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Abstract

We propose a new method for fine-grained object recog-

nition that employs part-level annotations and deep convo-

lutional neural networks (CNNs) in a unified framework.

Although both schemes have been widely used to boost

recognition performance, due to the difficulty in acquiring

detailed part annotations, strongly supervised fine-grained

datasets are usually too small to keep pace with the rapid

evolution of CNN architectures. In this paper, we solve

this problem by exploiting inexhaustible web data. The

proposed method improves classification accuracy in two

ways: more discriminative CNN feature representations are

generated using a training set augmented by collecting a

large number of part patches from weakly supervised web

images; and more robust object classifiers are learned us-

ing a multi-instance learning algorithm jointly on the strong

and weak datasets. Despite its simplicity, the proposed

method delivers a remarkable performance improvement on

the CUB200-2011 dataset compared to baseline part-based

R-CNN methods, and achieves the highest accuracy on this

dataset even in the absence of test image annotations.

1. Introduction

Fine-grained object categorization has become increas-

ingly popular over the last few years. In contrast to basic-

level recognition, fine-grained categorization aims to dis-

tinguish between subordinate categories such as different

animal species [18, 29] or man-made products [22]. Classi-

fying objects at the subordinate level generally requires ex-

pert knowledge, which is not always available from a ran-

dom human annotator. Therefore, automatic fine-grained

recognition systems would be of huge value in real-world

applications.

There are two strategies widely used in existing fine-

grained categorization algorithms. First, as stated by Rosch

et al. [26], basic-level categories are principally defined
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Figure 1. Illustration of the proposed method. Our goal is to solve

the problem of insufficient training data due to the difficulty in

acquiring detailed part annotations and the required data size for

training robust CNNs. We introduce weakly supervised web im-

ages to augment the training set and design a new algorithm that

iteratively updates feature representations and object classifiers

on the augmented training data. The proposed method achieves

84.6% accuracy in the CUB200-2011 dataset without using any

additional annotation at the testing stage.

by object parts, whereas subordinate-level categories are

distinguished according to the unique properties of these

parts. This discovery encourages the use of part-based al-

gorithms that rely on localizing object parts and assigning

them detailed attributes. Various methods have been used

to define object parts such as unsupervised patch discov-

ery [32, 8], human-in-the-loop methods [12, 10], or direct

reliance on strongly supervised datasets with part-level an-

notations [21, 4, 33, 20].

The second strategy is to introduce more discriminative

feature representations [5, 4, 34], which is particularly at-

tractive given by the recent success of deep convolutional

neural networks (CNNs) [19, 11] in visual recognition. By

employing deep feature CNN extractors pre-trained on large

datasets (such as ImageNet [9]) and domain-specific fine-

tuning approaches, considerable improvements in a wide
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range of image classification and detection tasks can be

achieved, including in fine-grained categorization [25].

Inspired by these successes, a logical progression is to

adopt the two methods in a unified framework [35, 33].

For example, part-based R-CNN [33] achieved state-of-the-

art performance on the CUB200-2011 dataset [29] with the

help of strong part annotations and CNN feature extractors,

exemplifying the paradigm; nevertheless, it has been argued

that further improving results this way may be problematic.

In particular, CNNs require large volumes of training data to

learn robust feature representations, and it is nearly impos-

sible in practice to acquire large-scale strongly annotated

datasets since part annotations, which require expert knowl-

edge, are simply too expensive. The challenge, therefore,

is to exploit more accurate part annotations whilst ensur-

ing that there are sufficient training data for learning robust

CNN feature representations.

One possible solution is to employ existing images from

the “jungle of the interwebs”. Websites such as Flickr of-

fer a nearly endless supply of images with human-labeled

titles or tags, providing the necessary resource to train com-

plicated deep networks. However, directly employing these

images is error-prone. Web images are inherently “weakly

supervised” in at least two ways: first, except for image-

level labels, there are no additional annotations such as

bounding boxes or part attributes associated with web im-

ages; second, images acquired from the web are relatively

noisy. For instance, query results for the word “nighthawk”

will include images related to a bird, an aircraft, and a

comic. As a result, there is no guarantee that their labels

will be correct. In spite of this, we propose that it is possi-

ble to enrich the weak supervision by exploiting knowledge

transferred from existing strongly supervised datasets.

In this paper, we propose a new method for fine-grained

categorization that learns robust CNN feature representa-

tions and employs detailed object part annotations in a uni-

fied framework, and overcome the lack of training data with

the help of weakly supervised web images. Our method

relies on a joint formulation that iteratively updates CNN

feature representations and part-based object classifiers.

Specifically, we introduce accurate part annotations from

existing strongly supervised datasets and transfer learned

perceptual representations to a large-scale auxiliary dataset

collected from the web. The detected part patches from

weakly supervised web images are used as additional train-

ing data to produce more powerful feature representations

by fine-tuning CNNs. Based on the new features, a multi-

instance formulation is defined to jointly train the final clas-

sifiers on the strong and weak datasets. Since we employ

part-based R-CNN [33] to train object detectors and classi-

fiers on strongly supervised datasets, we term the proposed

method as “augmented part-based R-CNN” (AP-RCNN).

Our method is also related to the strategy of training

with auxiliary data sources, such as domain adaptation [16]

for heterogeneous data sources and incremental learning

[6, 30] for homogeneous ones. Some widely used ob-

ject recognition approaches, such as employing pre-trained

CNNs [11, 25] and category-independent object proposals

[28], can also be regarded as special cases of this strategy.

Here, our unique contribution is that we improve classifi-

cation performance from two perspectives simultaneously:

(i) from the modeling perspective, abundant and diverse

data are used to train robust object classifiers; and (ii) from

the representation perspective, additional training resources

prevent significant overfitting when training CNNs on small

sets of strongly supervised data.

Our preliminary results demonstrate the effectiveness of

this approach. Using an auxiliary weakly supervised dataset

acquired from Flickr, we achieve a classification accuracy

of 84.6% on the CUB200-2011 dataset, which is a signifi-

cant improvement over current state-of-the-art results. Fur-

ther investigations show that by re-fine-tuning CNNs with

more training data, the resultant feature representations sig-

nificantly contribute to the performance boost.

The remainder of the paper is organized as follows. R-

CNN and part-based R-CNN are reviewed in Section 2. The

proposed method is described in Section 3. Detailed perfor-

mance studies and analysis are conducted in Section 4, and

we conclude in Section 5.

2. Part-based R-CNN

Whilst our method is agnostic to the specific form of part

annotations and CNN architectures, we exploit part-based

R-CNN [33] as the basic method for detecting object parts

and for training fine-grained classifiers on strongly super-

vised datasets. In this section, we briefly review R-CNN

detectors [15] and part-based R-CNN classifiers and empha-

size our modifications that facilitate the proposed method.

2.1. Preliminary

We start with a strongly supervised dataset S , in which

ground-truth bounding box annotations are provided not

only for the entire objects p0 but also for a set of n semantic

parts {p1, p2, ..., pn}. Assume that there are K fine-grained

categories in the dataset. Selective search [28] is used to

extract category-independent object proposals. Typically

1000-2000 region proposals are generated per image.

2.2. RCNN detectors

Given part annotations in the strongly supervised dataset,

at the training stage, the whole object and each of the parts

are treated as independent categories and a generic object

detector is trained for each. The part detectors are then used

during testing to localize object parts; in addition, they are

exploited to collect additional part patches from weakly su-

pervised images in the auxiliary dataset.
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Our part detector training process follows R-CNN [15].

Specifically, for each of the object parts pi (or the whole

object p0), we extract deep convolutional features φ(i)(x)
on the extracted region proposals. Starting from a CNN

pre-trained on ImageNet [19], a part-CNN is fine-tuned on

the target task of fine-grained object recognition to obtain

the feature extractor. In particular, we replace the CNN’s

ImageNet-specific 1000-way classification layer with a ran-

domly initialized (K+1)-way layer that accounts for all the

fine-grained categories and also a background class. Object

proposals with ≥ 0.5 intersection-over-union (IoU) over the

ground-truth bounding boxes are treated as positive exam-

ples for that box’s class, while the others are regarded as the

background. For each object proposal, the tight bounding

box is dilated by m pixels (we use m = 16) to introduce

context information, and all the pixels in the dilated region

are warped into a fixed size of 227×227 pixels. The warped

regions are then used as the input to fine-tune the network

by stochastic gradient descent (SGD), starting at a learning

rate of 0.001. As a result, the learned CNNs (we call them

part-CNNs) carry specific domain knowledge of the fine-

grained categorization, while not clobbering the initializa-

tion from large-scale ImageNet pre-training.

Based on the fine-tuned CNNs, a linear SVM with a bi-

nary output is further trained to obtain the final part detector,

which only uses ground-truth boxes as positive samples in

order to achieve accurate detection results. In our imple-

mentation, we train SVMs beyond features extracted from

the fc7 layer of CNNs and adopt a standard hard negative

mining method [13] to fit the training data into memory.

Note that our detector training approach is different from

part-based R-CNN, in which part CNNs are fine-tuned us-

ing a background-absent K-way fc8 classification layer, and

ground-truth crops are the only input to fine-tune the CNN

architecture. We show in later experiments that this modifi-

cation boosts the detection accuracy by 5 to 10 percent.

Denote {v0, v1, ..., vn} as the weights of R-CNN de-

tectors for whole-object p0 and n parts pi|
n
i=1. For

a region proposal x, the corresponding detector scores

{d0, d1, ..., dn} are computed as

di(x) = σ(vTi φ
(i)(x)), (1)

where σ(·) is the sigmoid function and φ(i)(x) is the de-

scriptor at location x according to the i-th part-CNN.

2.3. Partbased RCNN classifiers

The next step is to integrate the learned R-CNN detec-

tor results and use them to train fine-grained classifiers. In

part-based R-CNN, Zhang et al. [33] proposed three types

of geometric constraint to ensure that the relative location

of detected objects and their semantic parts follow a geo-

metric prior. Here, however, the strength and robustness of

R-CNN part detectors result in geometric constraints that

only play a minor role in detection, especially considering

that fine-grained datasets usually contain only a relatively

limited number of training images. Therefore, in our imple-

mentation, we only conduct a simple box constraint to en-

sure object parts do not fall outside the root bounding box.

For an image I , let X = {x0, x1, ..., xp} be the pre-

dicted locations (bounding boxes) of an object and its

parts, which are given during training, but unknown for

both weakly supervised images and testing images. The

final feature representation is then denoted as Φ(x) =
[φ(0)(x0), ..., φ

(n)(xn)], where φ(i)(xi) is the feature rep-

resentation for part pi as the output of the fc7 layer of the

i-th part-CNN. Beyond them, a one-versus-all linear SVM

is trained for each fine-grained category. The classification

score for an image I being class k is then calculated as:

s(I; k) =

n
∑

i=0

w
(i)
k

T

φ(i)(xi), (2)

where w
(i)
k is the classifier weights for class k on features

extracted from the i-th object part. The framework of Part-

based R-CNN is illustrated as the first row of Figure 2.

3. Augmented part-based R-CNN

Part-based R-CNN has shown promising performance

on fine-grained recognition tasks. However, the rapid evo-

lution of CNN architectures involving an increasing num-

ber of model parameters has meant that current fine-grained

datasets, especially datasets with strong supervision, are too

small for training robust CNN representations. We propose

to solve this problem by introducing an easy-to-acquire aux-

iliary dataset to provide additional resources for training

part-CNNs.

Specifically, based on the strongly supervised dataset S ,

an auxiliary dataset containing the same fine-grained cate-

gories is collected, but with only image-level labels. Images

can be collected from search engines or online media shar-

ing communities. Since the data acquirement process does

not require human labeling, the weakly supervised dataset

(termed W) typically contains a larger number of images

than S . Denote the size of the datasets as NS and NW .

We consider a joint optimization algorithm that updates

feature representations φ and model parameters w itera-

tively on a combination of strongly supervised dataset S
and weakly labeled data W . The overall objective function

is defined as:

min
w,φ

n
∑

p=0

L(w(p), φ(p)),
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Figure 2. Flowchart of the proposed algorithm. Green lines show modules of part-based R-CNN method [33], while red lines are additional

operations conducted in this paper. Better viewed in color.

where

L(w(p), φ(p)) = λ · Ω(w(p))

+
1

NW

∑

I∈W

q
(p)
I · l(yI , max

xp∈XI

w(p)
yI

T
φ(p)(xp))

+
1

NS

∑

I∈S

l(yI , w
(p)
yI

T
φ(p)(xp)) (3)

The first term is a l2-norm regularizer, and λ is a free param-

eter. The second and third term capture the loss on weakly

supervised images and strongly supervised images respec-

tively. Here w
(p)
k stands for classifier weights of the k-th

category. For each image I , a softmax loss l is computed

based on the the ground truth label yI ∈ [1, ...,K] and the

predicted result given feature representation φ(p)(·) and part

location xp. For the auxiliary weak images, we introduce a

multi-instance formulation where XI is the set of candidate

bounding boxes; q
(p)
I denotes an indicator of whether the

detected region of p-th part in weakly supervised image I is

selected to augment the training set, in order to account for

label noise. We will detail it in Section 3.3.

As shown in Figure 2, the proposed augmented part-

based R-CNN method involves an initialization on the

strongly supervised dataset followed by object part detec-

tion in weak images, noise removal, re-fine-tuning CNNs,

and final classifier training. We detail these steps below.

3.1. Initialization

The first step of the proposed algorithm is to initialize

feature representations, part detectors, and object classifier

weights based on the strongly supervised dataset using the

part-based R-CNN approach detailed in Section 2. In par-

ticular, given n object parts and a root, and K fine-grained

categories to be classified, the initialization step obtains:

• n+ 1 independently fine-tuned part-CNNs with (K +
1)-way classification layers as the initialized feature

extractors. We use the fc7 layer to obtain a 4096-

dimensional feature vector φ(i) for each part pi.

• n+ 1 R-CNN detectors. Each part (or root) pi is asso-

ciated with an R-CNN detector di based on the respec-

tive CNN feature extractor φ(i).

• K(n + 1) sets of classification model weights, with

each w
(i)
k ∈ R

4096×1.

3.2. Part discovery

The initialized feature representations are obtained us-

ing strong annotations including object bounding boxes and

part localizations. However, such annotations are unavail-

able in the auxiliary dataset, since these images are only

associated with image-level labels. Therefore, in order to

exploit the auxiliary dataset, part-level information needs to

be generated for the weakly supervised images: here, we

achieve this by discovering part patches from weakly su-

pervised images using the learned R-CNN part detectors.

The part detectors provide top-down messages to select

relative patches with high discriminative power for classifi-

cation. After obtaining detecting scores for all the parts, we

adopt the box constraint restriction in part-based R-CNN to

introduce geometric relations between object parts. The de-

tected locations X∗ = {x0, ..., xn} are given as:

X∗ = argmax
X

n
∏

i=1

cx0
(xi)

n
∏

i=0

di(xi), (4)

where

cx(y) =

{

1, if region y falls outside x by at most 10 pixels

0, otherwise

3.3. Noise removal

As well as the lack of part-level annotations, web images

are also “weakly supervised” due to label noises: it is not
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Figure 3. Detection results on weakly supervised images. Green

frames indicate the detected bounding box for part “body”. Image

labels in the top two rows are correctly classified; the bottom two

rows show cases in which classification has failed. Beyond the

classification results, part patches in rows 1 and 3 are associated

with high detection scores, while rows 2 and 4 have low detection

scores. We propose to use both classification and detection scores

to select valid part patches to augment the training data.

guaranteed that images in the auxiliary dataset are all related

to the fine-grained categories. Therefore, we introduce a

noise removal process to clean up the detected part patches.

In the context of generating part patches from weakly

supervised images, the strategy of selecting proper patches

can be defined in two ways: (i) a sample should be selected

if we are confident about the correctness of detected local-

ization; or (ii) a sample should be selected if it is easy to

predict its true label. We argue that, in our task, adopting

these strategies individually is unlikely to produce optimal

results. As shown in Figure 3, images that are correctly

classified do not always generate valid part patches due to

occlusion effects and the absence of a particular object part.

On the other hand, there is no clear boundary to perfectly

separate “good” detections from “poor” detections with re-

spect to detection scores.

We therefore propose a two-threshold strategy that com-

bines detection scores and classification results to select

valid part patches. The basic idea is to flexibly adjust the

threshold of “good” detections by setting a loose condi-

tion on the correctly classified images and requiring harsher

terms for misclassified images. Specifically, the criterion of

whether a part patch x is selected to augment the training set

is determined as an indicator q
(i)
I = I(di(x) > λ) where

λ =

{

λpos, if ỹI = yI

λneg, if ỹI 6= yI
, (5)

Here yI is the label of image I and ỹI is the predicted

label obtained by part-based R-CNN classifiers. We set two

thresholds for detection scores di(x), where λpos < λneg .

The two thresholds are defined as:

λpos = σd̄i(neg)

λneg = σd̄i(pos), (6)

where d̄i(·) is the average detection score of part patches

over correctly or incorrectly classified images, σ is a free

parameter. The resultant threshold λpos is guaranteed to be

lower than λneg because successfully detected part patches

would always contribute to classification performance.

3.4. Refinetuning CNNs

We employ R-CNN part detectors trained using strong

supervisions and a two-threshold denoising process to gen-

erate discriminative part patches from the weakly super-

vised dataset. These part patches, in addition to the strongly

supervised training data, are used to generate better feature

representations by re-fine-tuning the part-CNNs. We use

the same CNN architecture as discussed in Section 2.2, and

once again randomly initialize the (K + 1)-way fc8 layer

with the filter weights of previous layers kept fixed. All re-

gion proposals that have ≥ 0.5 IoU over the detected part

bounding boxes are cropped, dilated, warped and then fed

into the CNN architecture as input. Re-fine-tuning the n+1
part-CNNs actually serves as an updating procedure of the

feature representation φ in (3).

3.5. Final classifier

Having updated the feature representations and detected

part locations on weakly supervised images, the model pa-

rameters w are jointly retrained on the strong and weak

datasets to obtain the final object classifiers. Inspired by

[16], we define a multi-instance learning (MIL) formula-

tion [31] that includes bags defined on both types of im-

ages. Specifically, for each image in the auxiliary set, the

top 10 locations of the root bounding box are detected, each

of which is regarded as an instance in MIL. The objective

function (3) is rewritten as:

L(w) = λΩ(w) +
1

NS

∑

I∈S

l(yI , w
T
yI
Φ(x))

+
1

NW

∑

I∈W

l(yI , max
x∈XI

wT
yI
Ψ(x)), (7)

where w = [w(0), ..., w(n)] denotes the joint model classi-

fier; Φ(x) = [φ(0)(x0), ..., φ
(n)(xn)] is the part-based R-

CNN feature representation for a strongly supervised im-

age; Ψ(x) = [q
(0)
I φ(0)(x0), ..., q

(n)
I φ(n)(xn)] is the feature

representation for a weakly supervised image, in which a

part filter p is set to a zero vector if the indicator q(p) is zero.
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The objective can be solved by standard MIL methods with

slight modifications (see Supplementary).

Although the whole process can be undergo several

rounds of iteration, in practice a single round of feature rep-

resentation and object classifier updating already produces

promising results. Due to the ensuing time complexity, fur-

ther iterations of the whole pipeline are not performed.

At the testing stage, for a new test image, we apply the

whole object and part detectors with the box geometric con-

straint to localize object parts; the features of all parts are

then concatenated into the final feature vector for predic-

tion. No additional annotations are required during testing.

4. Experiments

We present experimental results and analysis of the pro-

posed method in this section. Specifically, we will describe

the acquirement of weakly supervised web images, the ef-

fectiveness of R-CNN detectors, discuss factors on classifi-

cation results, and visualize learned part-CNNs.

4.1. Dataset and implementation details

Experiments were conducted on two widely used fine-

grained classification benchmarks: the Caltech-UCSD

Birds dataset [29] (CUB200-2011) and the Oxford-IIIT Pet

Dataset [24] (PET). The CUB200-2011 dataset contains

11,788 images of 200 types of bird, in which 30 images

per category are used for training. The dataset is strongly

supervised, i.e., images are associated with detailed annota-

tions including image-level labels, object bounding boxes,

and part landmarks. Following the protocol of [34, 33],

we exploited the location annotation of two semantic parts,

head and body, along with whole object bounding boxes

to conduct part-based models. The PET dataset contains

37 cat and dog breeds, with roughly 200 images per cate-

gory. Ground truth object and head bounding boxes were

exploited as strong supervisions. We followed the provided

train/test split in both datasets.

An auxiliary weakly supervised dataset was collected to

augment the strongly supervised data. Images were ob-

tained from Flickr1 by conducting image searches using the

names of the 200 bird species or 37 pet breeds as queries.

For each category, the top 100 images for CUB and 200

images for PET were downloaded sorted by upload time to

ensure no overlap between the crawled images and test im-

ages in the datasets. No further manual filtering process

was conducted on the auxiliary dataset. These downloaded

images only had image-level labels, which were not always

correct due to the ambiguity of query words and label noise.

We used the open-source package Caffe [17] to extract

deep features and fine-tune part-CNNs from the Caffe ref-

erence model, implementing [19]. We used the fc7 layer

1www.flickr.com

in the CNN architecture to train R-CNN detectors and in

image representation for classification.

4.2. Detection results and analysis of discovered
part patches

One of the key assumptions of our method is that the

use of detectors learned from strongly supervised data can

effectively detect and locate object part patches in the aux-

iliary weakly supervised images. Therefore, analysis com-

menced by evaluating detection results and studying the dis-

covered part patches.

The quantitative detection results were measured in

terms of the “Percentage of Correctly localized Parts”

(PCP) metric on the test set. A part patch was marked as

correctly localized if the predicted bounding box had ≥ 0.5
overlap with the ground-truth bounding box.

BBox Head Body

Strong DPM [2] - 37.44% 47.08%

Part R-CNN [33] - 61.94% 70.16%

Ours 92.84% 70.89% 75.79%

Table 1. Part localization accuracy in terms of PCP on the

CUB200-2011 dataset.

The learned R-CNN detectors produced reasonable re-

sults, achieving greater than 70% PCP for all parts (Table

1). The improvement over part-based R-CNN [33] is due to

the additional negative mining process and from assigning

the background as the (K + 1)-th category for fine-tuning

part-CNNs (as specified in [15]).

The high-performing part detectors ensure that a large

number of part patches can be discovered on the auxiliary

dataset. However, since the parameter-rich CNN architec-

tures can easily overfit the training data, it is critical to find

a balance between adding more training data and ensuring

clean labels. Hence, we used the noise removal approach

discussed in Section 3.3, with σ = 0.5 working well in

practice. The process generated 15,840, 15,397, and 15,751

patches for the whole object, part “head”, and part “body”,

respectively for the CUB dataset. These part patches were

then used to re-fine-tune part-CNNs. Example detected

patches from the auxiliary dataset are shown in Figure 4.

4.3. Classification results

Since our method involves multiple steps to boost classi-

fication performance, we first analyze the effect of each step

by detailed comparison with the baselines shown in Table 2.

Feature Perspective. The first set of comparisons re-

veal that improved feature representations by fine-tuning

CNNs on domain-specific data significantly contribute to

classification accuracy. Directly exploiting an ImageNet

pre-trained CNN as the feature extractor achieved an ac-

curacy of 68%. Fine-tuning part-CNNs on the bird training

2529
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Figure 4. Examples of detected part patches from weakly super-

vised images selected to augment the CUB200-2011 training set.

From top to bottom: whole object, head, body. The leftmost five

columns show top-scoring detections, while the right two columns

show patches with the lowest detection scores.

Part Localization Predict BBox Oracle

CNN\SVM Train Train+Weak Train

w/o ft 68.58% 71.19% 74.14%

ft on train 78.56% 79.89% 82.12%

ft on train/weak 81.17% 82.16% 85.07%

ft on train/weak-dn 83.24% 84.59% 86.57%

Table 2. Baseline comparisons. Rows indicate different methods

for fine-tuning part-CNNs; columns show results of training fine-

grained object classifiers on the augmented dataset or only on the

strongly supervised data. ft stands for fine-tuning; dn for denois-

ing. Oracle method uses ground-truth part annotations at testing

time; thus casts as an upperbound of the classification results.

set improved this result by a large margin to 79%. Further-

more, by augmenting the part patches by performing part

discovery on the weak dataset and re-fine-tuning CNNs, a

further improvement to 81% classification accuracy was ob-

tained. These results show that the larger amount of train-

ing data does indeed improve the discriminative power of

the learned CNN representation. Denoising of on the weak

dataset further improved the accuracy by 2%.

Model Perspective. It is argued that even without using

CNN features, employing additional training data can boost

classification results by increasing data diversity in training

examples. We studied this factor by re-training part-based

R-CNN classifiers on the augmented dataset and comparing

the results to those trained on strongly supervised training

data only. Results showed that when the feature represen-

tations were fixed (as in traditional features such as SIFT),

the performance improvement was trivial (∼ 1%) compared

to re-fine-tuning CNN features. This reveals an interesting

phenomenon that feature representation plays a greater role

in fine-grained object recognition than model training. The

proposed method of training classifiers on the re-fine-tuned

part-CNN features finally delivers 84.6% accuracy.

Localization Accuracy. The accuracy of part localiza-

tion also has a large impact on the final classification results.

Although R-CNN detectors obtain reasonable detection ac-

curacy for object parts, an average 3% gap still remains be-

tween classification results using predicted bounding boxes

and the oracle method, which casts as an upper bound of

classification performance by employing ground-truth part

annotations during both training and testing. It is worth not-

ing that our final classification result of 84.6% after intro-

ducing weakly supervised samples exceeds even the upper

bound accuracy of 82.1% when using strongly supervised

training data alone.

Method
Train Train Test

Acc(%)
BBox Part BBox

DPD [34] X X 51.0

DeCAF6 [11] X X 58.8

Symbiotic [8] X X 61.0

CNNaug [25] X X 61.8

Alignment [14] X X 67.0

POOF [4] X X X 56.8

Part R-CNN [33] X X 73.9

PoseNorm CNN [7] X X 75.7

Our method X X 84.6

Table 3. Accuracy comparison on the CUB200-2011 dataset.

Method Accuracy(%)

Angelova et al. [1] 54.3

Murray et al. [23] 56.8

Azizpour et al. [3] 88.1

Our Method (Strong only) 86.1

Our Method (Strong+Weak) 88.2

Table 4. Accuracy comparison on the Oxford-IIIT Pet Dataset.

The comparison of accuracies between the proposed

method and state-of-the-art methods on CUB200-2011 is

shown in Table 3. Unlike most of the literature on this

dataset, we consider it more realistic that the birds’ bound-

ing boxes are unknown during testing. In this challenging

setting, we achieved an accuracy of 84.6%, which repre-

sents a remarkable improvement over existing state-of-the-

art methods. Table 4 shows comparison results on the PET

dataset. Again the proposed method obtains promising re-

sults, being comparable to [3] who used deeper network ar-

chitectures. Although our method requires additional train-

ing data by collecting weakly supervised images from the

web, this data acquisition process is easy to implement and

requires no additional human labeling effort. Meanwhile,

with additional training samples, our method is likely to

achieve better performance with more complicated CNN ar-

chitectures such as the VGGNet [27].

4.4. Visualization

Beyond the quantitative results presented above, here

we present a more intuitive description of how our method
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Figure 5. Visualization of the classification process using the proposed method with a root and two parts: head and body. (a) Test image

with a ground-truth label of 80. (b) Activation map for the three detectors. (c) Located part bounding boxes. The top 9 nearest neighbours

for the detected parts from the training images are shown in (d)-(f). The original part-based R-CNN method using training data only

misclassified the test image into class 81, as shown in (d). Green boxes demonstrate the image patches of label 80, and red boxes for label

81. After re-fine-tuning part-CNNs with the augmented training set, the new feature representations guaranteed that the test image was

correctly classified. (e) Nearest neighbours from the strongly supervised training set only using the new feature representations. (f) Results

after putting weakly supervised images into the training set either. Yellow boxes indicate images in the weakly supervised dataset with

label 80. (g) and (h) show typical training images from class 80 (Green Kingfisher) and 81 (Pied Kingfisher) respectively.

works on practical examples. The procedure of classi-

fying a fine-grained image using the proposed method is

shown in Figure 5. Given a test image (a) belonging to

Green Kingfisher, R-CNN detectors were used to localize

the object and its semantic parts, detailed in (b) and (c).

As shown in (d), the original part-based R-CNN method

misclassified the image into a very similar subcategory

Pied Kingfisher. Closer inspections reveal that the bird in

the test image indeed belongs to a rare occurring subclass

in the category in which black and white spots decorate the

chest. Unfortunately, the strongly supervised dataset does

not include sufficient training data for this subclass.

We solved this problem by introducing an auxiliary

dataset of weakly supervised images collected from the web

to augment the training data. As shown in (e), the new fea-

ture representations obtained by re-fine-tuning part-CNNs

on the augmented training set improved the discriminative

power in this case, especially for the bird’s head, even when

only images in the strongly supervised dataset were em-

ployed to train the object classifiers. Naturally, inserting

weakly supervised images into the training set also con-

tributed to the classification process. Nearest neighbors

shown in (f) indicated that in the auxiliary dataset, there

were a larger number of images similar to the test image,

making the classification result more convincing.

5. Conclusion

In this paper, we present a new fine-grained recognition

method that trains robust CNN feature extractors with ef-

fective part-based models by employing the availablity of

vast numbers of online images to augment manually-labeled

strongly supervised datasets. Our method acts as a bridge

between the requirement for extensive data to train deep

representations and the difficulty in obtaining large-scale

strongly annotated datasets. Experiments on two bench-

mark datasets show that introducing additional weakly su-

pervised images leads to an impressive improvement over

baseline methods and achieves state-of-the-art results. We

believe the proposed method is likely to be useful in prac-

tice, especially considering that the forms of part annota-

tions are varied and CNN architectures are becoming more

complicated over time.
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