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Abstract

We develop a new edge detection algorithm that ad-

dresses two important issues in this long-standing vision

problem: (1) holistic image training and prediction; and (2)

multi-scale and multi-level feature learning. Our proposed

method, holistically-nested edge detection (HED), performs

image-to-image prediction by means of a deep learning

model that leverages fully convolutional neural networks

and deeply-supervised nets. HED automatically learns rich

hierarchical representations (guided by deep supervision on

side responses) that are important in order to resolve the

challenging ambiguity in edge and object boundary detec-

tion. We significantly advance the state-of-the-art on the

BSD500 dataset (ODS F-score of .782) and the NYU Depth

dataset (ODS F-score of .746), and do so with an improved

speed (0.4s per image) that is orders of magnitude faster

than some recent CNN-based edge detection algorithms.

1. Introduction

In this paper, we address the problem of detecting edges

and object boundaries in natural images. This problem is

both fundamental and of great importance to a variety of

computer vision areas ranging from traditional tasks such as

visual saliency, segmentation, object detection/recognition,

tracking and motion analysis, medical imaging, structure-

from-motion and 3D reconstruction, to modern applications

like autonomous driving, mobile computing, and image-to-

text analysis. It has been long understood that precisely lo-

calizing edges in natural images involves visual perception

of various “levels” [18, 27]. A relatively comprehensive

data collection and cognitive study [28] shows that while

different subjects do have somewhat different preferences

regarding where to place the edges and boundaries, there

was nonetheless impressive consistency between subjects,

e.g. reaching F-score 0.80 in the consistency study [28].

The history of computational edge detection is extremely

rich; we now highlight a few representative works that have

proven to be of great practical importance. Broadly speak-
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Figure 1. Illustration of the proposed HED algorithm. In the first row:

(a) shows an example test image in the BSD500 dataset [28]; (b) shows its

corresponding edges as annotated by human subjects; (c) displays the HED

results. In the second row: (d), (e), and (f), respectively, show side edge

responses from layers 2, 3, and 4 of our convolutional neural networks. In

the third row: (g), (h), and (i), respectively, show edge responses from the

Canny detector [4] at the scales σ = 2.0, σ = 4.0, and σ = 8.0. HED

shows a clear advantage in consistency over Canny.

ing, one may categorize works into a few groups such as I:

early pioneering methods like the Sobel detector [20], zero-

crossing [27, 37], and the widely adopted Canny detector

[4]; methods driven by II: information theory on top of fea-

tures arrived at through careful manual design, such as Sta-

tistical Edges [22], Pb [28], and gPb [1]; and III: learning-

based methods that remain reliant on features of human

design, such as BEL [5], Multi-scale [30], Sketch Tokens

[24], and Structured Edges [6]. In addition, there has been

a recent wave of development using Convolutional Neural

Networks that emphasize the importance of automatic hier-

archical feature learning, including N4-Fields [10], Deep-

Contour [34], DeepEdge [2], and CSCNN [19]. Prior to

this explosive development in deep learning, the Struc-

tured Edges method (typically abbreviated SE) [6] emerged

as one of the most celebrated systems for edge detection,

thanks to its state-of-the-art performance on the BSD500
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dataset [28] (with, e.g., F-score of .746) and its practically

significant speed of 2.5 frames per second. Recent CNN-

based methods [10, 34, 2, 19] have demonstrated promis-

ing F-score performance improvements over SE. However,

there still remains large room for improvement in these

CNN-based methods, in both F-score performance and in

speed — at present, time to make a prediction ranges from

several seconds [10] to a few hours [2] (even when using

modern GPUs).

Here, we develop an end-to-end edge detection system,

holistically-nested edge detection (HED), that automati-

cally learns the type of rich hierarchical features that are

crucial if we are to approach the human ability to resolve

ambiguity in natural image edge and object boundary de-

tection. We use the term “holistic”, because HED, despite

not explicitly modeling structured output, aims to train and

predict edges in an image-to-image fashion. With “nested”,

we emphasize the inherited and progressively refined edge

maps produced as side outputs — we intend to show that

the path along which each prediction is made is common

to each of these edge maps, with successive edge maps be-

ing more concise. This integrated learning of hierarchical

features is in distinction to previous multi-scale approaches

[40, 41, 30] in which scale-space edge fields are neither au-

tomatically learned nor hierarchically connected. Figure 1

gives an illustration of an example image together with the

human subject ground truth annotation, as well as results

by the proposed HED edge detector (including the side re-

sponses of the individual layers), and results by the Canny

edge detector [4] with different scale parameters. Not only

are Canny edges at different scales not directly connected,

they also exhibit spatial shift and inconsistency.

The proposed holistically-nested edge detector (HED)

tackles two critical issues: (1) holistic image training and

prediction, inspired by fully convolutional neural networks

[26], for image-to-image classification (the system takes an

image as input, and directly produces the edge map image

as output); and (2) nested multi-scale feature learning, in-

spired by deeply-supervised nets [23], that performs deep

layer supervision to “guide” early classification results. We

find that the favorable characteristics of these underlying

techniques manifest in HED being both accurate and com-

putationally efficient.

2. Holistically-Nested Edge Detection

In this section, we describe in detail the formulation of

our proposed edge detection system. We start by discussing

related neural-network-based approaches, particularly those

that emphasize multi-scale and multi-level feature learning.

The task of edge and object boundary detection is inherently

challenging. After decades of research, there have emerged

a number of properties that are key and that are likely to

play a role in a successful system: (1) carefully designed

and/or learned features [28, 5], (2) multi-scale response fu-

sion [40, 32, 30], (3) engagement of different levels of vi-

sual perception [18, 27, 39, 17] such as mid-level Gestalt

law information [7], (4) incorporating structural informa-

tion (intrinsic correlation carried within the input data and

output solution) [6] and context (both short- and long- range

interactions) [38], (5) making holistic image predictions (re-

ferring to approaches that perform prediction by taking the

image contents globally and directly) [25], (6) exploiting

3D geometry [15], and (7) addressing occlusion boundaries

[16].

Structured Edges (SE) [6] primarily focuses on three of

these aspects: using a large number of manually designed

features (property 1), fusing multi-scale responses (prop-

erty 2), and incorporating structural information (property

4). A recent wave of work using CNN for patch-based

edge prediction [10, 34, 2, 19] contains an alternative com-

mon thread that focuses on three aspects: automatic feature

learning (property 1), multi-scale response fusion (prop-

erty 2), and possible engagement of different levels of vi-

sual perception (property 3). However, due to the lack of

deep supervision (that we include in our method), the multi-

scale responses produced at the hidden layers in [2, 19]

are less semantically meaningful, since feedback must be

back-propagated through the intermediate layers. More im-

portantly, their patch-to-pixel or patch-to-patch strategy re-

sults in significantly downgraded training and prediction ef-

ficiency. By “holistically-nested”, we intend to emphasize

that we are producing an end-to-end edge detection sys-

tem, a strategy inspired by fully convolutional neural net-

works [26], but with additional deep supervision on top of

trimmed VGG nets [36] (shown in Figure 3). In the absence

of deep supervision and side outputs, a fully convolutional

network [26] (FCN) produces a less satisfactory result (e.g.

F-score .745 on BSD500) than HED, since edge detection

demands highly accurate edge pixel localization. One thing

worth mentioning is that our image-to-image training and

prediction strategy still has not explicitly engaged contex-

tual information, since constraints on the neighboring pixel

labels are not directly enforced in HED. In addition to the

speed gain over patch-based CNN edge detection methods,

the performance gain is largely due to three aspects: (1)

FCN-like image-to-image training allows us to simultane-

ously train on a significantly larger amount of samples (see

Table 4); (2) deep supervision in our model guides the learn-

ing of more transparent features (see Table 2); (3) interpo-

lating the side outputs in the end-to-end learning encourages

coherent contributions from each layer (see Table 3).

2.1. Existing multiscale and multilevel NN

Due to the nature of hierarchical learning in the deep

convolutional neural networks, the concept of multi-scale

and multi-level learning might differ from situation to sit-

uation. For example, multi-scale learning can be “inside”
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Figure 2. Illustration of different multi-scale deep learning architecture configurations: (a) multi-stream architecture; (b) skip-layer net architecture; (c) a

single model running on multi-scale inputs; (d) separate training of different networks; (e) our proposed holistically-nested architectures, where multiple

side outputs are added.

the neural network, in the form of increasingly larger recep-

tive fields and downsampled (strided) layers. In this “in-

side” case, the feature representations learned in each layer

are naturally multi-scale. On the other hand, multi-scale

learning can be “outside” of the neural network, for exam-

ple by “tweaking the scales” of input images. While these

two variants have some notable similarities, we have seen

both of them applied to various tasks.

We continue by next formalizing the possible configu-

rations of multi-scale deep learning into four categories,

namely, multi-stream learning, skip-net learning, a single

model running on multiple inputs, and training of indepen-

dent networks. An illustration is shown in Fig 2. Having

these possibilities in mind will help make clearer the ways

in which our proposed holistically-nested network approach

differs from previous efforts and will help to highlight the

important benefits in terms of representation and efficiency.

Multi-stream learning [3, 29] A typical multi-stream

learning architecture is illustrated in Fig 2(a). Note that the

multiple (parallel) network streams have different parame-

ter numbers and receptive field sizes, corresponding to mul-

tiple scales. Input data are simultaneously fed into multi-

ple streams, after which the concatenated feature responses

produced by the various streams are fed into a global output

layer to produce the final result.

Skip-layer network learning: Examples of this form of

network include [26, 14, 2, 33, 10]. The key concept in

“skip-layer” network learning is shown in Fig 2(b). Instead

of training multiple parallel streams, the topology for the

skip-net architecture centers on a primary stream. Links are

added to incorporate the feature responses from different

levels of the primary network stream, and these responses

are then combined in a shared output layer.

A common point in the two settings above is that, in both

of the architectures, there is only one output loss function

with a single prediction produced. However, in edge detec-

tion, it is often favorable (and indeed prevalent) to obtain

multiple predictions to combine the edge maps together.

Single model on multiple inputs: To get multi-scale pre-

dictions, one can also run a single network (or networks

with tied weights) on multiple (scaled) input images, as il-

lustrated in Fig 2(c). This strategy can happen at both the

training stage (as data augmentation) and at the testing stage

(as “ensemble testing”). One notable example is the tied-

weight pyramid networks [8]. This approach is also com-

mon in non-deep-learning based methods [6]. Note that en-

semble testing impairs the prediction efficiency of learning

systems, especially with deeper models[2, 10].

Training independent networks: As an extreme variant

to Fig 2(a), one might pursue Fig 2(d), in which multi-scale

predictions are made by training multiple independent net-

works with different depths and different output loss lay-

ers. This might be practically challenging to implement as

this duplication would multiply the amount of resources re-

quired for training.

Holistically-nested networks: We list these variants to

help clarify the distinction between existing approaches and

our proposed holistically-nested network approach, illus-

trated in Fig 2(e). There is often significant redundancy

in existing approaches, in terms of both representation

and computational complexity. Our proposed holistically-

nested network is a relatively simple variant that is able to

produce predictions from multiple scales. The architecture

can be interpreted as a “holistically-nested” version of the

“independent networks” approach in Fig 2(d), motivating

our choice of name. Our architecture comprises a single-

stream deep network with multiple side outputs. This archi-

tecture resembles several previous works, particularly the

deeply-supervised net[23] approach in which the authors

show that hidden layer supervision can improve both op-

timization and generalization for image classification tasks.

The multiple side outputs also give us the flexibility to add

an additional fusion layer if a unified output is desired.

2.2. Formulation

Training Phase We denote our input training data set by

S = {(Xn, Yn), n = 1, . . . , N}, where sample Xn =

{x
(n)
j , j = 1, . . . , |Xn|} denotes the raw input image and

Yn = {y
(n)
j , j = 1, . . . , |Xn|}, y

(n)
j ∈ {0, 1} denotes the

corresponding ground truth binary edge map for image Xn.

We subsequently drop the subscript n for notational sim-

plicity, since we consider each image holistically and inde-

pendently. Our goal is to have a network that learns features

from which it is possible to produce edge maps approaching

the ground truth. For simplicity, we denote the collection of

all standard network layer parameters as W. Suppose in the
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network we have M side-output layers. Each side-output

layer is also associated with a classifier, in which the cor-

responding weights are denoted as w = (w(1), . . . ,w(M)).
We consider the objective function

Lside(W,w) =

M∑

m=1

αmℓ
(m)
side (W,w(m)), (1)

where ℓside denotes the image-level loss function for side-

outputs. In our image-to-image training, the loss function is

computed over all pixels in a training image X = (xj , j =
1, . . . , |X|) and edge map Y = (yj , j = 1, . . . , |X|), yj ∈
{0, 1}. For a typical natural image, the distribution of

edge/non-edge pixels is heavily biased: 90% of the ground

truth is non-edge. A cost-sensitive loss function is proposed

in [19], with additional trade-off parameters introduced for

biased sampling.

We instead use a simpler strategy to automatically bal-

ance the loss between positive/negative classes. We intro-

duce a class-balancing weight β on a per-pixel term basis.

Index j is over the image spatial dimensions of image X .

Then we use this class-balancing weight as a simple way to

offset this imbalance between edge and non-edge. Specifi-

cally, we define the following class-balanced cross-entropy

loss function used in Equation (1)

ℓ
(m)
side (W,w(m)) = −β

∑

j∈Y+

log Pr(yj = 1|X;W,w(m))

− (1− β)
∑

j∈Y
−

log Pr(yj = 0|X;W,w(m)) (2)

where β = |Y−|/|Y | and 1 − β = |Y+|/|Y |. |Y−| and |Y+|
denote the edge and non-edge ground truth label sets, re-

spectively. Pr(yj = 1|X;W,w(m)) = σ(a
(m)
j ) ∈ [0, 1]

is computed using sigmoid function σ(.) on the activation

value at pixel j. At each side output layer, we then obtain

edge map predictions Ŷ
(m)

side = σ(Â
(m)
side ), where Â

(m)
side ≡

{a
(m)
j , j = 1, . . . , |Y |} are activations of the side-output of

layer m.

To directly utilize side-output predictions, we add a

“weighted-fusion” layer to the network and (simultane-

ously) learn the fusion weight during training. Our loss

function at the fusion layer Lfuse becomes

Lfuse(W,w,h) = Dist(Y, Ŷfuse) (3)

where Ŷfuse ≡ σ(
∑M

m=1 hmÂ
(m)
side ) where h =

(h1, . . . , hM ) is the fusion weight. Dist(·, ·) is the dis-

tance between the fused predictions and the ground truth

label map, which we set to be cross-entropy loss. Putting

everything together, we minimize the following objective

function via standard (back-propagation) stochastic gradi-

ent descent:

(W,w,h)⋆ = argmin(Lside(W,w) + Lfuse(W,w,h))
(4)

Side-output layer Error Propagation Path

Weighted-fusion layer Error Propagation Path

ground truth

Input image X

Side-output 1

Side-output 2

Side-output 3

Side-output 4

Side-output 5

Y

Y

Receptive Field Size

5 14 40 92 196

ℒ����ℓ����(1)

ℓ����(3)
ℓ����(2)

ℓ����(4)
ℓ����(5)

Figure 3. Illustration of our network architecture for edge detection, high-

lighting the error backpropagation paths. Side-output layers are inserted

after convolutional layers. Deep supervision is imposed at each side-output

layer, guiding the side-outputs towards edge predictions with the charac-

teristics we desire. The outputs of HED are multi-scale and multi-level,

with the side-output-plane size becoming smaller and the receptive field

size becoming larger. One weighted-fusion layer is added to automatically

learn how to combine outputs from multiple scales. The entire network is

trained with multiple error propagation paths (dashed lines).

See section 4 for detailed hyper-parameter and experiment

settings.

Testing phase During testing, given image X , we obtain

edge map predictions from both the side output layers and

the weighted-fusion layer:

(Ŷfuse, Ŷ
(1)

side , . . . , Ŷ
(M)

side ) = CNN(X, (W,w,h)⋆), (5)

where CNN(·) denotes the edge maps produced by our net-

work. The final unified output can be obtained by further

aggregating these generated edge maps. The details will be

discussed in section 4.

ŶHED = Average(Ŷfuse, Ŷ
(1)

side , . . . , Ŷ
(M)

side ) (6)

3. Network Architecture
3.1. Trimmed network for edge detection

Our goal is to create a deep network to efficiently gen-

erate perceptually multi-level features, and to have multiple

stages with different strides to capture the intrinsic scales of

edge maps. VGGNet [36] has been seen to achieve state-of-

the-art performance in the ImageNet challenge, with great

depth (16 convolutional layers), great density (stride-1 con-

volutional kernels), and multiple stages (five 2-stride down-

sampling layers). Recent work [2] also demonstrates that

fine-tuning deep neural networks pre-trained on the gen-

eral image classification task is useful to the low-level edge

detection task. We therefore adopt the VGGNet architec-

ture but make the following modifications: (a) we connect

our side output layer to the last convolutional layer in each
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stage, respectively conv1 2, conv2 2, conv3 3, conv4 3,

conv5 3. The receptive field size of each of these convo-

lutional layers is identical to the corresponding side-output

layer; (b) we cut the last stage of VGGNet, including the 5th

pooling layer and all the fully connected layers. The reason

for “trimming” the VGGNet is two-fold. First, because we

are expecting meaningful side outputs with different scales,

a layer with stride 32 yields a too-small output plane with

the consequence that the interpolated prediction map will

be too fuzzy to utilize. Second, the fully connected lay-

ers (even when recast as convolutions) are computationally

intensive, so that trimming layers from pool5 on can sig-

nificantly reduce the memory/time cost during both train-

ing and testing. Our final HED network architecture has 5

stages, with strides 1, 2, 4, 8 and 16, respectively, and with

different receptive field sizes, all nested in the VGGNet. See

Table 1 for a summary of the configurations of the receptive

fields and strides.
Table 1. The receptive field and stride size in VGGNet [36] used in HED.

The bolded convolutional layers are linked to additional side-output layers.

layer c1 2 p1 c2 2 p2 c3 3

rf size 5 6 14 16 40

stride 1 2 2 4 4

layer p3 c4 3 p4 c5 3 p5

rf size 44 92 100 196 212

stride 8 8 16 16 32

3.2. Architecture alternatives

Below we discuss some possible alternatives in architec-

ture design, and in particular, the role of deep supervision

of HED for the edge detection task.

Table 2. Performance of alternative architectures on BSDS dataset. The

“fusion-output without deep supervision” result is learned w.r.t Eqn. 3. The

“fusion-output with deep supervision” result is learned w.r.t. to Eqn. 4.

ODS OIS AP

FCN-8S .697 .715 .673

FCN-2S .738 .756 .717

Fusion-output (w/o deep supervision) .771 .785 .738

Fusion-output (with deep supervision) .782 .802 .787

FCN and skip-layer architecture The topology used in the

FCN model differs from that in our HED model in several

aspects. As we have discussed, while FCN reinterprets clas-

sification nets for per-pixel prediction, it has only one output

loss function. Thus, in FCN, although the skip net structure

is a DAG that combines coarse, high-layer information with

fine low-layer information, it does not explicitly produce

multi-scale output predictions. We explore how this archi-

tecture can be used for the edge detection task under the

same experimental setting as our HED model. We first try to

directly apply the FCN-8s model by replacing the loss func-

tion with cross-entropy loss for edge detection. The results

shown in first row of Table 2 are unsatisfactory, which is

expected since this architecture is still not fine enough. We

w/o deep supervision w/ deep supervision w/o deep supervision w/ deep supervision 

Figure 4. Two examples illustrating how deep supervision helps side-

output layers to produce multi-scale dense predictions. Note that in the left

column, the side outputs become progressively coarser and more “global”,

while critical object boundaries are preserved. In the right column, the

predictions tends to lack any discernible order (e.g. in layers 1 and 2), and

many boundaries are lost in later stages.

further explore whether the performance can be improved

by adding even more links from low-level layers. We then

create an FCN-2s network that adds additional links from

the pool1 and pool2 layers. Still, directly applying the FCN

skip-net topology falls behind our proposed HED architec-

ture (see second row of Table 2). With heavy tweaking of

FCN, there is a possibility that one might be able to achieve

competitive performance on edge detection, but the multi-

scale side-outputs in HED are seen to be natural and intu-

itive for edge detection.

The role of deep supervision Since we incorporate a

weighted-fusion output layer that connects each side-output

layer, there is a need to justify the adoption of the deep

supervision terms (specifically, ℓside(W,w(m)): now the

entire network is path-connected and the output-layer pa-

rameters can be updated by back-propagation through the

weighted-fusion layer error propagation path (subject to

Equation 3). Here we show that deep supervision is impor-

tant to obtain desired edge maps. The key characteristic of

our proposed network is that each network layer is supposed

to play a role as a singleton network responsible for produc-

ing an edge map at a certain scale. Here are some qualitative

results based on the two variants discussed above: (1) train-

ing with both weighted-fusion supervision and deep super-

vision, and (2) training with weighted-fusion supervision

only. We observe that with deep supervision, the nested

side-outputs are natural and intuitive, insofar as the suc-

cessive edge map predictions are progressively coarse-to-

fine, local-to-global. On the other hand, training with only

the weighted-fusion output loss gives edge predictions that

lack such discernible order: many critical edges are absent

at the higher layer side output; under exactly same experi-
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mental setup, the result on the benchmark dataset (row three

of Table 2) differs only marginally in F-score but displays

severely degenerated average precision; without direct con-

trol and guidance across multiple scales, this network is

heavily biased towards learning large structure edges.

4. Experiments

In this section we discuss our detailed implementation

and report the performance of our proposed algorithm.

4.1. Implementation

We implement our framework using the publicly avail-

able Caffe Library and build on top of the publicly available

implementations of FCN[26] and DSN[23]. Thus, relatively

little engineering hacking is required. In our HED system,

the whole network is fine-tuned from an initialization with

the pre-trained VGG-16 Net model.

Model parameters In contrast to fine-tuning CNN to per-

form image classification or semantic segmentation, adapt-

ing CNN to perform low-level edge detection requires spe-

cial care. Differences in data distribution, ground truth dis-

tribution, and loss function all contribute to difficulties in

network convergence, even with the initialization of a pre-

trained model. We first use a validation set and follow

the evaluation strategy used in [6] to tune the deep model

hyper-parameters. The hyper-parameters (and the values we

choose) include: mini-batch size (10), learning rate (1e-6),

loss-weight αm for each side-output layer (1), momentum

(0.9), initialization of the nested filters (0), initialization of

the fusion layer weights (1/5), weight decay (0.0002), num-

ber of training iterations (10,000; divide learning rate by 10

after 5,000). We focus on the convergence behavior of the

network. We observe that whenever training converges, the

deviations in F-score on the validation set tend to be very

small. In order to investigate whether including additional

nonlinearity helps, we also consider a setting in which we

add an additional layer (with 50 filters and a ReLU) be-

fore each side-output layer; we find that this worsens per-

formance. On another note, we observe that our nested

multi-scale framework is insensitive to input image scales;

during our training process, we take advantage of this by

resizing all the images to 400 × 400 to reduce GPU mem-

ory usage and to take advantage of efficient batch process-

ing. In the experiments that follow, we fix the values of all

hyper-parameters discussed above to explore the benefits of

possible variants of HED.

Consensus sampling In our approach, we duplicate the

ground truth at each side-output layer and resize the (down-

sampled) side output to its original scale. Thus, there ex-

ists a mismatch in the high-level side-outputs: the edge

predictions are coarse and global, while the ground truth

still contains many weak edges that could even be consid-

ered as noise. This issue leads to problematic convergence

behavior, even with the help of a pre-trained model. We

observe that this mismatch leads to back-propagated gradi-

ents that explode at the high-level side-output layers. We

therefore adjust how we make use of the ground truth labels

in the BSDS dataset to combat this issue. Specifically, the

ground truth labels are provided by multiple annotators and

thus, implicitly, greater labeler consensus indicates stronger

ground truth edges. We adopt a relatively brute-force solu-

tion: only assign a pixel a positive label if it is labeled as

positive by at least three annotators; regard all other labeled

pixels as negatives. This helps with the problem of gradi-

ent explosion in high level side-output layers. For low level

layers, this consensus approach brings additional robustness

to edge classification and prevents the network from being

distracted by weak edges. Although not fully explored in

our paper, a careful handling of consensus levels of ground

truth edges might lead to further improvement.

Data augmentation Data augmentation has proven to be a

crucial technique in deep networks. We rotate the images

to 16 different angles and crop the largest rectangle in the

rotated image; we also flip the image at each angle, lead-

ing to an augmented training set that is a factor of 32 larger

than the unaugmented set. During testing we operate on an

input image at its original size. We also note that “ensem-

ble testing” (making predictions on rotated/flipped images

and averaging the predictions) yields no improvements in

F-score, nor in average precision.

Different pooling functions Previous work [2] suggests

that different pooling functions can have a major impact

on edge detection results. We conduct a controlled exper-

iment in which all pooling layers are replaced by average

pooling. We find that using average pooling decrease the

performance to ODS=.741.

In-network bilinear interpolation Side-output prediction

upsampling is implemented with in-network deconvolu-

tional layers, similar to those in [26]. We fix all the decon-

volutional layers to perform linear interpolation. Although

it was pointed out in [26] that one can learn arbitrary in-

terpolation functions, we find that learned deconvolutions

provide no noticeable improvements in our experiments.

Running time Training takes about 7 hours on a single

NVIDIA K40 GPU. For a 320 × 480 image, it takes HED

400 ms to produce the final edge map (including the inter-

face overhead), which is significantly faster than existing

CNN-based methods [34, 2]. Some previous edge detec-

tors also try to improve performance by the less desirable

expedient of sacrificing efficiency (for example, by testing

on input images from multiple scales and averaging the re-

sults).

4.2. BSDS500 dataset

We evaluate HED on the Berkeley Segmentation Dataset

and Benchmark (BSDS 500) [1] which is composed of 200

1400



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

0 

[F=.800] Human
[F=.782] HED (ours)
[F=.756] DeepContour 
[F=.756] CSCNN
[F=.753] DeepEdge
[F=.749] OEF
[F=.747] SE+multi−ucm 
[F=.746] SE
[F=.739] SCG
[F=.727] Sketch Tokens 
[F=.726] gPb−owt−ucm
[F=.723] ISCRA
[F=.694] Gb
[F=.640] Mean Shift
[F=.640] Normalized Cuts 
[F=.610] Felz−Hutt
[F=.600] Canny

Figure 5. Results on the BSDS500 dataset. Our proposed HED frame-

work achieves the best result (ODS=.782). Compared to several recent

CNN-based edge detectors, our approach is also orders of magnitude faster.

See Table 4 for a detailed discussion.

training, 100 validation, and 200 testing images. Each im-

age has manually annotated ground truth contours. Edge de-

tection accuracy is evaluated using three standard measures:

fixed contour threshold (ODS), per-image best threshold

(OIS), and average precision (AP). We apply a standard

non-maximal suppression technique to our edge maps to ob-

tain thinned edges for evaluation. The results are shown in

Figure 5 and Table 4.

Table 3. Results of single and averaged side output in HED on

the BSDS 500 dataset. The individual side output contributes to

the fused/averaged result. Note that the learned weighted-fusion

(Fusion-output) achieves best F-score, while directly averaging all

of the five layers (Average 1-5) produces better average precision.

Merging those two readily available outputs further boost the per-

formance.
ODS OIS AP

Side-output 1 .595 .620 .582

Side-output 2 .697 .715 .673

Side-output 3 .738 .756 .717

Side-output 4 .740 .759 .672

Side-output 5 .606 .611 .429

Fusion-output .782 .802 .787

Average 1-4 .760 .784 .800

Average 1-5 .774 .797 .822

Average 2-4 .766 .788 .798

Average 2-5 .777 .800 .814

Merged result .782 .804 .833

Side outputs To explicitly validate the side outputs, we

summarize the results produced by the individual side-

outputs at different scales in Table 3, including different

combinations of the multi-scale edge maps. We empha-

size here that all the side-output predictions are obtained

in one pass; this enables us to fully investigate different

configurations of combining the outputs at no extra cost.

There are several interesting observations from the results:

for instance, combining predictions from multiple scales

yields better performance; moreover, all the side-output lay-

ers contribute to the performance gain, either in F-score or

averaged precision. To see this, in Table 3, the side-output

layer 1 and layer 5 (the lowest and highest layers) achieve

similar relatively low performance. One might expect these

two side-output layers to not be useful in the averaged re-

sults. However this turns out not to be the case — for exam-

ple, the Average 1-4 achieves ODS=.760 and incorporating

the side-output layer 5, the averaged prediction achieves an

ODS=.774. We find similar phenomenon when considering

other ranges. As mentioned above, the predictions obtained

using different combination strategies are complementary,

and a late merging of the averaged predictions with learned

fusion-layer predictions leads to the best result. Another ob-

servation is, when compared to previous ”non-deep” meth-

ods, performance of all ”deep” methods drops more in the

high recall regime. This might indicate that deep learned

features are capable of (and favor) learning the global ob-

ject boundary — thus many weak edges are omitted. HED

is better than other deep learning based methods in the high

recall regime because deep supervision helps us to take the

low level predictions into account.

Table 4. Results on BSDS500. ∗BSDS300 results,†GPU time

ODS OIS AP FPS

Human .80 .80 - -

Canny .600 .640 .580 15

Felz-Hutt [9] .610 .640 .560 10

BEL [5] .660∗ - - 1/10

gPb-owt-ucm [1] .726 .757 .696 1/240

Sketch Tokens [24] .727 .746 .780 1

SCG [31] .739 .758 .773 1/280

SE-Var [6] .746 .767 .803 2.5

OEF [13] .749 .772 .817 -

DeepNets [21] .738 .759 .758 1/5†
N4-Fields [10] .753 .769 .784 1/6†
DeepEdge [2] .753 .772 .807 1/103†
CSCNN [19] .756 .775 .798 -

DeepContour [34] .756 .773 .797 1/30†

HED (ours) .782 .804 .833
2.5†,

1/12

Late merging to boost average precision We find that the

weighted-fusion layer output gives best performance in F-

score. However the average precision degrades compared

to directly averaging all the side outputs. This might due to

our focus on “global” object boundaries for the fusion-layer

weight learning. Taking advantage of the readily available

side outputs in HED, we merge the fusion layer output with

the side outputs (at no extra cost) in order to compensate for

the loss in average precision. This simple heuristic gives us

the best performance across all measures that we report in

Figure 5 and Table 4.
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More training data Deep models have significantly ad-

vanced results in a variety of computer vision applications,

at least in part due to the availability of large training data.

In edge detection, however, we are limited by the number of

training images available in the existing benchmarks. Here

we want to explore whether adding more training data will

help further improve the results. To do this, we expand the

training set by randomly sampling 100 images from the test

set. We then evaluate the result on the remaining 100 test

images. We report the averaged result over 5 such trials.

We observe that by adding only 100 training images, per-

formance improves from ODS=.782 to ODS=.797 (±.003),

nearly touching the human benchmark. This shows a poten-

tially promising direction to further enhance HED by train-

ing it with a larger dataset.

4.3. NYUDv2 Dataset

The NYU Depth (NYUD) dataset [35] has 1449 RGB-D

images. This dataset was used for edge detection in [31]

and [11]. Here we use the setting described in [6] and eval-

uate HED on data processed by [11]. The NYUD dataset is

split into 381 training, 414 validation, and 654 testing im-

ages. All images are made to the same size and we train our

network on full resolution images. As used in [12, 6], dur-

ing evaluation we increase the maximum tolerance allowed

for correct matches of edge predictions to ground truth from

.0075 to .011.
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Figure 6. Precision/recall curves on NYUD dataset. Holistically-nested

edge detection (HED) trained with RGB and HHA features achieves the

best result (ODS=.746). See Table 5 for additional information.

Depth information encoding Following the success in [12]

and [26], we leverage the depth information by utilizing

HHA features in which the depth information is embed-

ded into three channels: horizontal disparity, height above

ground, and angle of the local surface normal with the in-

ferred direction of gravity . We use the same HED architec-

ture and hyper-parameter settings as were used for BSDS

500. We train two different models in parallel, one on RGB

images and another on HHA feature images, and report the

Table 5. Results on the NYUD dataset [35] †GPU time

ODS OIS AP FPS

gPb-ucm .632 .661 .562 1/360

Silberman [35] .658 .661 - <1/360

gPb+NG[11] .687 .716 .629 1/375

SE[6] .685 .699 .679 5

SE+NG+[12] .710 .723 .738 1/15

HED-RGB .720 .734 .734 2.5†
HED-HHA .682 .695 .702 2.5†
HED-RGB-HHA .746 .761 .786 1†

results below. We directly average the RGB and HHA pre-

dictions to produce the final result by leveraging RGB-D

information. We also tried other approaches to incorporate

the depth information, for example, by training on the raw

depth channel, or by concatenating the depth channel with

the RGB channels before the first convolutional layer. None

of these attempts yields notable improvement compared to

the approach using HHA. The effectiveness of the HHA fea-

tures shows that, although deep neural networks are capa-

ble of automatic feature learning, for depth data, carefully

hand-designed features are still necessary, especially when

only limited training data is available.

Table 5 and Figure 6 show the precision-recall evalua-

tions of HED in comparison to other competing methods.

Our network structures for training are kept the same as for

BSDS. During testing we use the Average2-4 prediction in-

stead of the Fusion-layer output as it yields the best perfor-

mance. We do not perform late merging since combining

two sources of edge map predictions (RGB and HHA) al-

ready gives good average precision. Note that the results

achieved using the RGB modality only are already better

than those of the previous approaches.

5. Conclusion

In this paper, we have developed a new convolutional-

neural-network-based edge detection system that demon-

strates state-of-the-art performance on natural images at a

speed of practical relevance (e.g., 0.4 seconds using GPU

and 12 seconds using CPU). Our algorithm builds on top of

the ideas of fully convolutional neural networks and deeply-

supervised nets. We also initialize our network structure

and parameters by adopting a pre-trained trimmed VG-

GNet. Our method shows promising results in perform-

ing image-to-image learning by combining multi-scale and

multi-level visual responses, even though explicit contex-

tual and high-level information has not been enforced.
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