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Abstract

A common video degradation problem, which is largely

untreated in literature, is what we call Yin-Yang Phasing

(YYP). YYP is characterized by involuntary, dramatic flip-

flop in the intensity and possibly chromaticity of an object

as the video plays. Such temporal artifacts occur under ill

illumination conditions and are triggered by object or/and

camera motions, which mislead the settings of camera’s

auto-exposure and white point. In this paper, we investi-

gate the problem and propose a video restoration technique

to suppress YYP artifacts and retain temporal consistency

of objects appearance via inter-frame, spatially-adaptive,

optimal tone mapping. The video quality can be further im-

proved by a novel image enhancer designed in Weber’s per-

ception principle and by exploiting the second-order statis-

tics of the scene. Experimental results are encouraging,

pointing to an effective, practical solution for a common

but surprisingly understudied problem.

1. Introduction

1.1. The problem and background

A highly irritating type of video degradation, called Yin-

Yang Phasing (YYP) in this paper, is spatially patchy and

temporally inconsistent objects appearance, with parts of

the scene turning in and out the state of under-exposure

(yin) or over-exposure (yang), back and forth. Such effects

are quite common in impromptu-made video materials in

daily life. An example is presented in Figure 1: in a short

progression of few video frames, which are produced by

an iPhone 6 camera, the person’s face alters from normally

lit to unintelligibly dark as she moves her head. Moreover,

the involuntary, dramatic changes in the intensity and pos-

sibly chromaticity are compounded by low contrast due to

wrongly exposed objects. The YYP effects are caused by
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unevenness of illumination, significant changes in the direc-

tions of incident and reflection lights due to object and/or

camera motions, and improper camera operations by am-

ateur users. These scenarios tend to confuse the ubiqui-

tous ”dumb” cameras and lead to incorrect and time-lagged

settings of auto-exposure and white point. Unfortunately,

the above root cause of YYP is an inherent weakness of

mass-produced cameras that will trouble average users for

a foreseeable future, particularly when shooting videos in

unevenly-lit scenes.

In difficult illumination conditions, disabling camera’s

auto-exposure functionality cannot cure but rather aggra-

vate the YYP problem for most users. For example, in

backlit scenes like in Figure 1, without auto-exposure the

person in the foreground, the very focus of the video ses-

sion, will be severely underexposed in most frames. Also,

out of question is the use of auxiliary lighting to compensate

for problematic illumination in the scene, as it is beyond the

means and knowledge of amateur camera users.

The YYP type of video degradation is becoming a major

culprit of poor video quality, much more so than insuffi-

cient spatial resolution, low frame rate, sensor noises, and

compression distortions. Nowadays even consumer-grade

cameras boast very high pixel counts, frame rates of 60Hz

and above, and low senor noise level; furthermore, modern

communication infrastructures can support high throughput

visual data exchanges. While these hardware advances are

making superresolution, frame rate upconversion, denois-

ing, compression artifacts removal, etc., less important in

practice, they can do nothing to repair the YYP degradation

as the lighting conditions in the scene and non-expert video

shooting behaviors are beyond the control of video acquisi-

tion and communication equipment. Despite the daily en-

countering of the YYP video degradation problem in a wide

range of video applications, such as social media, on-line

video sharing, video monitoring, spontaneous video report-

ing, etc., very little research has been carried out on the

YYP phenomenon and its mitigation. In this paper we in-

vestigate how to algorithmically remove the undesired YYP

effects, aiming to restore the video to the state as though it
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Frame 1 Frame 15 Frame 85 Frame 150 Frame 200
Figure 1. Top row: temporally inconsistent frames due to changes in exposure time. Bottom row: frames restored by the proposed method.

was shot in spatially uniform and temporally steady light-

ing conditions. For lack of better wording, we call such a

process YYP removal.

Unlike in the studies of traditional image/video restora-

tion problems, such as deshaking [10], denoising [9], de-

blurring [2], superresolution [12], etc., the source of YYP

degradation is not purely physical and hence difficult to

model analytically. As a result, casting YYP removal as an

inverse problem or into a mathematical programming for-

mulation is not as easy as for other restoration problems.

1.2. Our approach

As tonal reproduction primarily depends on global image

statistics, it is difficult to perform the YYP removal solely

in pixel domain by tracking motion trajectory across frames

and enforcing temporal tone consistency guided by the mo-

tion flow. Instead, we formulate the YYP removal as an

inter-frame, spatially-adaptive, optimal tone mapping prob-

lem and propose an optimization approach to solve it, aim-

ing to neutralize temporally unsteady intensity levels of the

objects. The basic premise of our approach is that the over-

all appearance of an image is governed by the shape of its

intensity histogram [11]. Therefore, we propose to retain

the temporal consistency of tonal reproduction by mapping

the intensity histograms of input frames to a common target

histogram per a given scene. The other reason for adopting

a histogram-based tone mapping approach is that it can be

tuned to boost contrast as well, hence unifying the tasks of

tonal stabilization and image enhancement.

As the human visual system can rapidly adapt to differ-

ent luminance levels, our histogram targeting strategy for

YYP harmonization can be made more effective if the tone

mapping is tailored to image regions under different illumi-

nation conditions. Specifically, we segment a YYP-affected

video frame into two types of regions, by the likelihood of a

pixel being on a weakly or strongly illuminated object sur-

face, denoted by the W -region and S-region. The segmen-

tation is performed via homomorphic filtering and a fuzzy

classification.

In order to prevent the W -regions from being underex-

posed and the S-regions from being overexposed sporad-

ically, we temporally track the W -regions and S-regions.

For a fixed video scene of N frames, let R
(n)
W and R

(n)
S ,

1 ≤ n ≤ N , be the sets of W -regions and S-regions in

frame n, respectively. Using the first-order and second-

order statistics of the data set {R
(n)
W }Nn=1, an anchor in-

tensity histogram h
∗

W is constructed as the target for the

YYP harmonization of W -regions through all N frames,

which can be viewed as a generalized centroid in terms of

Kullback-Leibler distance of probability distributions [3].

Then, for each frame n, a tone mapping (histogram trans-

formation) T
(n)
W is computed to best match the histogram of

R
(n)
W to h

∗

W . By forcing all N histogram transformations

T
(n)
W , 1 ≤ n ≤ N , to approach the same output histogram

h
∗

W , we make the tone reproduction of an object temporally

consistent. In addition, video enhancement can be incor-

porated into the proposed YYZ harmonization framework.

The anchor histogram h
∗

W can be designed to maximize a

Lagrangian of a Weber-law contrast metric and the entropy
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of h∗

W . This optimization problem has an efficient dynamic

programming solution. The same procedure outlined above

can be applied to the set of S-regions {R
(n)
S }Nn=1 to com-

pute h
∗

S and T
(n)
S , 1 ≤ n ≤ N . The main objective of

the proposed YYP harmonization algorithm is to stabilize

throbbing intensity levels in any given W - or S-region. But

it can also stabilize shifting chromaticity of any given re-

gion, if required. We only need to first decompose the orig-

inal video signal into luminance and chrominance compo-

nents, and then apply the same region-adaptive inter-frame

harmonization method to the chrominance component of

the input video.

To summarize our novel YYP harmonization approach,

objects under similar lighting conditions are spatially

grouped and temporally tracked, the intensity and chromi-

nance distributions of the these similarly-lit objects are op-

timized in terms of perceptual quality, and set as the objec-

tives of tone mapping for all frames in a given scene of the

YYP-degraded video. For each frame n, to prevent possible

boundary effects of region-based tone mapping functions

T
(n)
W and T

(n)
S , the results of T

(n)
W and T

(n)
S are weighted

based on a fuzzy light field segmentation.

1.3. Related works

Thus far most of research efforts on video restoration

against adverse acquisition conditions are devoted to the

stabilization of shaky frames caused by large, irregular cam-

era jitters [10]. Of most relevance to this work is a 2011

publication by Farbman and Lischinski on tonal stabiliza-

tion of video [6]. The authors addressed the problem of

tonal inconsistency in consecutive video frames caused by

improper auto-exposure and white points, and proposed a

method to make global, smooth tone transitions from one

frame to the next guided by selected anchor frames. In

comparison, YYP is a different and more challenging video

degradation problem: severe tonal fluctuations compounded

by low contrast, which are caused by uneven, incorrect ex-

posures. In [6] two assumptions are made: 1. lighting con-

ditions in the scene do not change abruptly; 2. the tonal fluc-

tuations are of a global nature not spatially varying; more-

over, there is no significant loss of contrast due to under

and/or over exposures. The YYP problem differs from the

one in [6] in both the effect and the cause. YYP removal

requires an approach of joint tone stabilization and contrast

enhancement, as proposed by this paper.

The YYP phenomenon has similar visual characteris-

tics as poor tone reproduction in high dynamic range im-

ages (HDR). If each video frame is treated in isolation, it

is tempting to try some of the many HDR tone mapping

methods [4, 13] to correct poor use of dynamic range and

improve the visual quality. However, this naive approach

is highly prone to objectionable temporal artifacts. Very

recently, Aydin et al. addressed the problem of temporal co-

herence in tone mapping of HDR video [1]. They proposed

a method of edge-aware filtering method through pixel mo-

tion paths to achieve temporal stability of the enhanced

video. But this work, like other HDR tone mapping meth-

ods, is mainly about how to compress the intensity dynamic

range while maintaining contrast and preventing artifacts;

hence it is not suited to compensate for drastic changes in

object appearance in time as required by the restoration of

YYP videos.

The remainder of this paper is structured as follows.

Section 2 presents an algorithm for temporally-constrained

fuzzy light field segmentation, which is a preparation step

for the main task of inter-frame region-adaptive YYP har-

monization. Section 3 details the YYP harmonization algo-

rithm, in particular explaining the choice of an anchor frame

and the histogram targeting process. Section 4 discusses

how to improve the performance of YYP harmonization by

using an enhanced anchor frame to drive the algorithm de-

veloped in Section 3. Section 5 reports experimental results

and performance evaluations.

2. Temporally-constrained fuzzy light field seg-

mentation

As reasoned in the introduction, our YYP harmoniza-

tion method needs to analyze an unevenly-illuminated video

scene, and separate weakly-illuminated W -regions from

strongly-illuminated S-regions in the input frame. To this

end, the input video signal is decomposed into the lumi-

nance and chrominance components. For the purpose of

segmenting the luminance image I(x, y) by surface illu-

mination strength, we adopt the following image formation

model [7]

I(x, y) = L(x, y) ·R(x, y) (1)

where L(x, y) is the light energy striking on the surface

position corresponding to pixel (x, y), and R(x, y) is the

reflectance of the surface point. Even with great discrep-

ancy in surface illumination in the YYP phenomenon the

light field function L(x, y) is still piecewise smooth, or be-

ing a low-pass signal; in comparison, the reflectance sig-

nal R(x, y) consists of higher frequency components than

L(x, y). Therefore, we can apply the non-linear homomor-

phic filtering to extract the 2D surface illumination function

L(x, y) from the input image I(x, y). The next step is to de-

tect and describe W -regions and S-regions in the low-pass

illumination image L(x, y). By observing that the illumi-

nation strength on a given object surface is nearly constant,

we model the 2D illumination function L(x, y) to be piece-

wise constant. The split-and-merge segmentation algorithm

based on piecewise constant approximation [15] is suited

for our segmentation task and applied to each frame n; the

resulting segments are then classified as W - or S-regions

by the least-squares thresholding, and placed into set R
(n)
W
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Figure 2. Steps of temporally-constrained fuzzy segmentation.

or set R
(n)
S as defined in the introduction. In order to pre-

vent the formation of too small W -regions and S-regions,

a lower bound on the segment size should be set in the

split-and-merge segmentation. As the reader will appreciate

shortly when we present the details of the YYP harmoniza-

tion algorithm, the precision of region boundaries is less

critical for the algorithm performance. However, the above

proposed segmentation process can be refined, if desired,

by one of many edge-aware filtering techniques that can uti-

lize the color information as well [8]. For visual quality of

video restoration, more important than boundary precision

is that the segmentation results should be consistent in time.

Under the assumption that in a given video scene, the fore-

ground object motion or/and camera motion is modest, we

can achieve the desired temporal consistency by the follow-

ing simple and fast inter-frame segmentation technique:

R
(n)
j = ((R

(n−1)
j ∩R

(n)
j )⊕ τ) ∩ (R

(n−1)
j ∪R

(n)
j ),

j ∈ {W,S}
(2)

where τ is the core for morphologic dilation, R
(n)
W (R

(n)
S )

is the temporally smoothed R
(n)
W (R

(n)
S ) with respect to its

counterpart R
(n−1)
W (R

(n−1)
S ) in the previous frame. Set

R
(n)
W (or reciprocally set R

(n)
S ) deterministically classifies

every pixel in frame n to be on a weakly-illuminated (or

strongly-illuminated) object surface or not. Such a hard-

decision classification may, due to segmentation errors,

generate boundary artifacts after pixels in R
(n)
W and R

(n)
S

are gone through two different tone mappings T
(n)
W and

T
(n)
S . We introduce a simple fuzzy classification technique

to eliminate the boundary artifacts. The idea is to weigh

the results of T
(n)
W and T

(n)
S by the likelihood of a pixel be-

ing on a weakly-illuminated object surface. A fuzzy classi-

fier w(n) is generated by convoluting the hard segmentation

R
(n)
W (which takes 1 at W -region and 0 at S-region) of 2D

image with a Gaussian kernel g:

w(n) = R
(n)
W ∗ g (3)

The value of w(n)(x, y) will be used as the likeli-

hood for pixel (x, y) being on weakly-illuminated object

surface. Figure 2 summarizes the temporally-constrained

fuzzy segmentation-classification process presented in this

section.

3. Interframe region-adaptive YYP harmo-

nization

Now we discuss how to construct the tone mappings

T
(n)
W and T

(n)
S for restoring the interframe consistency of

frame n in a YYP-degraded video. All of the following

technical developments, conclusions and methods apply ex-

actly the same way to the construction of T
(n)
W and T

(n)
S .

Therefore, we can drop the subscripts in previous notations

TW , R
(n)
W , TS , R

(n)
S , etc. to avoid symbol clutter, and dis-

cuss the case of T
(n)
W only.

Let h(1),h(2), · · · ,h(N) be the intensity histograms of

W -regions for the N input frames in a given video scene.

We need to select, among the N input frames, frame n∗

such that h(n∗) is statistically the best representative of all
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other N − 1 histograms. Histogram h
(n∗) can be viewed

a generalized centroid of the set {h(1),h(2), · · · ,h(N)}
and is used as the target intensity distribution for all tone-

mapped frames by T (n), 1 ≤ n ≤ N , to closely obey.

Using the Kullback-Leibler distance D(·||·) between dis-

tributions, the generalized centroid histogram h
(n∗) can be

computed as below:

h
(n∗) = argmin

h∈{h(n)}
N

n=1

N
∑

j=0

D(h(j)||h) = argmin
h

N
∑

j=0

H(h(j),h)

= argmin
h

H(h̄,h)

(4)

In other words, among all N frames of the scene, frame n∗

is the one whose histogram has the minimum cross entropy

with respect to the average histogram h̄ of the group.

Upon having selected the anchor intensity histogram

h
(n∗), the tone mapping function T (n) for W -regions of

frame n, 1 ≤ n ≤ N , is computed via histogram matching:

T (n)(k) = argmin
j

|C(n)(k)− C(n∗)(j)| (5)

where C stands for the cumulative density function of the

corresponding histograms.

The next step is to eliminate possible boundary artifacts

caused by separate tone mappings T
(n)
W and T

(n)
S on W - and

S-regions, respectively, as explained in the previous sec-

tion. Recall that the proposed fuzzy segmentation assigns

each pixel (x, y) a likelihood value w(x, y) ∈ [0, 1], with

the pixels around the border of W - and S-regions being far

off from 0 and 1. In the interest of robustness, the input

intensity value I(x, y) is finally mapped to Ĩ(x, y) via the

following affine weighting by the region likelihood w(x, y)
of the pixel:

Ĩ(x, y) = w(x, y)T
(n)
W (I(x, y))+(1−w(x, y))T

(n)
S (I(x, y))

(6)

In the same approach to harmonizing time-varying lu-

minance in YYP-degraded video, we can neutralize tempo-

ral variations of chromaticity, if necessary, by matching the

chrominance distributions of all frames to that of the an-

chor frame n∗. Any two-dimensional chrominance space,

such as (U, V ) in Y UV or (H,S) in HSI , can be used; in

this paper we adopt the (U, V ) chrominance space. In or-

der for the (U, V ) distribution of frame n with mean vector

µ(n) and covariance matrix Σ
(n) to match that of the an-

chor frame n∗ with mean vector µ∗ and covariance matrix

Σ
∗, we solve the following optimization problem

{A(n), t(n)} =

argmin
A,t

‖Aµ(n) + t− µ∗‖
2

2 + ‖AΣ
(n)

A
T −Σ

∗‖
2

F .

(7)

(a) (b)

Figure 3. (a) a YYP-degraded frame n
∗ (W-region); (b) the en-

hanced version by the method proposed in section 4.

to determine the affine transform A
(n) and the translation

vector t(n). It can be shown (derivation details dropped to

save space) that transforms A
(n) and t

(n), when applying

to all pixel chrominance vectors (U, V ) of frame n, achieve

the best chrominance match between anchor frame n∗ and

input frame n in a least-squares sense.

4. Contrast enhancement in YYP restoration

Often after the YYP degradation, the representative

frame n∗ chosen by (4) is still of poor visual quality, with

ill-shaped histograms h
(n∗)
W and h

(n∗)
S . In such cases we

can and should first enhance the anchor frame n∗, and then

drive the YYP harmonization algorithm with the histograms

of the enhanced anchor frame.

Any contrast enhancement can be applied to generate an

improved anchor frame and the corresponding histograms

of W - and S-regions. In this section, we propose an en-

hancement algorithm based on the second-order statistics of

the input frame n∗ and Weber’s perception law. The effect

of anchor frame enhancement is shown in Fig. 4.

According to Weber’s perception law [7], a metric C for

image contrast is

C ∝
∆I

I
(8)

which is the ratio of local signal variation ∆I over the signal

(stimulus) strength I . Based on Weber’s perception princi-

ple and the second-order statistics of the input image, we de-

fine the expected contrast C(T ) for a histogram transform-

based tone mapping T to be

C(T ) =

L−1
∑

i=0

L−1
∑

j=1

pij

[

T (j)− T (i)

j + i

]

⇒ C(s) =

L−1
∑

i=0

L−1
∑

j=1

pij ·
1

j + i

j
∑

k=i+1

sk

=

L−1
∑

k=1

sk

k−1
∑

i=0

L−1
∑

j=k

pij

j + i

(9)
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Figure 4. Rows: two YYP-degraded frames and corresponding restored results. Columns: (a) original; (b) output by CLAHE [16]; (c)

output by method [5]; (d) output by method [6]; (e) output by the proposed method.

where pij is the joint probability of two spatially adjacent

pixels taking on gray levels i and j respectively, sk =
T (k) − T (k − 1), and L is the number of gray levels sup-

ported by the display device. In (9),
T (j)−T (i)

j+i
is the local

contrast of the pixels based on Weber’s law (8). The ex-

pected contrast C(T ) can be expressed as a function of vec-

tor s = (s1, s2, · · · , sL); moreover, the objective function

C(s) is linear in s:

C(s) = ϕT
s, ϕk =

k−1
∑

i=0

L−1
∑

j=k

pij

j + i
(10)

It should be noted that there is a one-to-one correspondence

between T and s under the constraint s ≥ 0; equivalently,

s can also represent histogram transform or tone mapping

function.

Contrast enhancement calls for maximizing the expected

contrast C(s). But high visual quality also requires texture

richness, which is associated with high entropy H(h∗(s)),
h
∗(s) being the histogram of anchor frame n∗ after being

enhanced by tone mapping s. Finally, we determine the op-

timal tone mapping s by solving the following optimization

problem:

s
∗ =argmax

s

{C(s) + λH(h∗(s))}

s.t.

L−1
∑

k=1

sk = L, s ≥ 0
(11)

where the Lagrangian multiplier λ is used to adjust the rela-

tive importance of edge sharpness and tone continuity. In

the above development, h
∗(s) can be replaced by either

h
∗

W (s) and h
∗

S(s). In other words, the same enhancement

algorithm can be applied to improve h
(n∗)
W and h

(n∗)
S for the

purpose of better YYP restoration as described at the open-

ing of this section.

Algorithmically, the discrete optimization problem (11)

is of the same structure as that of optimal scalar quantizer

design; thus it can be solved efficiently by an optimal quan-

tization algorithm [14] with a straightforward modification

in the cost function.

The novelty of our image enhancement technique is to

take expectation of a Weber’s contrast metric C(s) over the

joint probability pij . The second-order statistics pij is used

because the very notation of contrast directly relates to spa-

tially adjacent pixel pairs.

5. Experimental results and performance eval-

uation

We conducted extensive experiments with the proposed

YYP restoration method on videos captured by smart-

phones and laptops under poor, uneven illumination condi-

tions and with both camera and object motions. Some sam-

ples of our experimental results are presented below; more

example videos are available as supplementary materials on

the internet.

Because the YYP-type of video degradation as identified

by this paper has hardly been treated in the literature, there

are no previous YYP video restoration methods to compare

with. A technique of close spirit to ours is the one on video
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Figure 5. Rows: three YYP-degraded frames and corresponding restored results. Columns: (a) original; (b) output by CLAHE [16]; (c)

output by method [5]; (d) output by method [6]; (e) output by the proposed method.
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Figure 6. Rows: two YYP-degraded frames and corresponding restored results. Columns: (a) original; (b) output by CLAHE [16]; (c)

output by method [5]; (d) output by method [6]; (e) output by the proposed method.

tonal stabilization by Farbman et al. [6]; this work is com-

pared with the proposed YYP harmonization method. Since

a simple way of attacking the YYP problem is to perform

tone mapping on each input frame, we add to our compar-

ison and evaluation group two single-frame methods: the

contrast limited adaptive histogram equalization (CLAHE)

[16], which represents the family of histogram transform-

based global tone mapping methods; and the enhancement

method based on edge-preserving decomposition (EPD) by

Farbman et al. [5], which represents the family of edge-

aware local filter-based tone mapping methods. The video

tonal stabilization method also requires an anchor frame;

this anchor frame is chosen manually to be an input frame

of best visual quality for fair comparison.

In Figure 4 we compare the above four methods and

demonstrate how they behave when applied to a YYP-

degraded header-and-shoulder video. This scenario of face-

to-face video communication is very common in social me-
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dia (e.g., Apple’s FaceTime), and it is highly susceptible

to YYP degradation because the video is frequently shot in

unfavorable indoor lighting, inexpensive cameras on mobile

devices are limited in optical capability, and users tend to be

naive in operating the camera.

The video scene in Figures 4 and 1 is backlit. The un-

even illumination, as explained in the introduction, causes

the camera’s auto-exposure to flip-flop accompanying the

motions of the person or/and camera. The foreground per-

son (W -region) becomes severely underexposed from time

to time, meanwhile the background (S-region) is also un-

stable and suffers from overexposure intermittently (see the

uploaded video supplementary materials). As shown in Fig-

ure 4 and the supplementary video file, the two single-frame

methods are ineffective to neutralize the temporal intensity

fluctuations, particularly on the face. The method [6] per-

forms much better than the single-frame methods in terms

of the temporal consistency in the foreground intensity, but

it fails to correct the overexposure problem in the back-

ground. The proposed method appears to be more effec-

tive and robust than all others; it removes frame-to-frame

intensity drifting in both foreground and background and at

the same time enhances under- and over-exposed regions,

greatly boosting the video quality.

The YYP degradation shown in 5 has a different polar-

ity from that in Figure 4: the background is underlit and

underexposed, where the person in the foreground is well

lit. The background becomes even darker as the person

moves closer to the light source (frame 170 in the figure).

This generates serious halo artifacts in CLAHE output. The

method [5] fails to bring any temporal consistency to the

background intensity. The method [6] stabilizes the time-

varying background intensity but in the process it leaves

the foreground object overexposed. Again, the proposed

method performs noticeably better than others in both W -

region (the background) and S-region (the foreground ob-

ject), retaining temporal consistency and rich spatial details.

Figure 6 shows a YYP-degraded video shot in an outdoor

situation, together with restored results by the four different

methods. Here the YYP phenomenon happens when the

camera focus moves from the book (frame 1) to the sky

(frame 100). The two single-frame methods fail to cor-

rect the underexposure problem in the foreground (frame

100) and they leave the drastic intensity changes in time

largely uncompensated. The method [6], on the other hand,

does a better job in the temporal consistency of overall in-

tensity; but it makes the sky severely overexposed, wiping

out details such as the clouds. In comparison, the proposed

method effectively mitigates the underexposure problem in

the W -region (the book) without overexposing the S-region

(the sky); its restored video has a more steady tone repro-

duction largely immune to camera motion.

To further validate the efficacy of the proposed YYP har-

(a) (b)

(c) (d)

Figure 7. Performance comparison of different methods on video

sequence of Fig. 1. (a) Entropy of the W -region; (b) Entropy of

the S-region; (c) Average intensity of the W -region; (d) Average

intensity of the S-region.

monization method, we evaluate it and its alternatives in

two objective metrics as well. The first metric is the en-

tropy of the restored video. The entropy can measure both

the temporal consistency and the detail richness of the re-

stored video. In Figure 7 we plot separately the entropies of

W -regions and S-regions that are restored by the four dif-

ferent methods. The plotted curves step through all frames

of the video scene in Figure 1 to demonstrate the tempo-

ral behaviors of the different methods. As being evident

in the figure, the proposed method has the highest entropy

in W -regions by a significant margin and almost ties for

the highest entropy in S-regions, corroborating our empiri-

cal findings that the proposed method reproduces richer de-

tails than other methods. Moreover, the proposed method

has nearly flat entropy curves, whereas other methods have

much varied entropy values in time. This distinction is also

clear by the second objective metric: the average frame lu-

minance (Figure 7(c)(d)). The restored video by the pro-

posed method keeps a nearly constant luminance in both

W - and S-region, while the two single-frame methods suf-

fer from intensity fluctuations, and the tonal stabilization

method sits in between.
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