
Task-Driven Feature Pooling for Image Classification

Guo-Sen Xie†, Xu-Yao Zhang†, Xiangbo Shu§, Shuicheng Yan‡, and Cheng-Lin Liu†,⋆

†NLPR, Institute of Automation, Chinese Academy of Sciences, China
⋆CAS Center for Excellence in Brain Science and Intelligence Technology, CAS, China

‡National University of Singapore, Singapore
§Nanjing University of Science and Technology, China

{guosen.xie, xyz, liucl}@nlpr.ia.ac.cn

Abstract

Feature pooling is an important strategy to achieve high

performance in image classification. However, most pool-

ing methods are unsupervised and heuristic. In this paper,

we propose a novel task-driven pooling (TDP) model to di-

rectly learn the pooled representation from data in a dis-

criminative manner. Different from the traditional meth-

ods (e.g., average and max pooling), TDP is an implicit

pooling method which elegantly integrates the learning of

representations into the given classification task. The opti-

mization of TDP can equalize the similarities between the

descriptors and the learned representation, and maximize

the classification accuracy. TDP can be combined with the

traditional BoW models (coding vectors) or the recent state-

of-the-art CNN models (feature maps) to achieve a much

better pooled representation. Furthermore, a self-training

mechanism is used to generate the TDP representation for

a new test image. A multi-task extension of TDP is also pro-

posed to further improve the performance. Experiments on

three databases (Flower-17, Indoor-67 and Caltech-101)

well validate the effectiveness of our models.

1. Introduction

Recent years have witnessed the rapid progress of visu-

al recognition research, and more and more useful tech-

niques have been developed, e.g., the traditional Bag of

Words (BoW) model [5] and the recent benchmarking Con-

volutional Neural Network (CNN) model [18]. Both BoW

and CNN models are considered as the milestones in the re-

search community of object recognition. The BoW model

consists of four steps, i.e., local feature (e.g., SIFT [23] and

HOG [6]) extraction, feature coding [35], [32], coding vec-

tor pooling, and classifier training. The beginning of CNN

is actually the same as the BoW model, but it differs from

the latter in the following two aspects: (1) CNN is a fully

90°
60°

30°

0°

330°

300°
270°

240°

210°

180°

150°

120°

90°
60°

30°

0°

330°

300°
270°

240°

210°

180°

150°

120°
90°

60°

30°

0°

330°

300°
270°

240°

210°

180°

150°

120°

(c) Max pooling

(b) Average pooling

(d) TDP pooling

(a) Data samples

Figure 1. (a) Two confusing classes (Llama and Leopards). The

tensors below the images are their corresponding representations,

i.e., coding vectors from BoW or feature maps from CNN. The red

and blue dashed arrows in (b) Average pooling, (c) Max pooling,

and (d) the proposed TDP, are the pooled representations for Lla-

ma and Leopards respectively. It can be seen that TDP can well

distinguish the two confused classes, while max and average pool-

ings are difficult to separate the two classes. Best viewed in color.

supervised model in which all the parameters are trained in

a discriminative manner; (2) CNN is a reduplicative convo-

lution and pooling process until the last layer. The common

part of BoW and CNN is that they both adopt the pooling

operation in their architecture to increase the invariance of

the representation.

Pooling is an important step in the BoW model, which

can aggregate the input coding vectors into one vector and

can also preserve spatial information when combined with

the Spatial Pyramid Matching (SPM) [19] method. In the

current CNN architecture, pooling also plays an important

role. Max pooling is an essential step in original LeNet [20],

current AlexNet [18], and Very Deep Nets (e.g., Vd16,

1179



���������� ���
��������	
��������

�����������	
�����������	

���
�����������
�

���	�
���������������������������������� �������
�����������
��
����
Figure 2. The pipline for image classification which incorporates our multiple task-driven pooling. Here procedure in red dashed box is

our models, and the inputs for TDP (mTDP) learning are CNN feature maps of different scales. Best viewed in color.

Vd19, and GoogleNet) [30], [31]. Pooling operation in CN-

N can be seen as a kind of down-sampling, which can avoid

the rotation variance to some extent.

The traditional pooling strategies include average pool-

ing, max pooling [35], and generalized max pooling [24].

Average pooling simply takes the mean of the feature vec-

tors over the whole (sub-region) of the images, making the

pooled representations of the input images very similar to

each other. Max pooling is obtained by taking maximum

values from each dimension of feature vectors [35], while

the max-pooled representation still has no supervision of

image labels when it is being pooled. Recently, generalized

max pooling [24] has been proposed to equalize the similar-

ities between the feature vectors and the pooled representa-

tion yet it is still an unsupervised pooling method. Then,

how to construct a discriminative pooling representation is

an interesting topic.

Motivated by multi-task learning [4] and discriminative

pooling learning [10], we take different feature extractors

as different tasks. The purpose is to fuse the information

under a unified framework to get a pooled representation.

In this paper, we propose a new pooling strategy, termed

as Task-Driven Pooling (TDP), which integrates represen-

tation learning and classifier training in a joint manner. The

pooled representation is learned by equalizing the similari-

ties between different descriptors and the pooled represen-

tation, and it can be seen as the bridge connecting the classi-

fier and the pooling representation learning. Furthermore, a

least square regression (LSR) classifier is trained jointly in

the pooling process to transfer the supervised information

into the representation learning process. The inputs of the

TDP algorithm can be any features (e.g., different coding

vectors of BoW and feature maps in CNN). After the opti-

mization of TDP, we can get the pooled representations of

all the training images. In the testing process, to generate T-

DP representation for a new image, we adopt a self-training

strategy to efficiently solve the optimization problem. The

differences between our proposed TDP model and tradition-

al average and max pooling methods are shown in Figure 1.

To further improve the performance, a multi-task extension

of TDP (denoted as mTDP) is also proposed.

2. Related Work

In this section, we review the related works on image

categorization and especially the pooling strategies utilized

in recent pipelines. From the BoW model [5] to the CNN

model [18], there have been tremendous developments in

the field of image categorization, which also boost the ad-

vances in other relevant areas, such as object detection [14].

Bag of Words Model. The BoW model is a standard and

the best pipeline before the successful application of CNN

on large scale image categorization problems [18]. Let I
be an input image. The BoW model consists of four steps:

(1) local feature extraction on I , to obtain the local descrip-

tor tensor A ∈ R
d×l×w, where d is the descriptor dimen-

sion, e.g., d = 128 for SIFT [23] descriptor, and l, w are

the length and the width of the tensor; (2) local feature cod-

ing, resulting in the coding vector tensor V ∈ R
K×l×w,

where K is the coding vector dimension; (3) pooling of the

coding vector tensor V , leading to a pooled representation

v ∈ R
K×1, with the dimension the same as the original

coding vector; and finally (4) classifier training (e.g., linear

SVM classifier) on v. Before the pooling step, we can al-

so incorporate SPM [19] to capture the spatial information

for better performance. The popular coding methods in-

clude hard coding [5], soft coding [22], sparse coding [35],

locality-constrained linear coding [32], etc. Other method-

s include Fisher vector coding [26] and super vector cod-

ing [40], which are based on calculating the first and the

second order differences between descriptors and their clus-

tering centers.

Convolutional Neural Network Model. Since the CN-

N model gained the champion in the large-scale competition

of ImageNet classification [18] in 2012 (ILSVRC-12), it is

becoming the dominant model in visual recognition. The

main components of CNN are multiple convolution, pool-

ing and different activating functions. Actually, the first

convolutional and pooling layer can be seen as the BoW

model (by viewing filters of CNN as the dictionary elements

in BoW, and the convolution between filters and input im-

age as feature coding in BoW). This motivated many re-

searchers to construct deep BoW models to explore the gap

between BoW and CNN [1]. As we know, CNN is a fully

1180



supervised model while BoW is a step-by-step model and

most steps are unsupervised. This is the main difference

between BoW and CNN. Recently, the very deep model-

s (Vd16, Vd19 and GoogleNet [30], [31]) have achieved

the best performance in the image categorization task. Con-

sidering the large number of different CNN models, we can

integrate different feature informations contained in CNNs

to achieve better performance. The most useful feature ex-

tractors of the CNN are the feature maps in the middle lay-

ers and the fully connected representations in the last sev-

eral layers [37]. Here, we denote the CNN feature maps as

V ∈ R
K×h×h, where K is the feature map number, and h

is the size of all these maps. These maps cannot be direct-

ly used for classification, and we need some operation on

them to get the final representation, which is beneficial for

classification. Such operation can be the pooling similar as

that on the coding vectors in the BoW model. Here in this

paper, we aim to process different scaled feature maps of

one CNN in a unified framework.

Recent Pooling Methods. Pooling is to aggregate ten-

sor V ∈ R
K×l×w (e.g., feature maps from CNN) into one

representation v ∈ R
K , which can be fed into the clas-

sifier for training. Pooling has been used in many visu-

al recognition systems, e.g., average pooling used in the

biologically-inspired visual systems [13], and max pool-

ing [29] used in the CNN [18]. An obvious drawback of

average pooling is that the total l × w coding vectors from

the tensor V ∈ R
K×l×w are simply averaged on each di-

mension without any consideration of the importance of d-

ifferent coding vectors [3]. While for max pooling, it is

the maximum response from each dimension of V , with-

out any supervision on whether the max-pooled representa-

tion is beneficial for afterward classification or not. Weight-

ed max pooling [10] has been proposed by giving larger

weights to more important coding vectors corresponding to

foreground image regions. On the other hand, close coding

vectors from V should be pooled together [2], wherein the

notion of closeness is in both the geometric and descriptor

domains. Feng et al. [12] proposed geometric lp-norm pool-

ing (GLP), which is aimed at learning K (V ∈ R
K×l×w)

weighted vectors for all the codewords by taking the class

separability as the objective function, thus GLP is very time

consuming. Recently, generalized max pooling (GMP) [24]

was proposed for coding vector pooling, wherein the pooled

representation of the whole image or the sub-region of the

image is optimized by equalizing the similarity between

each coding vector and the pooled representation. GMP is

generic and can be applied to all aggregation-based cod-

ing vector pooling problems through optimization. Howev-

er, GMP is still an unsupervised method for feature pool-

ing. Our TDP (mTDP) in this paper is formulated as the

joint (multiple) classifier training and pooling representa-

tion generation. Figure 2 illustrates the whole pipline for

image classification.

3. Task-Driven Pooling

To integrate different feature descriptors in a joint and

discriminative manner, we propose the task-driven pooling

(TDP), by combining the representation learning and clas-

sifier training in a unified framework. Let V ∈ R
K×N be

the input data, where N = l×w, e.g., K = 512, N = 8×8
for some CNN feature maps.

3.1. Single Taskdriven Pooling

Given m training images, the corresponding input is

{(Vi, yi)}
m
i=1, where Vi ∈ R

K×N , i = 1, 2, · · · ,m and

yi ∈ {1, 2, · · · , C} with C being the number of classes. We

use least square regression (LSR) for the multiclass classi-

fication purpose. Let F = [fy1 , fy1 , · · · , fym
]T ∈ R

m×C

be the label matrix of all the training images, where fj =
[0, · · · , 0, 1, 0, · · · , 0]T ∈ R

C is an all-zero vector except

the j-th element which is one.

Our goal is to learn the pooled representation from the

input V ∈ R
K×N (which can be the coding vectors of BoW

or feature maps of CNN). We use {ϕi ∈ R
K×1}mi=1 to rep-

resent the learned representations for all the training images.

Let Φ = [ϕ1, ϕ2, · · · , ϕm]T ∈ R
m×K be the matrix format

of all the TDP representations. Furthermore, let the clas-

sifier parameters of LSR be W ∈ R
K×C and b ∈ R

C×1.

Therefore, the task-driven pooling (TDP) problem can be

formulated as the following optimization problem:

min
W,Φ,b

‖ΦW + 1mbT − F‖2F + µ‖W‖2F

+ λΣm
i=1(‖V

T
i ϕi − 1N‖22 + γ‖ϕi‖

2
2),

(1)

where 1m ∈ R
m×1 and 1N ∈ R

N×1 are the vectors with

all the elements being ones, and λ, γ and µ are the hyper-

parameters of our model.

The first term of this model is a linear classification mod-

el with the learned pooled representation ϕi as the input,

where the regularization terms (last two terms of the mod-

el) are to guarantee the pooled representation ϕi to be close

to each column of the original coding vector Vi. Similar

as [24], by using this regularization, the learned representa-

tion can equalize the similarities between ϕi and different

columns of Vi by forcing their inner product to be exact-

ly one. In this way, we can utilize more information in Vi

to get a task-driven pooled representation ϕi which is more

suitable for the classification task. Note that TDP is an im-

plicit pooling method where we do not define the explic-

it pooling function. Furthermore, each image has its own

pooling process according to the specific classification task.

This strategy should be much more flexible and accurate

than the pre-defined pooling strategy such as max and aver-

age poolings.

1181



The formulation in (1) is convex w.r.t. W,Φ, b sep-

arately, thus the alternating optimization can be used to

solve (W, b) and Φ, i.e., optimizing one while the other is

fixed. Note that closed-form solutions can be obtained for

both the two subproblems, which makes the optimization

process much easy and stable. The detailed procedures are

as following:

Pooling Representation Learning. Here we fix (W, b),
and solve Φ. The model (1) can be changed into:

min
Φ

g(Φ) =‖ΦW + 1mbT − F‖2F

+ λΣm
i=1(‖V

T
i ϕi − 1N‖22 + γ‖ϕi‖

2
2).

(2)

g(Φ) in (1) can be further equalized as:

g(Φ) =Σm
i=1{‖W

Tϕi + b− FT
i,·‖

2
F

+ λ(‖V T
i ϕi − 1N‖22 + γ‖ϕi‖

2
2)},

(3)

where Fi,· ∈ R
1×C is the i-th row of the label matrix F .

Let the derivatives of g(Φ) w.r.t. ϕi be zero, and

we can get the following closed-form solution of ϕi, i =
1, 2, · · · ,m.

ϕi = [WWT +λViV
T
i +λγIK ]−1[W (FT

i,·− b)+λVi1N ],
(4)

where IK ∈ R
K×K is the identity matrix.

LSR Learning. By fixing the learned Φ in the last step,

we solve (W, b) in this part. The optimization in (1) is

changed into the classical LSR problem:

min
W,b

q(W, b) = ‖ΦW + 1bT − F‖2F + µ‖W‖2F . (5)

The LSR problem in (5) has closed-form solution [33]

w.r.t. (W, b). The optimal solution of (5) can be calculated

as

W = (ΦTHΦ+ µIK)−1ΦTHF, (6)

b =
(F − ΦW )T 1m

m
, (7)

where H = Im − 1m1Tm/m.

After repeating the above two sub optimization problems

for multiple times, we can get the solution of the original

TDP problem. In this way, both the pooled representations

for all the training images and the classifier parameters can

be obtained simultaneously.

3.2. Selftraining for Testing Image

After optimization of (1), the pooled TDP representa-

tions Φ = [ϕ1, ϕ2, · · · , ϕm] for all the m training samples

are learned at the same time. However, in the testing pro-

cess, all the samples are unlabeled, we cannot directly learn

their pooled representations from (1), and thus we use a self-

training mechanism to learn the predictions and representa-

tions simultaneously.

Given n−m testing samples denoted as {(Vi, yi)}
n
i=m+1,

where Vi ∈ R
K×N , i = m + 1,m + 2, · · · , n and

{yi}
n
i=m+1 are the labels which need to be predict-

ed, we first calculate the initial representations {ϕi ∈
R

K×1}ni=m+1 of Vi, i = m + 1,m + 2, · · · , n based on

the following formulation [24]

min
ϕ

‖V T
i ϕ− 1N‖2 + γ‖ϕ‖2. (8)

Solving (8) for i = m+ 1,m+ 2, · · · , n leads to

ϕi = (ViV
T
i + γIK)−1Vi1N , (9)

where γ is the same as the corresponding parameter of (1)

during the training phase. Then the predicted label of Vi can

be calculated from both ϕi (Eqn. (9)) and the learned LSR

parameter (W, b) as follows

F̂i,· = ϕT
i W + bT . (10)

Since F̂i,· is a soft prediction, we lead to quantize it into

an 0-1 vector for the purpose of LSR learning in (1). Let

li = argmaxCj=1 F̂i,j , i = m + 1, · · · , n. We can further

define the 0-1 vector w.r.t. Vi as follows

F̆i,· = [0 0 · · · 0
︸ ︷︷ ︸

li−1

1 0 · · · 0
︸ ︷︷ ︸

C−li

] ∈ R
1×C , (11)

where the element “1” is located on the li-th position.

To generate discriminative representations of testing im-

ages, we take F̂i,·, i = m+1, · · · , n as the initializing label-

s. With fixed LSR parameter (W, b) and model parameters

γ, µ1, we alternately update F̂i,· and ϕi (i = m+1, · · · , n)

based on Eqn. (4) and (10). Note that for the purpose of

LSR training, in updating of Eqn. (4), Fi,· is replaced by

F̆i,· in Eqn (11). In this way, the hyper-parameters for gen-

erating final pooling representations of testing images are

the number of iterations (fixed as 10) and λ when updating

Eqn. (4) and (10).

After updating Eqn. (4), (10) and (11) repeatedly, we

take the obtained {ϕi}
n
i=m+1 as our final pooled represen-

tations for testing images. With the learned pooled repre-

sentations, we can feed them into the classifier for after-

ward classification. This is a self-training process, where

we first deduce an unreliable prediction, then use it to learn

the pooled representation, and after that the previous pre-

diction is refined by the classifier with the new pooled rep-

resentation as the input. This process is repeated to boost

the accuracy gradually. Self-training has been widely used

in semi-supervised learning, and here we use it to generate

the TDP representation for a new testing image efficiently

and effectively.

1 γ, µ are the same as the ones used in (1).

1182



3.3. Multiple Task Extension of TDP

To further improve the performance, we also propose a

multiple task extension of the TDP model (mTDP). We first

define the definitions and notations related to mTDP, and

then describe the detailed algorithm of mTDP (Algorith-

m 1).

Suppose T feature descriptors (tasks) exist for both the

m and n−m training and testing images, which are denoted

as {V
(t)
i , yi}

n
i=1, t = 1, 2, · · · , T , where V

(t)
i ∈ R

Kt×Nt ,

yi ∈ {1, 2, · · · , C}, with C being the number of classes.

{yi}
n
i=m+1 denotes the labels of testing images which need

to be predicted. The Kt, Nt are the dimension and the vec-

tor number of the input samples for the t-th tasks. We only

consider the case of K1 = K2 = · · · = KT = K in this pa-

per2. For T tasks of m training images, F ∈ R
m×C is their

label matrix, the same as the single TDP. Similarly, denote

{ϕ
(t)
i ∈ R

K×1}ni=1 as the TDP representations of n images

for the task t. Let Φ(t) ∈ R
m×K and Φ̂(t) ∈ R

(n−m)×K

be the matrix format of TDP representation of the task t
for training and testing images respectively. Finally, let the

parameters of LSR for the task t be W (t) ∈ R
K×C and

b(t) ∈ R
C×1. Now the mTDP can be formulated as

min
{W (t),Φ(t),b(t)}T

t=1

T∑

t=1

Ψ(W (t),Φ(t), b(t)) + βΩ(W), (12)

where Ψ(W (t),Φ(t), b(t)) is the single TDP formulation for

the task t, and is defined as

Ψ =‖Φ(t)W (t) + 1mb(t)
T

− F‖2F + µ‖W (t)‖2F

+ λΣm
i=1(‖V

(t)T
i ϕ

(t)
i − 1Nt

‖22 + γ‖ϕ
(t)
i ‖22).

(13)

Moreover, W = [W (1),W (2), · · · ,W (T )] ∈ R
K×TC is the

multi-task concatenated matrix, and Ω(W) can reflect the

shared information while learning all the task parameters,

which is defined as follows [4]

Ω(W) = tr((WT W)
1
2 ). (14)

The whole optimizing procedure of mTDP is listed in Al-

gorithm 1. After learning {W (t),Φ(t), b(t)}Tt=1 for train-

ing samples, we conduct pooling representation learning of

testing samples for each task, which is the same as in Sec-

tion 3.2.

4. Experiments

We conduct experiments on three databases (fine-

grained, scene and object recognition databases), i.e.,

Flower-17 [25], Indoor-67 [27] and Caltech-101 [11]. We

first describe the databases and experimental settings, and

then report the results.

2When K1 6= K2 6= · · · 6= KT , we can turn them into equalities by

dimension reduction methods.

Algorithm 1 Multiple Task-Driven Pooling

Input: Training data: {V
(t)
i
}mi=1, t = 1, 2, · · · , T , labels: F , and

λ, γ, µ for T tasks, β, IterNum.

Output: LSR parameters {W (t), b(t)}Tt=1 and the pooling repre-

sentations {Φ(t)}Tt=1.

Initialization: {Φ(t),W (t), b(t)}Tt=1, based on TDP (See (1)),

and reserve corresponding model parameters (λ, γ, µ),s = 1.

H = Im −
1
m

1m1T

m.

1: while s ≤ IterNum do

2: W = [W (1),W (2), · · · ,W (T )].
3: for t = 1→ T do

4: Optimize Φ(t) of Eqn. (13) with fixed (W (t), b(t)).
5: for i = 1→ m do

6: ϕ
(t)
i

= [W (t)W (t)T + λV
(t)
i

V
(t)T

i
+

λγIK ]−1[W (t)(FT
i,· − b(t)) + λV

(t)
i

1Nt
].

7: end for

8: Φ(t) = [ϕ
(t)
1 , ϕ

(t)
2 , · · · , ϕ

(t)
m ]T .

9: Optimize (W (t), b(t)) of Eqn. (12) with fixed Φ(t).

10: W (t) = (Φ(t)T HΦ(t) + µIK + β

2 (WWT )−
1
2 )−1Φ(t)T HF .

11: b(t) =
(F − Φ(t)W (t))T 1m

m
.

12: end for

13: s← s+ 1
14: end while

4.1. Datasets and Settings

We use the standard training-test partitions. Specifically,

for Flower-17, we adopt the existing three splits of training-

test sets, 40 images per class for training and 20 images per

class for testing. For the Indoor-67 database, we use the

partition of training-test the same as [27]: about 80 images

per class for training and 20 images per class for testing. For

Caltech-101 we randomly generate three partitions for train-

ing and test sets, so that each partition contains 30 training

images per class, and up to 50 test images per class [16], [1].

Performance on the three datasets is evaluated by the aver-

age class accuracy.

Flower-17 Database. The Flower-17 database [25] is a

fine-grained dataset, which contains 17 categories with 80

images per class. The scale, pose, and lighting variations

are very large in this dataset. The inter-class difference is

very little, but the intra-class similarity is very large.

MIT Indoor-67 Database. The Indoor-67 database [27]

is a popular indoor scene database, including 15,620 images

of 67 indoor scenes. It is very difficult to distinguish differ-

ent classes, because the categories are all indoor scenes, and

inter-class variance between different classes is very little.

Caltech-101 Database. The Caltech-101 database [11]

is an image classification database, which contains totally

9,144 images of 102 categories (101 object categories and

one background category), with 31 to 800 images per class.

It is a database which has been used for testing many algo-

rithms in recent years, including both the BoW models and

CNN models.

1183



The Definitions of Multiple Tasks. We take feature

maps of different scales from the same CNN as different

tasks, which are used as inputs of our models. The feature

maps from the last convolutional layer of the Very Deep

19 Net (Vd19) [30] are used. Specifically, for Flower-17

and Indoor-67, feature maps of two scales (seen as two

tasks) are generated by forward propagating the input im-

ages of size 224 × 224 and 384 × 384, thus the generated

two kinds of input tasks for the i-th image are {V
(1)
i , V

(2)
i }

where V
(1)
i ∈ R

512×196 and V
(2)
i ∈ R

512×576. Similar-

ly, for Caltech-101, feature maps of three scales (seen as

three tasks) for the i-th image are {V
(1)
i , V

(2)
i , V

(3)
i } and

V
(1)
i ∈ R

512×256, V
(2)
i ∈ R

512×576, and V
(3)
i ∈ R

512×1024

respectively. Here the scales of input images in extracting

the three input tasks for Caltech-101 are 256 × 256, 384 ×
384, 512 × 512. Moreover, we use the caffe implementa-

tion [17] of Vd19 to extract the CNN feature maps, and the

fully connected layer activates, which can get enhanced per-

formance on both databases when combined with our TDP

or mTDP representations.

Note that besides the use of the 4096-dimensional vec-

tors (abbreviated as “fc”) from the penultimate fully con-

nected layer of Vd19 Net, to combine different network in-

formation, we also extract the penultimate fully connect-

ed layer representations (abbreviated as “fc-2”) of Vd16

Net [30], both of them are with relu [18]. In this paper, “fc”,

“fc-2” and the pooled representations of all the methods are

first L2-normalized and then fed into the linear SVM clas-

sifier [9] for classification.

Parameter Settings. During the training phase of our

TDP model, the parameter λ is set as 1 in all the cases. γ
is empirically selected from {5, 10, 15, 20}, and µ is from

{0.05, 0.1, 0.2, 1}. The number of iterations is fixed as 10.

As for the training of the mTDP model, we use the param-

eters which are the same as their corresponding single TDP

models, and β ∈ {0, 1, 2, 3, 4}. We will analyze the influ-

ence of β on the classification rates of the mTDP model in

Section 4.5. As for the parameter C for the linear SVM,

we fix it as 1 for Flower-17 and Indoor-67, and 1,000 for

Caltech-101 respectively.

4.2. Flower17 Experiments

In this part, we first show the two single task compar-

isons of our TDP model, denoted as sTDP, with other state-

of-the-art pooling methods (i.e., average, max and gmp

poolings) under the same protocols. Besides comparisons

of different pooling methods directly, we also compare the

performances when combined them with the penultimate

fully connected layer activates “fc”. Here the “fc” repre-

sentations under two single task settings are the same, by

forward propagating resized original images until the penul-

timate layer of Vd19 net. It can be concluded from Table 1

Method Single task1 Single task2 Multiple task1+task2

Ave 87.55±0.45 86.08±0.45 89.61±0.90

Max 87.65±0.29 89.61±0.90 91.08±0.85

Gmp 88.24±1.06 88.92±0.34 90.20±0.45

sTDP/mTDP 92.35±1.28 92.65±0.59 92.74±0.34

fc 92.35±0.88 92.35±0.88 92.35±0.88

Ave+fc 92.75±1.62 92.75±1.33 93.14±1.91

Max+fc 92.65±1.35 93.53±1.35 93.24±0.78

Gmp+fc 92.55±1.33 93.04±1.03 93.33±1.22

sTDP/mTDP+fc 93.73±1.03 93.92±1.03 94.12±1.28

Table 1. The classification rates of different pooling representa-

tions, and their combined representations with “fc”, under two s-

ingle task and the multiple task settings on Flower-17.

Method Acc (%)

Visual vocabulary [21] 71.76±1.76

BRD [34] 89.06±0.60

GRLF [36] 91.70±1.70

Vd19 (fc) 92.84±1.11

sTDP-task2+fc 93.92±1.03

mTDP+fc 94.12±1.28

mTDP+fc+fc-2 94.80±0.90

Table 2. Comparisons of the classification rates of our methods

with other state-of-the-art methods on Flower-17.

that our sTDP representations are not only much better than

other pooling methods, but also can boost the performance

of “fc” better than their counterparts. Note that the result

of sTDP under task-2 in Table 1 is 92.65% with dimen-

sion 512, which have already surpassed the performance of

“fc” (with dimension 4096).

To further evaluate the performance under the multiple

task setting of our model (mTDP), we also compare the

cascaded representations of Max, Ave, and Gmp with the

proposed mTDP representation, which are optimized by in-

corporating the shared information between different input-

s (tasks). See Table 1 for the detailed results, which again

reflect the fact that our mTDP outperforms all the other

methods.

Finally, comparisons with other methods are listed in Ta-

ble 2. It can be seen that competitive results have been

achieved with low dimensional pooled features, e.g., the re-

sult of 93.92% is obtained based on the linear SVM classi-

fier with the sample dimension being 4096 + 512.

4.3. Indoor67 Experiments

We report the experimental results on Indoor-17 in this

part. We first show comparisons of two single task cases

of our TDP (sTDP) with other methods (average, max and

gmp poolings). The performance comparisons of represen-

tations (sTDP, ave, max and gmp) combined with “fc” are

also considered. It can be seen from Table 3 that our sTDP

representation outperforms other methods in all the settings.

Moreover, we list the accuracies of the combination of dif-

ferent tasks in Table 3. It can be seen that our methods can

get better results than the counterparts, and can boost the

performance of “fc” greatly.

To compare with other state-of-the-art methods on this

database, we list the results in Table 4. Our performance

1184



Method Single task1 Single task2 Multiple task1+task2
Ave 63.67 63.21 67.62

Max 61.38 63.38 65.84

Gmp 64.48 64.09 66.62

sTDP/mTDP 67.38 68.07 69.65

fc 72.96 72.96 72.96

Ave+fc 73.54 73.57 74.10

Max+fc 73.11 74.13 73.64

Gmp+fc 73.32 73.08 73.57

sTDP/mTDP+fc 74.38 74.86 75.61

Table 3. The classification rates of different pooling representa-

tions, and their combined representations with “fc”, under two s-

ingle task and the multiple task settings on Indoor-67.

Method Acc (%)

Mode-seeking+IFV [7] 66.87

ISPR+IFV [21] 68.50

Order-less pooling [15] 68.90

CNN-aug+SVM [28] 69.00

Hybrid-net+fc [39] 70.08

Vd19 (fc) 72.96

mTDP+fc 75.61

Table 4. Comparisons of the classification rates of our methods

with other state-of-the-art methods on Indoor-67.

Method Single task1 Single task2 Single task3
Ave 83.69±0.61 81.16±0.95 77.69±0.41

Max 86.04±0.65 84.61±1.04 82.39±0.59

Gmp 85.83±0.43 85.15±0.45 80.61±0.46

sTDP 88.72±0.82 87.92±0.59 85.51±0.56

fc 91.90±0.37 91.90±0.37 91.90±0.37

Ave+fc 92.05±0.71 92.15 ±0.74 92.06±0.88

Max+fc 92.53±0.79 92.62±0.15 92.64±0.53

Gmp+fc 92.13±0.89 92.27±0.73 92.26±0.64

sTDP+fc 92.68±0.18 92.85±0.33 92.72±0.27

Table 5. The classification rates of different pooling representa-

tions, and their combined representations with “fc”, under three

single task settings on Caltech-101.

is much better than the traditional methods, such as mode

seeking [7], and is competitive with some CNN based meth-

ods, e.g., the order-less pooling [15].

4.4. Caltech101 Experiments

In this part, we conduct three single task comparisons of

our TDP model with other pooling methods under the same

protocols. From Table 5, it can be seen that our sTDP is

better than other methods consistently.

Three tasks (t1,t2 and t3) can have four combination-

s, i.e., t1+t2, t2+t3, t3+t1 and t1+t2+t3, for each pool-

ing method. We show the four combinations and their

combinations with “fc” in Figure 3 (from “1” to “8” it

is the representation of t1+t2, t2+t3, t3+t1, t1+t2+t3, · · · ,

“fc”+t1+t2+t3 respectively ). Our mTDP representations

can perform better than other counterpart ones, almost in all

the cases. It seems that in the case of object recognition the

combinations of our mTDP representations with the “fc”

layer are just a little better than their corresponding max

pooling relevant combinations (see “5”-“8” in Figure 3).

Possible reasons for this phenomenon may be that Caltech-

101 is an object-oriented database, thus max pooled repre-

sentation from the convolutional layer of CNN can obtain

������������
����������

� � 	 � 
 � � �������������	
����
����

�������������������������������������
��� �� !�� �"�#

Figure 3. The classification rates of different combinations of

multiple tasks and their combinations with “fc” on Caltech-101

database.

Method Acc (%)

ScSPM [35] 73.20±0.54

LLC-SPM [32] 73.44

Multipath Deep BoW [1] 82.50±0.50

Visualize CNN [38] 86.50±0.50

DeCAF-fc6 [8] 86.91±0.70

VGG-Vd16 [30] 91.80±1.00

VGG-Vd19 [30] 92.30±0.50

VGG-Vd16+Vd19 [30] 92.70±0.50

SPP-CNN [16] 93.42±0.50

mTDP+fc 93.02±0.24

mTDP+fc+fc-2 93.68±0.50

Table 6. Comparisons of the classification rates of our methods

with other state-of-the-art methods on Caltech-101.

more large activates w.r.t. the object in the image. Then the

representations are also complementary with the “fc” rep-

resentation. On contrary, for scene or flower images where

the layout is almost global, we have found that mTDP can

enhance “fc” most (see the experiments in Section 4.2-4.3).

So we can conclude that flower and scene recognition are

more suitable for our TDP representation than object recog-

nition problems.

Finally, comparisons with other state-of-the-art model-

s are listed in Table 6. Note that mTDP representation

combined with “fc” and “fc-2” can get the best result of

93.68% on this database so far, with lower dimension of

4096× 2 + 512× 3.

4.5. Parameter and Convergence Analysis

We take Indoor-67 as an example to analyze the param-

eters and convergence of sTDP and mTDP algorithms. In

all experiments, we only iterate 10 times of the algorithms.

The whole training/test times of sTDP for the three datasets

are less than 10 minutes (554/147s for Indoor-67, 442/457s

for Caltech-101, and 75/45s for Flower-17). We draw the

convergence curve both on two single task and the multi-

ple task settings. Our TDP algorithms are alternative opti-

mization methods, in each iteration of updating parameters,

there exist closed-form solutions of the parameters. From

the convergent curve in Figure 4, it can be concluded that

our algorithms can reach convergence within 10 iterations,

which reduces the time consumption dramatically. To un-

1185



Figure 4. The convergence curves w.r.t. the iterating of our algo-

rithm during training phase on Indoor-67.

Figure 5. “C” denotes the linear SVM parameters, x-axis means

the values of β and y-axis is the classification rate.

derstand the influence of our mTDP model (Algorithm 1)

w.r.t. parameter β when other parameters are fixed, we draw

the curve of mTDP accuracy w.r.t. β under different values

of C for training the linear SVM (Figure 5). From Fig-

ure 5, a conclusion can be drawn that the classification rate

is changing w.r.t. β, and the best result is obtained when

β = 1 when the linear SVM parameter C is taken as 1.

4.6. Visualization

Given the input V ∈ R
K×N for one image, and the

learned TDP (Gmp) representation of V is ϕ ∈ R
K×1.

Then ϕ can be written as the linear combination of all the

columns of V [24], i.e., ϕ = V α, where α can be seen as

the weights of weighted pooling. We calculate α as follows:

α = (V TV + I)−1V Tϕ. (15)

Visualization of α for some given images is illustrated in

Figure 6. It can be seen that (1) the weights of TDP can

address more discriminative regions (red regions) in scene

images, and (2) the weights of TDP can cover more object

parts in object images.

4.7. TDP under Finetuned CNN

In this part, we discuss the effectiveness of TDP under

fine-tuned CNN. Taking Indoor-67 as an example, we fine-

tune the VGG-Vd19 [30] under Caffe [17]. The initializa-

tion of the parameters is the same as the model trained on

ImageNet database except that the parameters of the last

layer are randomly initialized with Gaussian distribution.

The learning rates of all the lower layers are initialized as

0.0001, except that the last fully-connected layer is initial-

ized as 0.001. We iterate the fine-tuning about 120 epochs

����������	�����
�	������������������

�����������	��������	������������������ ������	���
� ! 
Figure 6. Visualization of weights α (Eqn. 15) on (a) Indoor-67

and (b) Caltech-101 database. Here the 2-th and 3-th column in

(a) and (b) are the visualizations of TDP, and Gmp respectively.

Method Single task1 Single task2 Multiple task1+task2
Ave 68.14 65.28 70.74

Max 67.44 67.33 71.56

Gmp 68.08 67.18 71.32

sTDP/mTDP 70.84 70.88 72.99

fc 74.39 74.39 74.39

Ave+fc 74.77 74.83 74.98

Max+fc 74.95 75.34 75.38

Gmp+fc 74.85 74.91 74.69

sTDP/mTDP+fc 75.65 76.19 76.31

Table 7. The classification rates of different pooling representa-

tions, and their combined representations with “fc”, under two s-

ingle tasks and the multiple task settings on Indoor-67. Here the

net is fine-tuned on Indoor-67.

and stop it. From Table 7, it can be concluded that all the

methods are improved compared with the ones without fine-

tuning, and TDP can still outperform other methods.

5. Conclusion and Future Work

In this paper, we proposed a new pooling strategy named

task-driven pooling (TDP) for image classification. The

pooled representations are implicitly learned by maximiz-

ing the accuracy of the given classification task and equaliz-

ing the similarities between the descriptors and the learned

representations. The optimization of TDP can be easily

solved by alternative optimization with closed-form solu-

tions for each substep. By considering the CNN feature

maps of different scales as the inputs to TDP, we can learn a

much better pooled representation for image classification.

Moreover, we also proposed a multi-task extension of TDP

to further improve the performance. Experiments on three

datasets validated the effectiveness of our models, and we

achieved the best performance on the Caltech-101 database.

Our future work will consider taking other features as the

inputs of TDP (mTDP).

Acknowledgment. This work was supported by the

National Basic Research Program of China (973 Program)

Grant 2012CB316302, the Strategic Priority Research Pro-

gram of the CAS (Grant XDA06040102) and National Nat-

ural Science Foundation of China (NSFC) Grant 61403380.

1186



References

[1] L. Bo, X. Ren, and D. Fox. Multipath sparse coding using

hierarchical matching pursuit. In CVPR, 2013. 2, 5, 7

[2] Y.-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun.

Ask the locals: multi-way local pooling for image recogni-

tion. In ICCV, 2011. 3

[3] Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analy-

sis of feature pooling in visual recognition. In ICML, 2010.

3

[4] R. Caruana. Multitask learning. Machine learning,

28(1):41–75, 1997. 2, 5

[5] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.

Visual categorization with bags of keypoints. In ECCV,

2004. 1, 2

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 1

[7] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual

element discovery as discriminative mode seeking. In NIPS,

2013. 7

[8] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolution-

al activation feature for generic visual recognition. arX-

iv:1310.1531, 2013. 7

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-

J. Lin. Liblinear: A library for large linear classification.

JMLR, 9:1871–1874, 2008. 6

[10] S. R. Fanello, N. Noceti, C. Ciliberto, G. Metta, and

F. Odone. Ask the image: supervised pooling to preserve

feature locality. In CVPR, 2014. 2, 3

[11] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training examples: An incremental

bayesian approach tested on 101 object categories. CVIU,

106(1):59–70, 2007. 5

[12] J. Feng, B. Ni, Q. Tian, and S. Yan. Geometric p-norm

feature pooling for image classification. In CVPR, 2011. 3

[13] K. Fukushima and S. Miyake. Neocognitron: A new algo-

rithm for pattern recognition tolerant of deformations and

shifts in position. Pattern recognition, 15(6):455–469, 1982.

3

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 2

[15] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In ECCV. 2014. 7

[16] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-

ing in deep convolutional networks for visual recognition.

arXiv:1406.4729, 2014. 5, 7

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv:1408.5093,

2014. 6, 8

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1, 2, 3, 6

[19] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, 2006. 1, 2

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 1

[21] D. Lin, C. Lu, R. Liao, and J. Jia. Learning important spatial

pooling regions for scene classification. In CVPR, 2014. 6,

7

[22] L. Liu, L. Wang, and X. Liu. In defense of soft-assignment

coding. In ICCV, 2011. 2

[23] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 1, 2

[24] N. Murray and F. Perronnin. Generalized max pooling. In

CVPR, 2014. 2, 3, 4, 8

[25] M.-E. Nilsback and A. Zisserman. A visual vocabulary for

flower classification. In CVPR, 2006. 5

[26] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-

laries for image categorization. In CVPR, 2007. 2

[27] A. Quattoni and A. Torralba. Recognizing indoor scenes. In

CVPR, 2009. 5

[28] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.

Cnn features off-the-shelf: an astounding baseline for recog-

nition. In CVPR, 2014. 7

[29] M. Riesenhuber and T. Poggio. Hierarchical models of ob-

ject recognition in cortex. Nature neuroscience, 2(11):1019–

1025, 1999. 3

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

2, 3, 6, 7, 8

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 2, 3

[32] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.

Locality-constrained linear coding for image classification.

In CVPR, 2010. 1, 2, 7

[33] S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang. Discrim-

inative least squares regression for multiclass classification

and feature selection. TNNLS, 23(11):1738–1754, 2012. 4

[34] N. Xie, H. Ling, W. Hu, and X. Zhang. Use bin-ratio infor-

mation for category and scene classification. In CVPR, 2010.

6

[35] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-

mid matching using sparse coding for image classification.

In CVPR, 2009. 1, 2, 7

[36] G. Ye, D. Liu, I.-H. Jhuo, and S.-F. Chang. Robust late fusion

with rank minimization. In CVPR, 2012. 6

[37] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-

ferable are features in deep neural networks? In NIPS, 2014.

3

[38] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV. 2014. 7

[39] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places

database. In NIPS, 2014. 7

[40] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classifi-

cation using super-vector coding of local image descriptors.

In ECCV, 2010. 2

1187


