonal of a parallelogram (rectangle in PO-XSlit case),

whose sides are along the two slits directions. Given a

line with slope s and a point p1[x, y, z] on it, then we have

p2[x+ 1, y + s, z] of is on the line. We can map it to a line

with slope s′ on XSlit image, which p1 and p2 map to points

p′1(u, v) and p′2(u + c, v + cs′) respectively. According to

definition of ro, we can decompose the segment p1-p2 onto

two slits direction and take the ratio of the two component

to get ro:

ro =
sin θ2 − s sin θ1
s cos θ1 − cos θ2

(10)

ri is computed using Eqn. 10 too, only substitute s with

s′. Reuse Eqn. 3, we can get the depth.

Eqn. 10 and 3 reveals that we can directly infer the depth

of the line from its slope. Similar to the aspect ratio case,

such inference cannot be conducted in the pinhole camera

since the frontal parallel line slope is invariant to depth.

The analysis above applies only to lines parallel to XSlit

camera. For lines unparallel to the camera, previous studies

have shown that they map to curves, or more precisely hy-

perbolas [26]. However, our analysis can still be applied by

computing the tangent direction on the hyperbolas, where

each tangent direction can be mapped to a unique depth.

This can be viewed as approximating a line as piecewise

segments frontal-parallel to the camera where each segmen-

t’s depth can be computed from its projected slope. The

complete derivation is included in the supplementary mate-

rials.

4.2. Scene Reconstruction

Based on our theories, we present a new framework on

single-image Manhattan scene reconstruction using the XS-

lit camera. The main idea here is to integrate depth cues

from DDAR (for up-right rectangle objects) and from line

slopes (for other lines and rectangles) under a unified depth

inference framework. Further, the initial depth estimation

scheme can only infer depths on pixels lying on the bound-

aries of the objects, it is important to propagate the estima-

tion to all pixels in order to obtain the complete depth map.

Our approach is to first infer the depth for the lines or

repeat objects from DDAR. Next we cluster pixels into s-

mall homogenous patches or superpixels [8]. The use of

superpixels not only reduce the computational cost and but

also preserves consistency across the regions, i.e the pixels

in a homogeneous region such as walls of a building tend

to have a similar depth. Finally, we model optimal depth

estimation/propagtion as a Markov Random Field (MRF).

The initial depth value Vi for superpixel Si is computed by

blending the depths inferred from DDAR according to their

geodesic distance to Si. And then we the smooth out V
based on distance variations and color consistency. This

procedure can be modeled as a Markov Random Field (M-

RF), where the data term: Ed(Si) = Ui − Vi. And the

smoothness term is: Es(Si, Sj) = wij(Ui −Uj), wij is the

weight account for distance variations and color consisten-

cy. Finally we estimate the depth map U by optimizing the

energy function:

E(U) =
∑

Si

Ed(Si) + λ
∑

Si,Sj∈N

Es(Si, Sj) (11)
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Figure 6: An XSlit image of the arch scene that contains 3D

concentric circles (left). Their images correspond to ellipses

of different aspect ratios (right).

N represents the superpixel neighborhood. The problem

can be solved using the graph-cut algorithm [2].

5. Experiments

We experiment our approach on both synthetic and real

scenes. For synthetic scenes, we render images using 3ds

Max. For real scenes, we acquire images using the XSlit

lens as well as synthesize XSlit panoramas from video se-

quences.

Synthetic Results. We first render an XSlit images of a

scene containing repeated shapes (Fig. 6). The architecture

consists of concentric arches of depths ranging from 900cm

to 2300cm. We assume that the actual aspect ratio of the

arches is 1, i.e., a circle. We position a PO-XSlit camer-

a with z1 = −3.2cm and z2 = −346.7cm frontal paral-

lel to the arches and the images of the arches are ellipses

of different aspect ratios. Notice that in the pinhole case,

they will be map to circles. We first detect ellipses using

Hough transform and then measure their aspect ratios using

the major and minor axes. Finally, we use the ratios to re-

cover their depths using Eqn. 3. Our recovered depths for

the near and far arches are 906.6cm and 2281.0cm, i.e., the

errors are less than 2%.

Next we render two XSlit panoramas, one for the cor-

ridor and the second for the facade. Both scenes exhibit

strong linear structures with many horizontal and vertical

lines. Our analysis shows that for lines to exhibit DDS,

they should not align with either slit. Therefore, we rotate

the POXSlit, i.e., θ1 = 45◦ and θ2 = 135◦. For the corri-

dor scene, the XSlit camera has a setting of z1 = −3.6cm,

z2 = −717.9cm and for the facade scene, z1 = −3.1cm,

z2 = 4895.9cm. We first use the LSD scheme[24] to ex-

tract 2D lines from the XSlit images and cluster them in-

to groups of horizontal and vertical (in 3D) lines. This is

done by thresholding their aspect ratios Eqn. 5. For lines

in each group, we compute their depths using Eqn. 10 and

3. This results in a sparse depth map. To recover the full

XSlit Image

Stitching

Slit 2

Slit 1

Cylindrical lenses

Slit Aperture

Figure 8: XSlit images can be captured by a real XSlit lens

(left) or by stitching linearly varying columns from a 3D

light field (right).

depth map, we apply the MRF (Sec. 4.2) and the final result

is shown in Fig. 7. Our technique is able to recover dif-

ferent depth layers while preserving linear structures. For

comparison, we render a single perspective image and ap-

ply the learning-based scheme Make3D [20]. Make3D can

detect several coarse layers but cannot detect fine details as

ours since these linear structures appear identical in slope in

a perspective image but exhibit different slopes in an XSlit

image.

Real Results. We explore several approaches to acquire

XSlit images of a real scene: by a real XSlit lens and

through panorama synthesis. For the former, we use an

XSlit lens [26]. The design resembles the original anamor-

phoser proposed by Ducos du Hauron that replaces the pin-

hole in the camera with a pair of narrow, perpendicularly

crossed slits. Similar to the way of using a spherical thin

lens to increase light throughput in a pinhole camera, the

XSlit lens relay perpendicular cylindrical lenses, one for

each slit. In our experiments, we use two cylindrical lenses

with focal lengths 2.5cm (closer to the sensor) and 7.5cm

(farther away from the sensor) respectively. The distance

between the two slits is adjustable between 5cm and 12cm

and the slit apertures have a width of 1mm.

We first capture a checkerboard at known depths and

compare the measured AR and our predicted AR using E-

qn. 3. We test three different slit configurations, z2/z1 =
1.3, z2/z1 = 1.59 and z2/z1 = 2.0. Fig. 9 shows that

the predicted AR curve fits well with the ground truth. In

particular, as an object gets farther away from the sensor,

its AR also changes slower. Further, the larger the base-

line z2/z1 is, the larger the aspect ratio variations across the

same depth range, as predicted by our theory.

Next, we verify our DDS analysis using images cap-

tured by the XSlit camera. In Fig. 10, we position a Legor

house model in front of the XSlit camera (z1 = 6.12cm and

z2 = 11.81cm). We rotate the XSlit camera by 45 degrees

so that the 3D lines on the house will not align with either
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Figure 9: Experimental validations of our analysis. We

place a checker board in front of the XSlit camera and move

it away(Left). The comparisons of measured AR and pre-

dict AR with different silts configurations(Right).

slit. Fig. 10(a) shows the acquired image. Next, we conduct

line fitting and slope estimation similar to the synthetic case

for estimating the depths of the detected lines. Fig. 10(a)

highlights the detected lines and their depths (using color)

and Fig. 10(b) shows the complete depth map using the M-

RF solution. The results shows that major depth layers are

effectively recovered. The error on the top-right corner is

caused by the lacking of line structures.

A major limitation using the XSlit camera is its small

baseline (between the two slits). Our analysis shows that the

maximum recoverable depth range depends on this baseline.

Further, since images captured by the XSlit camera exhibits

noise and strong defocus blurs, the actual recoverable depth

45

33

30

39

42

36

（a） （b）

Figure 10: Real result on a Legor house scene. (a) an XSlit

image of the scene captured by the XSlit camera. Detected

lines are highlighted in the image. (b) the recovered depth

map using our slope and aspect ratio based scheme.

range is even smaller. For example, our analysis shows that

with baseline z2/z1 = 2, two cards are placed at 30m and

35m will have undistinguishable ARs. Their ratio differ-

ence reach the lower bound that determined by pixel size.

For outdoor scenes, we resort to XSlit panorama synthesis.

To produce XSlit panoramas, Zomet et al. [29] capture

a sequence of images by translating a pinhole camera a-

long a linear trajectory at a constant velocity. In a similar

vein, Seitz and Adams et al. acquire the image sequence

by mounting the camera on a car facing towards the street.

Next, linearly varying columns across the images are se-

lected and stitched together. Fig. 8 shows the procedure of

generating a XSlit image using a regular camera.
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Figure 12: Results on catadioptric mirrors. Left: we capture the scene using a cylindrical catadioptric mirror. Right: the

aspect ratios of cubes change with respect to their depthes.

Figure 11: The XSlit image of an outdoor scene. Left: An

XSlit panorama and the detected lines. Right: The recov-

ered depth map.

Fig. 11 shows the XSlit panorama synthesized from an

image sequence captured by a moving camera. We linearly

increase the column index in terms of frame number and

stitch these columns to form an XSlit image. The moving

path of the camera is 55cm long. And the camera is tilt with

20◦ angle. The resulting two slits are at -1.8cm and 41cm

respectively.

Recent ray geometry studies [7] show that reflections of

certain types of catadioptric mirror can be approximated as

an XSlit image. In Fig. 12, we position a perspective camer-

a facing towards a cylindrical mirror and Fig. 12(b) shows

that DDAR can both be observed on the acquired image.

In particular, we put multiple cubes of an identical size at

different depths and their aspect ratios change dramatical-

ly. This is because two virtual slits of the catadioptric mir-

ror are separated far away where DDAR is more significant

than the XSlit camera case.

6. Conclusion and Further Work

We have comprehensively studied the aspect ratio (AR)

distortion in XSlit cameras and exploited its unique depth-

dependent property for 3D inference. Our studies have

shown that unlike perspective camera that preserves AR un-

der depth variations, AR changes monotonically with re-

spect to depth in an XSlit camera. This has led to new depth-

from-AR schemes using a single XSlit image. We have fur-

ther shown that similar to AR variations, the slope of pro-

jected 3D lines will also vary with respect to depth, and

we have developed theories to characterize such variations

based on AR analysis. Finally, AR and line slope analysis

can be integrated for 3D reconstruction and we have exper-

imented on real XSlit images captured by an XSlit camera,

synthesized from panorama stitching, and captured using a

catadioptric mirror to validate our framework. We admit

that the proposed depth-from-AR technique is not yet com-

parable to state-of-the-art multi-images (stereo or SfM) or

active illumination (Kinect) based techniques. However, a

simpler setup lends itself to more cost-effective depth sens-

ing systems. We also hope our work would stimulate more

work in the less explored space of single XSlit imaging.

There are a number of future directions we plan to ex-

plore. Our cylindrical lens based XSlit has a small baseline

(i.e., the distance between the two slits) and therefore can

only acquire AR changes within a short range. Construct-

ing a large baseline XSlit camera will be costly as it is dif-

ficult to fabricate large form cylindrical lens. A more feasi-

ble solution would be adopt a cylindrical catadioptric mirror

where the reflection image can be approximated as an XSlit

image. In the future, we will explore effective schemes for

correcting both geometric distortion and blurs due to imper-

fect mirror geometry. We will also investigate integrating

our AR based solution into prior based frameworks to en-

hance reconstruction quality. For example, a hybrid XSlit-

perspective camera pair can be constructed. Finally, since

AR distortions commonly exhibit in synthesized panoramas

as shown in the paper, we plan to study effective image-

based distortion correction techniques to produce perspec-

tively sound panoramas analogous to [1].
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