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Abstract

This work focuses on the problem of multi-label learning

with missing labels (MLML), which aims to label each test

instance with multiple class labels given training instances

that have an incomplete/partial set of these labels (i.e. some

of their labels are missing). To handle missing labels, we

propose a unified model of label dependencies by construct-

ing a mixed graph, which jointly incorporates (i) instance-

level similarity and class co-occurrence as undirected edges

and (ii) semantic label hierarchy as directed edges. Un-

like most MLML methods, We formulate this learning prob-

lem transductively as a convex quadratic matrix optimiza-

tion problem that encourages training label consistency and

encodes both types of label dependencies (i.e. undirected

and directed edges) using quadratic terms and hard linear

constraints. The alternating direction method of multipli-

ers (ADMM) can be used to exactly and efficiently solve

this problem. To evaluate our proposed method, we con-

sider two popular applications (image and video annota-

tion), where the label hierarchy can be derived from Word-

net. Experimental results show that our method achieves

a significant improvement over state-of-the-art methods in

performance and robustness to missing labels.

1. Introduction

In multi-label learning, we assume that an instance can

be assigned to multiple classes simultaneously. For exam-

ple, an image can be annotated using several tags, and a

document can be associated with multiple topics. Although

many multi-label learning methods have been proposed,

many of such methods require completely labeled training

instances. In practical applications, most training instances

are only partially labeled, with some or all of the labels not

provided/missing. Let us consider the task of large-scale

image annotation, where the number of classes/tags is large

(e.g. using labels of ImageNet [12]). In this case, a hu-

man annotator can only realistically annotate each training

image with a subset of tags. Learning from such partially

Instance similarity Class co-occurrence Semantic dependency
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Input image

Figure 1: The left column includes two example images

from the ESP Game [34] dataset, and their corresponding

features and labels are shown in the right column. The solid

box denotes a provided label, while the dashed box indi-

cates a missing label. The red (semantic hierarchy), blue

(class co-occurrence), and green (instance similarity) edges

constitute a mixed graph. For clarity, we only present the

relevant labels and edges, while other candidate labels and

edges are ignored.

labeled instances is referred to as the multi-label learning

with missing labels (MLML) problem [39, 45].

As labels are usually related by semantic meanings or

co-occurrences, the key to filling and learning from miss-

ing labels is a good model to represent label dependency.

One widely used model for label dependency is an undi-

rected graph, through which the label information can be

propagated among different instances and among differ-

ent classes. For example, the label dependency between

a pair of labels, such as instance similarity and class co-

occurrence, can be represented using such a graph (see

green and blue edges in Figure 1). However, as stated in

[39, 41], class co-occurrence that is derived from training

labels can be inaccurate and even detrimental when many

missing labels exist. Li et al. [25] propose to alleviate this

limitation by using an auxiliary source (such as Wikipedia)
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to estimate co-occurrence relations.

Interestingly, the semantic dependency between two

classes, such as “animal–>horse” and “plant–>grass” as

shown in Figure 1, can foster further label dependency and

improve label predictions in the test. In this case, it is intu-

itive to require that the label score (e.g. the presence prob-

ability) of the parent class cannot be lower than that of its

child class. This is traditionally referred to as the seman-

tic hierarchy constraint [2]. The undirected graph (with

instance similarity and class co-occurrence edges) cannot

guarantee that the final label predictions will satisfy all se-

mantic hierarchy constraints. To address this problem, we

add semantic dependencies into the graph as directed edges,

thus, resulting in an overall mixed graph that encourages (or

enforces) three types of label dependency (refer to Figure 1

for an example).

The goal of this work is to learn from partially labeled

training instances and to correctly predict the labels of test

instances, which should satisfy the semantic hierarchy con-

straints. Firstly, motivated by [39, 41], a discrete objective

function is formulated to simultaneously encourage consis-

tency between predicted and ground truth labels and encode

traditional label dependencies (instance similarity and class

co-occurrence). Semantic hierarchy constraints are incor-

porated as hard linear constraints in the matrix optimization.

The discrete problem is further relaxed to a continuous con-

vex problem, which can be solved using ADMM [3]. We

summarize our contributions next.

Contributions: (1) We address the MLML problem by

using a mixed graph to encode a network of label dependen-

cies: instance similarity, class co-occurrence, and semantic

hierarchy. (2) Learning on this mixed graph is formulated as

a linearly constrained convex matrix optimization problem

that is amenable to efficient solvers. (3) Our extensive ex-

periments on the tasks of image and video annotation show

the superiority of our method in comparison to the state-

of-the-art. (4) We augment labeling of several widely used

datasets, including Corel5k [13], ESP Game [34], IAPRTC-

12 [21] and MediaMill [30], with a fully labeled semantic

hierarchy drawn from Wordnet [14]. This ground truth aug-

mentation will be made publicly available to enable further

research on the MLML problem in computer vision.

2. Related work

In the literature of multi-label learning, the previous

works that are designed to handle the missing labels can be

generally partitioned into four categories. First, the miss-

ing labels are directly treated as negative labels, including

[8, 31, 5, 9, 1, 36, 37, 10]. Common to these methods is

that the label bias is brought into the objective function. As

a result, their performance is greatly affected when mas-

sive ground-truth positive labels are initialized as negative

labels. Second, filling in missing labels is treated as a ma-

trix completion (MC) problem, including [20, 6, 43]. A

recent work called LEML [45] is proposed in the empiri-

cal risk minimization (ERM) framework. Both MC mod-

els and LEML are based on the low rank assumption. Al-

though the low rank assumption is widely used, it may not

hold in practical multi-label problem. Third, missing labels

can be treated as latent variables in probabilistic models, in-

cluding the model based on Bayesian network [24, 33] and

conditional restricted Boltzmann machines (CRBM) model.

Last, Wu et al. [39] define three label states, including pos-

itive labels +1, negative labels −1 and missing labels 0, to

avoid the label bias. However, the two solutions proposed

in [39] involves matrix inversion, which limits the scala-

bility to handle larger datasets. Wu et al. [41] propose an

inductive model based on the framework of regularized lo-

gistic regression. It also adopts three label states and a hinge

loss function to avoid the label bias. However, the classifier

parameters corresponding to each class have to be learned

sequentially. Furthermore, the computational cost of this

method increases significantly with the number of classes

and becomes prohibitive for very large datasets.

Hierarchical multi-label learning (HML) [19] has been

applied to problems where the label hierarchy exists, such

as image annotation [32], text classification [28, 29] and

protein function prediction [2, 44]. Except for a few cases,

most existing HML methods only consider the learning

problem of complete hierarchical labels. However, in real

problems, the incomplete hierarchical labels commonly oc-

cur, such as in image annotation. Yu at al. [44] recently

propose a method to handle the incomplete hierarchical la-

bels. However, the semantic hierarchy and the multi-label

learning are used seperately, such that the semantic hierar-

chy constraint can not be fully satisfied. Deng et al. [11]

develops a CRF model for object classification. The seman-

tic hierarchy constraint and missing labels are also incorpo-

rated in this model. However, a significant difference is that

[11] focuses on a single object in each instance, while there

are multiple object in each instance in our problem.

In the applications of image annotation and video an-

notation, both missing labels and semantic hierarchy have

been explored in many previous works, such as [31, 5, 9,

42, 26, 16] (missing labels) and [32] (semantic hierarchy).

However, to the best of our knowledge, no previous work in

image and video annotation has extensively studied missing

labels and semantic hierarchy simultaneously.

Note that the semantic hierarchy constraint used in our

model is similar to the ranking constraint [15, 5] that is

widely used in multi-label ranking models, but there are

significant differences. Firstly, the ranking constraint used

in these models means the predicted value of the provided

positive label should be larger than the one of the provided

negative label, while the semantic hierarchy constraint in-

volves the ranking between the parent and the child class.
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Besides, the ranking constraint is always incorporated as

the loss function, while the semantic hierarchy constraint is

formulated as the linear constraint in our model.

3. Problem and proposed model

3.1. Problem definition

Similar to traditional MLML problems, our method

takes as input two matrices: a data matrix X =
[x1, · · · ,xn] ∈ R

d×n, which aggregates the d-dimensional

feature vectors of all n (training and test) instances, and a la-

bel matrix Y = [y1, · · · ,yn] ∈ {0, 1
2 ,+1}m×n, which ag-

gregates the m-dimensional label vectors of the instances.

Therefore, each instance xi can take one or more labels

from the m different classes {c1, . . . , cm}. Its correspond-

ing label vector yi = Y.i determines its membership to

each of these classes. For example, if Yji = +1, then xi

is a member of cj and if Yji = 0, then xi is not a mem-

ber of this class. However, if Yji = 1
2 , then the member-

ship of xi to cj is considered missing (i.e. it has a missing

label). With this notation, all m labels of each testing in-

stance xk are missing, i.e. yk = 1
21. The semantic hier-

archy is encoded as another matrix: Φ = [φ1, . . . ,φne
] ∈

R
m×ne , with ne being the number of directed edges. φi =

[0, . . . , 1, . . . ,−1, . . . , 0]⊤ denotes the index vector of the

ith directed edge (see Figure 1), with φi(iparent) = 1 and

φi(ichild) = −1, while all other entries are 0.

Our goal is to obtain a complete label matrix Z ∈
{+1, 0}m×n that satisfies the following three properties si-

multaneously. (i) Z is sufficiently consistent with the pro-

vided (not missing) labels in Y, i.e. Zij = Yij if Yij �=
1
2 .

(ii) Z benefits from label similarity among similar instances

and class co-occurrence, i.e. if xi and xj have similar fea-

tures or the classes they belong to co-occur, then their cor-

responding predicted labels should be similar. (iii) Z is con-

sistent with the semantic hierarchy Φ. To enforce this, we

ensure that if ca is the parent of cb, a hard constraint is ap-

plied, which guarantees that the score (the presence prob-

ability) of ca should not be smaller than the score of cb.

This constraint ensures that the final predicted labels are

consistent with the semantic hierarchy. By incorporating

all three criteria simultaneously, label information is propa-

gated from provided labels to the missing labels.

3.2. Label consistency

Label consistency of Z with Y is formulated as

ℓ(Y,Z) =

n,m
∑

i,j

Yij(Yij − Zij) = const − tr(Y
⊤
Z), (1)

where const = tr(Y
⊤
Y), and Y is defined as Yij =

(2Yij−1)∗τij , where τij is a penalty function mismatches

between Yij and Zij . We set τij in the following man-

ner. If Yij = 0, then τij = r− > 0, if Yij = +1, then

τij = r+ > r−, and if Yij = 1
2 , then τij = 0. In doing

so and unlike the work in [39, 41], a higher penalty is in-

curred if a ground truth label is +1 and predicted as 0, as

compared to the reverse case. This idea embeds the obser-

vation that most entries of Y in many multi-label datasets

(with a relatively large number of classes) are 0 and that +1
labels are rare. Of course, missing labels are not penalized.

Eq (1) satisfies the label consistency. When Yij = +1, Zij

is encouraged to be +1; when Yij = 0, Zij is encouraged

to be 0; when Yij =
1
2 , there is no constraint on Zij .

3.3. Instance-level label dependency

Similar to [39, 41], we incorporate instance-level label

similarity, i.e. property (ii), using the regularization term in

Eq (2).

tr(ZLXZ⊤) =

m,n,n
∑

k,i,j

WX(i, j)

2

[

Zki
√

dX(i)
−

Zkj
√

dX(j)

]2

,

(2)

where instance similarity matrix WX is: WX(i, j) =

exp−
‖xi−xj‖

2

εiεj
, ∀i �= j and WX(i, i) = 0. The kernel

size εi = ‖xi − xh‖2 and xh is the h-th nearest neigh-

bor of xi. Similar to [39], we set h = 7. The normaliza-

tion term dX(i) =
∑n

j WX(i, j) makes the regularization

term invariant to the different scaling factors of the elements

of WX [35]. The normalized Laplacian matrix is LX =

I−D
− 1

2

X WXD
− 1

2

X with DX = diag(dX(1), · · · ,dX(n)).

3.4. Class-level label dependency

Here, we consider two types of class-level label depen-

dency, namely class co-occurrence and semantic hierarchy.

Class co-occurrence: This dependency is encoded using

the regularization term in Eq (3).

tr(Z⊤LCZ) =

n,m,m
∑

k,i,j

WC(i, j)

2

[

Zik
√

dC(i)
−

Zjk
√

dC(j)

]2

.

(3)

Here, we define the class similarity matrix WC as:

WC(i, j) =
<Yi·,Yj·>

‖Yi·‖·‖Yj·‖
, ∀i �= j and WC(i, i) = 0.

The normalized Laplacian matrix is defined as LC = I −

D
− 1

2

C WCD
− 1

2

C with DC = diag(dC(1), · · · ,dC(m)).

Semantic hierarchy: To enforce the semantic hierarchy

constraint, i.e. property (iii), we apply the following con-

straint: Z(iparent, j) ≥ Z(ichild, j), ∀i = 1, . . . , ne, ∀j =
1, . . . , n. The resulting constraints can be aggregated in ma-

trix form, as

Φ⊤Z ≥ 0. (4)
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Algorithm 1 ADMM for the proposed ML-MG problem

Input: data matrix X, initial label matrix Y, Laplacian ma-

trices LX and LC, parameters β, γ and ρ

Output: predicted label matrix Z

1: Initialize Z0 = Y, Z0 as: if Y(i, j) �= 0.5, then set

Z0(i, j) = Y(i, j), otherwise set Z0(i, j) = 0; Q =
Λ = 0, and t = 1

2: while not converge do

3: Update Zt+1 according to Eq (8);

4: Update Qt+1 according to Eq (9);

5: Update Λt+1 according to Eq (10);

6: Set t = t+ 1; ρ = 5ρ
7: end while

8: return Z∗ = Zt+1.

3.5. MLML with mixed graph (ML-MG)

We formulate the MLML problem using the constructed

mixed graph as a binary matrix optimization problem by

linearly combining Eqs (1,2,3) to form the objective and Eq

(4) to enforce the semantic hierarchy constraints.

argmin
Z

− tr(Y
⊤
Z) + βtr(ZLXZ⊤) + γtr(Z⊤LCZ),

s.t. Z ∈ {0, 1}m×n, Φ⊤Z ≥ 0. (5)

Due to the binary constraint on Z, it is difficult to effi-

ciently solve this discrete problem. Thus, we use a conven-

tional box relaxation, which relaxes Z to take on values in

[0, 1]m×n. The relaxed ML-MG problem in Eq (5) is a con-

vex quadratic problem (QP) with linear matrix constraints

(refer to the supplementary material for more details).

argmin
Z

− tr(Y
⊤
Z) + βtr(ZLXZ⊤) + γtr(Z⊤LCZ),

s.t. Z ∈ [0, 1]m×n, Φ⊤Z ≥ 0. (6)

Due to its convexity and smoothness, the ML-MG prob-

lem can be efficiently solved by many solvers. In this work,

we adopt the alternative direction of method of multipliers

(ADMM) [3] for this purpose, since it is known to have

attractive computational properties that have been recently

exploited to tackle other popular problems in computer vi-

sion, including object tracking [46, 48], image classification

[47], and image registration [18].

4. ADMM for ML-MG

After adding a non-negative slack variable Q ∈ R
ne×n,

we can formulate the augmented Lagrange function of

Problem (6) as in Eq (7), where Z ∈ [0, 1]m×n and Q ≥ 0.

Lρ(Z,Q,Λ) = −tr(Y
⊤
Z) + βtr(ZLXZ⊤) (7)

+ γtr(Z⊤LCZ) + tr[Λ⊤(Φ⊤Z−Q)] +
ρ

2
||(Φ⊤Z−Q)||2F

Here, Λ ∈ R
ne×n is the Lagrange multiplier (dual vari-

able), ρ > 0 is a tradeoff parameter, and || · ||F denotes

the Frobenius matrix norm. Following the conventional

ADMM framework [3], we can minimize Problem (6) by

alternating index. When updating Zt in Eq (8), we set At =
−Y+ΦΛt−ρΦQt, Bt = βLX and Ct = γLC+ ρ

2ΦΦ⊤.

The resulting problem is a convex QP with box constraints

that can be efficiently solved using projected gradient de-

scent (PGD) with exact line search [4]. Moreover, the up-

dates for Qt and Λt are closed form. More details of the

optimization are provided in the supplementary material.

Zt+1 = argmin
Z∈[0,1]m×n

Lρ(Z,Qt,Λt) (8)

= argmin
Z∈[0,1]m×n

tr[A
⊤

t Z] + tr[ZBtZ
⊤] + tr[Z⊤CtZ]

Qt+1 = argmin
Q≥0

Lρ(Zt+1,Q,Λt) (9)

= max(0,Φ⊤Zt+1 +
1

ρ
Λ⊤

t )

Λt+1 = Λt + ρ[Φ⊤Zt+1 −Qt+1]. (10)

The ADMM solution to the ML-MG problem is summa-

rized in Algorithm (1). Based on the proof in [17, 27], our

ADMM algorithm is guaranteed to converge to the global

minimum of Problem (6).

5. Experiments

In this section, we evaluate the proposed method and the

state-of-the-art methods on four benchmark datasets in im-

age annotation and video annotation.

5.1. Experimental setup

Datasets. Four benchmark multi-label datasets are used in

our experiments, including Corel5k [13], ESP Game [34],

IAPRTC-12 [21], and MediaMill [30]. These datasets are

chosen because they are representative and popular bench-

marks for comparative analysis among MLML methods.

Since the scope of this paper is not feature design, we ob-

tain the data and label matrices (X and Y) of the first three

image datasets from the seminal work [22] 1. Each image in

these datasets is described by the dense SIFT features and

is represented by a 1000-dimensional vector. The features

and labels of the video dataset MediaMill are downloaded

from the ‘Mulan’ website 2.

Semantic hierarchy. We build a semantic hierarchy for

each dataset based on Wordnet [14]. Specifically, for each

dataset, we search for each class in Wordnet and extract one

or more directed paths (i.e., a long sequence of directed

edges from parent class to child class). In each path, we

identify the nearest class that is also in the label vocabulary

1http://lear.inrialpes.fr/people/guillaumin/data.php
2http://mulan.sourceforge.net/datasets-mlc.html
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(i.e. the set {c1, · · · , cm} of all classes of this dataset) as the

parent class. This procedure is repeated for all m classes in

the dataset to form the semantic hierarchy matrix Φ. In the

same manner, we build the hierarchy for each of the four

datasets. Similar to [32], we also consider two types of se-

mantic dependency: “is a” and “is a part of”. For example,

a part of the semantic hierarchy of Corel 5k is shown in

Figure 2. Due to the space limit, we provide the complete

semantic hierarchies and the complete label matrices for all

four datasets in the supplementary material. A summary

of these hierarchies are given in Table 1.

Vehicle

CarsCrafts Truck Train

   PlaneBoats LocomotiveShips

PropJet

    F16

A B B  A

A B B  A

Deer Horn

 Antlers Elk  Caribou  Moose

Figure 2: A part of the semantic hierarchy of Corel 5k

dataset # nodes # edges # root # leaf # singleton depth

Corel 5k [13] 260 138 37 98 99 5

ESP Game [34] 268 129 41 92 120 4

IAPRTC-12 [21] 291 179 36 132 98 4

MediaMill [30] 101 63 14 52 30 3

Table 1: Details of the semantic hierarchies for the different

datasets that we augmented.

Note that in all the datasets, the provided ground-truth

label matrices do not fully satisfy the semantic hierarchy

constraints. In other words, some images or videos are la-

beled with a child class but not with the corresponding par-

ent class. Therefore, we augment the label matrix according

to the semantic hierarchy for each dataset. The semanti-

cally enhanced comprehensive ground-truth label matrix is

referred to as “complete”, while the original label matrix

as “original”. The basic statistics of both the complete and

original label matrix are summarized in Table 2.

Methods for comparison. Several state-of-the-art and re-

cent multi-label methods that can handle missing labels

are used for comparison, including MLR-GL [5], MC-Pos

[6], FastTag [9], MLML-exact and MLML-appro [39] and

LEML [45]. MLR-GL and FastTag are specially developed

for image annotation, while other methods are general ma-

chine learning methods. Also, a state-of-the-art method in

hierarchical multi-label learning, CSSAG [2], is also evalu-

ated. CSSAG is a decoding method based on the predicted

label matrix of one another algorithm, i.e., the kernel de-

pendency estimation (KDE) algorithm [38]. However, the

KDE algorithm doesn’t work in the case of missing labels.

To make a fair comparison between CSSAG and ML-MG,

the results of ML-PGD are used as the input of CSSAG.

The results are obtained with publicly available MATLAB

source code of these methods provided by the authors. As

a baseline, we also compare with a binary SVM classifier3,

which is trained on only labeled instances of each class.

Evaluation metrics. Average precision (AP) [49] is

adopted to measure the ranking performance of the contin-

uous label matrix Z generated by each of the 8 methods.

Top-5 accuracy is also used to measure the predicted dis-

crete labels (the top 5 ranked labels of each instance are set

as positive, while others are negative labels). To quantify

the degree to which the semantic hierarchy constraints are

violated, we adopt a simplified hierarchical Hamming loss,

similar to [28],

ℓkH(Ẑk,YC) =
1

nm

n,m
∑

i,j

I
[

(Ẑk(i, j) = 1)∧ (11)

(Ẑk(pa(i), j) = 0) ∧ (YC(pa(i), j) = 0)
]

,

where Ẑk denotes the discrete label matrix generated by

setting the top-k labels in the continuous label vector of

each instance as +1, while all others as 0. YC denotes the

complete ground-truth label matrix. Then we define an av-

erage hierarchical loss (AHL) as ℓH = 1
|S|

∑

k∈S ℓkH . We

set S = {5, 10, 20, 50, 100, 150} in our experiments.

Other settings. To simulate different scenarios with miss-

ing labels, we create training datasets with varying portions

of provided labels, ranging from 5% (i.e., 95% of the whole

training label matrix is missing) to 100% (i.e., no missing

labels). In each case, the missing labels are randomly cho-

sen among leaf and singleton classes4 in the semantic hi-

erarchy, and are set to 1
2 in the original label matrix of the

training data. We repeat this process 5 times to obtain differ-

ent data splits. In all cases, the experimental results of test

data are computed based on the complete label matrix. The

reported results are summarized as the mean and standard

deviation over all the runs. The average runtime of each

method on the different datasets is also reported. Because

the authors of [45] only provide the MEX file for LEML un-

der Ubuntu system, we run it on a workstation with Ubuntu

12.04.2 and Intel Xeon X5650 2.67 GHz CPU. All other

methods are run on the same machine with Windows 7. The

trade-off parameters β and γ are tuned by cross-validation.

The tuning ranges are set as β ∈ {0.1, 1, 5, 10, 50} and

γ ∈ {0, 0.01, 0.1, 1, 10}. Both WX and WC are defined

as sparse matrices. The numbers of neighbors of each in-

3Trained with the LIBSVM package [7].
4If missing labels are generated on root and intermediate classes, many

of them can be directly inferred as positive labels if their children classes

are positive. Consequently the true missing label proportion may be incon-

sistent with the original designed proportion. To avoid this variation, we

only generate missing labels on leaf and singleton classes.
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dataset # instances (training, test) # class # feature kX , kC ,
r+

r−
label matrix avg pos-class/inst avg inst/pos-class pos-class rate

Corel 5k [13] 4999 = 4500 + 499 260 1000 20, 10, 100
original 3.40 65.30 1.31%

complete 4.84 93.06 1.86%

ESP Game [34] 20770 = 18689 + 2081 268 1000 20, 10, 100
original 4.69 363.2 1.75%

complete 7.27 563.6 2.71%

IAPRTC-12 [21] 19627 = 17665 + 1962 291 1000 20, 10, 100
original 5.72 385.71 1.97%

complete 9.88 666.3 3.39%

MediaMill [30] 43907 = 30993 + 12914 101 120 20, 10, 100
original 4.38 1902 4.33%

complete 6.17 2680 6.10%

Table 2: Data statistics of features and label matrices of four benchmark datasets.

Figure 3: Average precision (top) and top-5 accuracy (bottom) results of four benchmark datasets for methods without

semantic hierarchy. The bar on each point indicates the corresponding standard deviation. Figure better viewed on screen.

stance/class kX and kC are set as 20 and 10 respectively.

5.2. Results without semantic hierarchy

Figure 3 shows AP and top-5 accuracy results of the

eight methods when the semantic hierarchy is not used, i.e.,

when Φ = 0. In this case, the inequality constraints in

ML-MG are degenerate. Then the proposed model is a con-

vex QP with box constraints that is solvable using the PGD

method. We denote the hierarchy-free version of ML-MG

as ML-PGD. ML-PGD consistently outperforms the other

methods, thus, showing its superiority over other MLML

methods even without hierarchy information. The improve-

ment over the most competitive method on the four datasets

is usually 5% (AP) or 3% (accuracy). Compared with

MLML-exact and MLML-approx, ML-PGD shows signifi-

cant improvement, especially when large proportions of the

labels are missing. This is due to two main reasons. Firstly,

there are many noisy negative labels in the original training

label matrix, i.e., some positive labels 1 are set to 0. Since

a larger penalty is incurred when misclassifying a positive

label in ML-PGD, the influence of noisy negative labels can

be alleviated. However, this is not the case for both MLML-

exact and MLML-approx. Secondly, ML-PGD does not

give any bias to missing labels. In contrast, missing labels

are encouraged to be intermediate values between nega-

tive and positive labels in MLML-exact and MLML-approx,

which brings in label bias. This is why their performance

decreases significantly as the missing proportion increases.

Interestingly, most of the multi-label methods are outper-

formed by the binary SVM in most cases. This suggests

that they are sensitive to noisy and missing labels. Also, we

note that some of the baseline methods fail to produce re-

sults in some test cases, especially when the missing label

proportion is high. For example, SVM fails when there are

no positive instances for some classes. Because of its ex-

tremely slow runtime (> 104 seconds per iteration), it was

infeasible to run MLR-GL on the last three datasets. Sim-

ilarly, the high memory requirements of MLML-exact and

MLML-approx preclude running them on MediaMill data.

5.3. Results with semantic hierarchy

The results of utilizing the semantic hierarchy are shown

in Figure 4, where the AP results of ML-PGD are repeated

to facilitate the comparison.

ML-PGD vs. ML-MG. In the case of 0% missing labels,

the improvement of ML-MG over ML-PGD ranges from

10%− 19% across the four datasets. This suggests that the

semantic hierarchy constraints provide very useful informa-
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Figure 4: Average precision (AP) and average hierarchical loss (AHL) results with semantic hierarchy.

tion to correct the noisy negative labels. Also, ML-MG sig-

nificantly outperforms ML-PGD at high missing label pro-

portions. This lends evidence to the fact that instance-level

similarity and class co-occurrence are not enough to regu-

larize the MLML problem and that semantic hierarchy pro-

vides essential information to fill in missing labels.

CSSAG vs. ML-MG. We take the continuous labels gener-

ated by ML-PGD as the input to CSSAG, which will one of

two processing choices: one is to change the input continu-

ous label score to 0 according to the semantic hierarchy and

the predefined number of positive labels, while the other is

to keep it unchanged. Thus, the AP results of its continu-

ous outputs are similar to those of its input label matrix, i.e.,

ML-PGD. Although CSSAG can ensure that there are no in-

consistent labels in its discrete label matrix (setting all pos-

itive continuous labels as discrete positive labels), it cannot

provide a consistent continuous label ranking. In contrast,

ML-MG can satisfy these two conditions simultaneously.

Qualitative Results. Figure 5 shows labels predicted by

our proposed ML-MG method when it is applied to the task

of image annotation. It is worthwhile to note that parent

classes are always ranked ahead of their children classes,

thus, visualizing the direct effect of semantic hierarchy. Due

to the space limit, more qualitative examples are provided

in the supplementary material.

5.4. Convergence and sensitivity to initialization

Here, we evaluate the convergence of ML-MG using dif-

ferent label initializations. We only present the curve in the

case of 0% missing labels, as shown in Figure 6. In the top

row, we initialize the label matrix Z by setting all missing

labels as 0. In this case, ML-MG converges to its best AP

in less than 30 iterations on Corel 5k and in less than 10

on the other datasets. In the bottom row, missing labels are

initialized as random values in [0, 1]. We repeat the random

initializations 10 times and report mean and std values. The

Figure 5: Some prediction results of our ML-MG method.

The images in the top row are extracted from ESP Game

[34], while the other two rows from IAPRTC-12 [21]. The

predicted labels are ranked in descending order according

to their label scores.

extremely small std values of both objective function and

AP values suggest ML-MG is insensitive to initialization.

5.5. Computational analysis

The computational complexity of ML-PGD is OPGD =
O(T1((2kX + kC)mn + 3kCm

2 + 8m2n)), while that of

ML-MG is OMG = O(T2(OPGD + 2nemn)). T1 and T2

denote the number of PGD and ADMM iterations respec-

tively. As shown in Figure 6, T2 is always very small. The

detailed derivation of the complexity is provided in the sup-

plementary material. To emphasize the computational ef-

ficiency of our method, we report the average runtime of all

methods on the four datasets in Table 3. In the case of 0%
missing labels, each method is run 10 times and the average

4163



0 5 10 15 20

5

9
x 10

4 Corel 5k

  Lρ(Z)   f(Z)   AP × 1e5

0 5 10 15 20
1

3

x 10
6 ESP Game

  Lρ(Z)   f(Z)   AP × 6e6

0 5 10 15 20

2

4
x 10

6 IAPRTC−12

  Lρ(Z)   f(Z)   AP × 3e6

0 5 10 15 20
2

4

6
x 10

6 MediaMill

  Lρ(Z)   f(Z)   AP × 5e6

0 10 30 40

3.5

7
x 10

4

Iteration x 5

  Lρ(Z)   f(Z)   AP × 9e4

0 5 15 20
1

2

3
x 10

6

Iteration x 5

  Lρ(Z)   f(Z)   AP × 5e6

0 5 15 20

3

6

9

x 10
5

Iteration x 5

  Lρ(Z)   f(Z)   AP × 1e6

0 5 15 20

5

10
x 10

6

Iteration x 5

  L
ρ
(Z)   f(Z)   AP × 8e6

Figure 6: Convergence curve of ML-MG with (Top): initializing missing labels as 0; (Bottom): initializing missing labels

as random (10 times) values in [0, 1]. Lρ(Z) and f(Z) denote the objective functions of Eq (7) and (6) respectively. AP

indicates the evaluation value of average precision. In the bottom row, as the std values are very small compared to the mean

values, it is better to enlarge the figure to check them.

runtime is recorded. For MLR-GL, LEML and ML-MG,

the number of maximum iterations is set as 20, while 50 for

ML-PGD. The ranks of the mapping matrix in LEML are

set as 50, 50, 50, and 20 for the four datasets, respectively.

Clearly, our proposed ML-MG method (and its hierarchy-

free variant ML-PGD) are significantly more computation-

ally attractive than the other methods.

Datasets
SVM MLR-GL MC-Pos FastTag LEML MLML MLML ML ML

[7] [5] [6] [9] [45] -exact [39] -appro [39] -PGD -MG

Corel5k 8826 1820 183.17 70.40 180.4 54.30 2.72 0.83 10.90

ESP Game 41817 – 662.8 201.2 595.6 2652.6 120 4.13 50.40

IAPRTC-12 35373 – 465 213 553.6 2263 98.30 5.49 52.32

MediaMill 6361 – 437.6 87.10 253.3 – – 7.25 74.4

Table 3: Runtime in seconds of all 9 methods

6. Conclusions and discussions

This work proposes a novel model to handle the prob-

lem of multi-label learning with missing labels. A uni-

fied network of label dependency is built based on a mixed

graph, which jointly incorporates instance-level label simi-

larity and class co-occurrence as undirected edges, as well

as, semantic hierarchy as directed edges. A convex prob-

lem is formulated by encoding the undirected edges as reg-

ularization terms, while embedding the directed edges as

linear constraints. Thus multi-label learning and enforcing

semantic hierarchy constraints can be performed simulta-

neously. A computationally attractive algorithm based on

ADMM is used to exactly optimize this problem. Apply-

ing our method on image and video annotation tasks have

demonstrated its superior performance against state-of-the-

art methods. Moreover, we contribute manually generated

semantic hierarchies for four popular benchmark datasets,

which will be beneficial to the research community at large.

We realize that semantic hierarchy and missing labels ex-

ist in many other real-world problems, including text clas-

sification [28, 29], tracking [40, 48], action recognition

[50, 51] and activity recognition [23]. In the future, we aim

to apply ML-MG to these applications.
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[15] J. Fürnkranz, E. Hüllermeier, E. L. Mencı́a, and K. Brinker. Multi-

label classification via calibrated label ranking. Machine learning,

73(2):133–153, 2008. 2

[16] B. Geng, L. Yang, C. Xu, and X.-S. Hua. Collaborative learning

for image and video annotation. In Proceedings of the 1st ACM in-

ternational conference on Multimedia information retrieval, pages

443–450. ACM, 2008. 2

[17] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson. Optimal pa-

rameter selection for the alternating direction method of multipliers

(admm): quadratic problems. 2013. 4

[18] B. Ghanem, T. Zhang, and N. Ahuja. Robust video registration ap-

plied to field-sports video analysis. In International Conference on

Acoustics, Speech and Signal Processing, 2012. 4

[19] E. Gibaja and S. Ventura. Multi-label learning: a review of the state

of the art and ongoing research. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 4(6):411–444, 2014. 2

[20] A. B. Goldberg, X. Zhu, B. Recht, J.-M. Xu, and R. D. Nowak.

Transduction with matrix completion: Three birds with one stone.

In NIPS, pages 757–765, 2010. 2

[21] M. Grubinger, P. Clough, H. Müller, and T. Deselaers. The iapr tc-12

benchmark: A new evaluation resource for visual information sys-

tems. In International Workshop OntoImage, pages 13–23, 2006. 2,

4, 5, 6, 7

[22] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop:

Discriminative metric learning in nearest neighbor models for image

auto-annotation. In ICCV, pages 309–316, 2009. 4

[23] F. C. Heilbron, V. Castillo, B. Ghanem, and J. C. Niebles. Activi-

tynet: A large-scale video benchmark for human activity understand-

ing. In CVPR, 2015. 8

[24] A. Kapoor, R. Viswanathan, and P. Jain. Multilabel classification us-

ing bayesian compressed sensing. In NIPS, pages 2654–2662, 2012.

2

[25] X. Li, F. Zhao, and Y. Guo. Conditional restricted boltzmann ma-

chines for multi-label learning with incomplete labels. In AISTATS,

pages 635–643, 2015. 1

[26] Z. Lin, G. Ding, M. Hu, J. Wang, and X. Ye. Image tag completion

via image-specific and tag-specific linear sparse reconstructions. In

CVPR, pages 1618–1625, 2013. 2

[27] A. U. Raghunathan and S. Di Cairano. Optimal step-size selection in

alternating direction method of multipliers for convex quadratic pro-

grams and model predictive control,. In Proceedings of Symposium

on Mathematical Theory of Networks and Systems, pages 807–814,

2014. 4

[28] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Learn-

ing hierarchical multi-category text classification models. In ICML,

pages 744–751. ACM, 2005. 2, 5, 8

[29] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-

based learning of hierarchical multilabel classification models. The

Journal of Machine Learning Research, 7:1601–1626, 2006. 2, 8

[30] C. G. Snoek, M. Worring, J. C. Van Gemert, J.-M. Geusebroek, and

A. W. Smeulders. The challenge problem for automated detection

of 101 semantic concepts in multimedia. In Proceedings of the 14th

annual ACM international conference on Multimedia, pages 421–

430. ACM, 2006. 2, 4, 5, 6

[31] Y. Sun, Y. Zhang, and Z.-H. Zhou. Multi-label learning with weak

label. In AAAI, pages 593–598, 2010. 2

[32] A.-M. Tousch, S. Herbin, and J.-Y. Audibert. Semantic hierarchies

for image annotation: A survey. Pattern Recognition, 45(1):333–345,

2012. 2, 5

[33] D. Vasisht, A. Damianou, M. Varma, and A. Kapoor. Active learning

for sparse bayesian multilabel classification. In SIGKDD, pages 472–

481. ACM, 2014. 2

[34] L. Von Ahn and L. Dabbish. Labeling images with a computer game.

In Proceedings of the SIGCHI conference on Human factors in com-

puting systems, pages 319–326. ACM, 2004. 1, 2, 4, 5, 6, 7

[35] U. Von Luxburg. A tutorial on spectral clustering. Statistics and

computing, 17(4):395–416, 2007. 3

[36] Q. Wang, B. Shen, S. Wang, L. Li, and L. Si. Binary codes embed-

ding for fast image tagging with incomplete labels. In ECCV, pages

425–439. Springer, 2014. 2

[37] Q. Wang, L. Si, and D. Zhang. Learning to hash with partial tags:

Exploring correlation between tags and hashing bits for large scale

image retrieval. In ECCV, pages 378–392. Springer, 2014. 2

[38] J. Weston, O. Chapelle, V. Vapnik, A. Elisseeff, and B. Schölkopf.

Kernel dependency estimation. In NIPS, pages 873–880, 2002. 5

[39] B. Wu, Z. Liu, S. Wang, B.-G. Hu, and Q. Ji. Multi-label learning

with missing labels. In ICPR, 2014. 1, 2, 3, 5, 8

[40] B. Wu, S. Lyu, B.-G. Hu, and Q. Ji. Simultaneous clustering and

tracklet linking for multi-face tracking in videos. In ICCV. IEEE,

2013. 8

[41] B. Wu, S. Lyu, B.-G. Hu, and Q. Ji. Multi-label learning with missing

labels for image annotation and facial action unit recognition. Pattern

Recognition, 48(7):2279–2289, 2015. 1, 2, 3

[42] L. Wu, R. Jin, and A. K. Jain. Tag completion for image retrieval.

TPAMI, 35(3):716–727, 2013. 2

[43] M. Xu, R. Jin, and Z.-H. Zhou. Speedup matrix completion with

side information: Application to multi-label learning. In NIPS, pages

2301–2309, 2013. 2

[44] G. Yu, H. Zhu, and C. Domeniconi. Predicting protein functions

using incomplete hierarchical labels. BMC bioinformatics, 16(1):1,

2015. 2

[45] H.-F. Yu, P. Jain, P. Kar, and I. Dhillon. Large-scale multi-label learn-

ing with missing labels. In ICML, pages 593–601, 2014. 1, 2, 5, 8

[46] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Low-rank sparse learn-

ing for robust visual tracking. In ECCV, pages 470–484. 2012. 4

[47] T. Zhang, B. Ghanem, S. Liu, C. Xu, and N. Ahuja. Low-rank sparse

coding for image classification. In ICCV, pages 281–288, 2013. 4

[48] T. Zhang, S. Liu, N. Ahuja, M.-H. Yang, and B. Ghanem. Ro-

bust visual tracking via consistent low-rank sparse learning. IJCV,

111(2):171–190, 2014. 4, 8

[49] Y. Zhang and Z.-H. Zhou. Multilabel dimensionality reduction via

dependence maximization. ACM Transactions on Knowledge Dis-

covery from Data, 4(3):14, 2010. 5

[50] Z. Zhang, C. Wang, B. Xiao, W. Zhou, and S. Liu. Action recognition

using context-constrained linear coding. Signal Processing Letters,

19(7):439–442, 2012. 8

[51] Z. Zhang, C. Wang, B. Xiao, W. Zhou, and S. Liu. Cross-view

action recognition using contextual maximum margin clustering.

IEEE Transactions on Circuits and Systems for Video Technology,

24(10):1663–1668, 2014. 8

4165


