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Abstract

In this paper, we present a joint iterative anaglyph stereo

matching and colorization framework for obtaining a set of

disparity maps and colorized images. Conventional stereo

matching algorithms fail when addressing anaglyph images

that do not have similar intensities on their two respective

view images. To resolve this problem, we propose two novel

data costs using local color prior and reverse intensity dis-

tribution factor for obtaining accurate depth maps. To col-

orize an anaglyph image, each pixel in one view is warped

to another view using the obtained disparity values of non-

occluded regions. A colorization algorithm using optimiza-

tion is then employed with additional constraint to colorize

the remaining occluded regions. Experimental results con-

firm that the proposed unified framework is robust and pro-

duces accurate depth maps and colorized stereo images.

1. Introduction

During the last couple of decades, 3D technology has be-

come popular in both research activities and consumer ap-

plications. In consumer electronics, polarized filter glass

and shutter glass have been widely used to deliver the

stereoscopic experience to 3D TV users. A more primitive

method involves anaglyph imagery, which has been used

to implement stereoscopic visualization in a cost effective

way using color filtered glasses. Anaglyph is often used to

distribute 3D videos or images in the online video/image

database. Besides for image size compression, it is a use-

ful method for general consumers who want to enjoy 3D

experience without expensive devices.

An anaglyph image packs partial information of stereo

images in a single color image, which typically consists of

red (only the red channel) from the left image and cyan

(blue and green channels) from the right image. Conse-

quently, it suffers from missing color information and it is

difficult to process the anaglyph image using conventional

computer vision algorithms. In early research, several stud-

Figure 1: Pipeline of the proposed algorithm

ies have aimed to colorize the pixels in the missing chan-

nels [10, 13]. However, the state-of-the-art technique in

anaglyph colorization [10] is still inaccurate due to the high

dependency on the initial correspondence map. Note that

the dense matching algorithm [14] is erroneous because of

the nature of anaglyph image. Thus, it is necessary to de-

velop a reliable anaglyph matching method to restore the

original color of stereo images accurately.

Typical stereo matching approaches have been built on

the photometric consistency assumption that requires the

corresponding points of a stereo pair to have similar inten-

sity values [18]. For that reason, anaglyph stereo matching

becomes a difficult problem because half of the color chan-

nels are completely missing. To our best knowledge, there

has been no previous anaglyph stereo matching algorithm

that can obtain accurate disparity map.

In this paper, we propose an iterative joint method to not

only compute the disparity map but also simultaneously col-

orize the missing color information of the anaglyph image.

The overview of the proposed framework is shown in Fig-

ure 1. An accurate disparity map is estimated by employ-

ing two novel anaglyph data costs which are based on local

color prior (LC) and reverse intensity distribution (RID).

To restore the missing color, we first transfer the known

color information from one image to another using the ob-

tained disparity. We then colorize the remaining pixels in

occluded regions using the diffusion-based colorization. A

novel weight kernel function based on the color similarity

is introduced to achieve accurate colorization. In summary,

this paper makes the following contributions.
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- Provide an iterative framework for obtaining an accu-

rate disparity map and colorized stereo images from a

single anaglyph image.

- Develop the new idea of (i) local color prior for pseudo

color reconstruction of missing channels and (ii) re-

verse intensity distribution for cross color channel cor-

relation.

- Provide a pair of robust anaglyph data costs to compute

the dense stereo correspondence and their integration.

2. Related Works

This paper relates to previous studies in stereo matching

with radiometric differences and colorization. Hirschmüller

and Scharstein [8] evaluated a few stereo matching costs

under radiometric differences. It is concluded that the cen-

sus filter [21] and mutual information (MI) [11] are the

most robust techniques that outperform the others. Heo et

al. [6, 7] proposed the adaptive normalized cross correla-

tion (ANCC) and modified mutual information to solve the

stereo matching problem with illumination changes. Al-

though their method obtains an accurate disparity with the

existence of significant photometric differences, it cannot

be directly applied to anaglyph stereo matching because

their method utilizes all information of three color chan-

nels which are assumed to be correlated with each other.

Bando et al. [2] proposed an algorithm to extract a depth

map from the coded aperture image. However, this method

is not accurate, especially when the scene is complex and

the anaglyph pair has large intensity variance.

During the last decade, several algorithms have been in-

troduced to colorize grayscale images or to edit the color

layout of images. Levin et al. [13] model the coloriza-

tion problem as an energy minimization function so that

sparse user scribbles are propagated to the whole image.

The energy function is based on the sparse affinity matrix

which encodes the color similarity of each pixel and its

neighbors. Yatziv and Sapiro [19] proposed a colorization

method based on the geodesic distance between neighbor-

ing pixels. The user input is iteratively propagated to the

neighboring pixel with the minimum distance. Gastal and

Oliveira [5] considered Levin’s colorization method [12] as

the application of edge-aware filtering, in which grayscale

images are colorized using a domain transform to achieve

fast performance. Levin’s colorization algorithm was addi-

tionally extended by Chen et al. [4]. Instead of using neigh-

borhood pixels in geometry space, they utilize the neigh-

borhood pixels in the feature domain. They compute the

k-nearest neighbors in the feature space and employ lo-

cally linear embedding (LLE) to compute the weight of each

neighbor.

Only two previous works exist in the field of anaglyph

colorization. Lin et al. [13] extended Bando’s algorithm by

applying a color prior to colorize an anaglyph image. How-

ever, this method is likely to fail when dealing with com-

plex scenes. In the notable work of Joulin and Kang [10],

an iterative framework was proposed using modified scale-

invariant feature transform (SIFT) flow [14], which is called

anaglyph SIFT (ASIFT) flow, and diffusion-based coloriza-

tion. They employ a colorization method similar to that of

Levin’s [12] but use a different and larger kernel size. How-

ever, their method fails when the computed correspondence

map is inaccurate. Note that both algorithms [10, 13] highly

rely on the performance of correspondence estimation. Fur-

thermore, both works only focus on anaglyph colorization

without reconstructing the accurate disparity map.

3. Anaglyph Stereo Matching

In this paper, the proposed stereo matching algorithm is

defined as an energy minimization problem in the MAP-

MRF framework [3] as follows:

E(f) =
∑

p

Dp(fp) +
∑

p

∑

q∈Np

Vpq(fp, fq) (1)

where fp and Np are the label and neighborhood pixels

of pixel p, respectively. Dp(fp) is the data cost which

measures how appropriate label fp is for a given pixel p.

Vpq(fp, fq) is the smoothness cost, which measures how

consistent a label fp is for a given pixel p with its neigh-

bor pixel q having a label fq . The optimal disparity result

can be obtained by minimizing the energy E(f) in Eq. (1)

using graph cuts [3].

As referred by Meltzer et al. [15], the energy function

is more important than the optimization algorithm for ob-

taining the optimal disparity result. Therefore, the proposed

framework designs accurate data costs that are robust for the

anaglyph image. Two novel data costs for anaglyph stereo

matching are proposed: adaptive data cost using local color

prior (DLC
p ) and modified census data cost based on reverse

intensity distribution (DRID
p ). To improve the accuracy, a

segmentation-based plane fitting data cost (DSeg
p ) [9] is em-

ployed additionally. The smoothness cost is modeled using

the truncated linear cost. The final data and smoothness

costs are defined as follows:

Dp(fp) = DLC
p (fp) +DRID

p (fp) +DSeg
p (fp) (2)

Vpq(fp, fq) = αmin(|fp − fq|, Vmax) (3)

where α is the smoothness weight and Vmax is the max-

imum disparity difference. The detail of each cost is de-

scribed in the following subsections.

3.1. Adaptive Data Cost using Local Color Prior

Conventional adaptive stereo matching [20] forces simi-

lar intensity assumption to obtain an accurate disparity map.
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Figure 2: Pseudo color reconstruction of a patch in Tsukuba data (p = (304,97)). (a) Left red patch; (b) Right cyan patches;

(c) Left pseudo color patches; (d) Right pseudo color patches.

However, the nature of anaglyph image does not satisfy the

assumption. Thus, we introduce a novel local color prior

to estimate the missing color channel (i.e. to reconstruct

pseudo color) so that it can make good use of the assump-

tion. We exploit color transfer method [16] to model the

prior. The pseudo color of a patch is reconstructed by lo-

cally transferring the known color channel from the corre-

sponding patch. For that reason, each patch has different

pseudo color depending on the disparity candidate. The lo-

cal color prior is the adaptive form of color transfer with

weight w(p, q) is defined as follows:

w(p, q) = exp(−
∆cpq

λc

−
∆spq

λs

) (4)

where ∆cpq and ∆spq are the color and spatial differences

between pixel p and q, respectively. λc and λs are the pa-

rameters that control how much each difference influences

the weight w(p, q). Then, adaptive mean µ̂ and standard

deviation σ̂ are computed as:

µ̂(p) =

∑

q∈Np

w(p, q)I(q)
∑

q∈Np

w(p, q)
(5)

σ̂(p) =

√

√

√

√

∑

q∈Np

w(p, q)∥I(q)− µ̂(p)∥
2

∑

q∈Np

w(p, q)
(6)

where I is the original intensity and Np is the local patch

centered at p. Finally, the pseudo intensity Ĩ is obtained by

computing:

Ĩt(q)|q∈Np
= (Is(q)− µ̂s(p))

σ̂t(p
′)

σ̂s(p)
+ µ̂t(p

′) (7)

where s and t denote the source and target color channels.
Given pixel p and label fp, the corresponding pixel in an-
other view is denoted by p′. For example, if we want to

compute the pseudo intensity of left green channel ĨLg , we

utilize the left red channel ILr as the source and right green
channel IRg as the target patch (s = red, t = green). The
pseudo colors are utilized together with the original colors

to measure the adaptive data cost. Adaptive data cost using
local color prior (DLC

p (fp)) is defined as follows:

e(q, q′) = min{|ILr (q)− Ĩ
R
r (q′)|+

|ĨLg (q)− I
R
g (q′)|+ |ĨLb (q)− I

R
b (q′)|, T}

(8)

D
LC
p (fp) =

∑
q∈Np,q

′∈N
p′
w(p, q)w(p′, q′)e(q, q′)

∑
q∈Np,q

′∈N
p′
w(p, q)w(p′, q′)

(9)

where {L,R} and {r, g, b} are the set of image positions

(left and right) and color channels, consecutively. e(q, q′)
is the pixel-based matching cost while T is the trunca-

tion value of the cost. Figure 2 shows an example of

pseudo color reconstruction (local color prior generation) of

a patch. It is revealed that the pseudo color of both left and

right patches are different depending on the disparity can-

didate (e.g. 16 disparity candidates for Tsukuba data). In

summary, we estimate the missing color of a patch with the

color information of corresponding patch. Thus, the color

similarity is preserved for each channel. Since we apply

adaptive color transfer, minimum cost is obtained when the

local structure is similar between corresponding patches.

Figure 3 (a) shows the data cost curve comparison of

the corresponding patches in Figure 2. It is shown that the

proposed adaptive data cost obtains the correct disparity as

its ground truth. Figure 4 (c) and (d) display the dispar-

ity map comparison with the conventional adaptive stereo

matching [20]. The proposed data cost achieves more pleas-

ing result because the local color prior satisfies the intensity

similarity assumption.

3.2. Reverse Intensity Distribution and Modified
Census Data Cost

An anaglyph image is comprised of color channels from

different views. Therefore, it is worth searching for a useful

factor for computing the correlation across different color

channels. For each individual color channel, modified cen-

sus filtering is performed to capture the relative intensity

distribution. Given pixel p and local patch Np centered at

p in single channel image I , the filter output F (p) is com-

puted by counting and comparing the number of brighter
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Figure 3: Data cost curve comparison of a patch in Tsukuba

data (red line denotes the ground truth). (a) Adaptive data

cost (p = (304,97)); (b) Modified census data cost (p =

(336,170)).

(a) (b) (c)

(d) (e) (f)

Figure 4: Disparity maps of each data cost (Tsukuba data).

(a) Left red image; (b) Right cyan image; (c) Result of pro-

posed adaptive data cost; (d) Result of conventional adap-

tive data cost [20]; (e) Result of proposed census data cost;

(f) Result of conventional census data cost [21].

and darker pixels in Np compared with the intensity of p.

The mathematical formulation of the filter output is given

by:

C(q)|q∈Np
=

{

1 if I(q) < I(p)

−1 otherwise
(10)

F (p) =

{

1 if
∑

q C(q) > 0

0 otherwise
(11)

where I(p) is the intensity of center pixel p. Consequently,

filter output F (p) encodes the intensity distribution at p,

thereby indicating whether p belongs to the brighter group

of pixels (i.e. F (p) = 1) or darker group of pixels (i.e.

F (p) = 0).

After performing filtering on three individual color chan-

nels, the filtered pixel value between a pair of color channels

(e.g. red to green and red to blue) is compared. If the values

are the same at the given pixel location, two channels have

coherent intensity distribution at the pixel. On the contrary,

if they are different, they have the reverse relative intensity,

which means that the local bright/dark relation between pix-

els is reversed. In this paper, this is called reverse intensity

(a) (b) (c) (d) (e) (f)

Figure 5: Corresponding left and right patches (us-

ing ground truth disparity). (a),(c),(e) Left red patches;

(b),(d),(f) Right cyan patches.

distribution. Figure 5 (a) and (b) show the patch pairs with

reverse intensity distribution.

To obtain accurate cross channel correlation value, we

introduce a modified census data cost based on the re-

verse intensity distribution. Given each pair of color

channels, two data costs are measured for corresponding

patches: reverse data cost (DR
p (fp)) and non-reverse data

cost (DNR
p (fp)). Then, the final modified census data cost

(DRID
p (fp)) is obtained by selecting the minimum data cost

as follows:

DNR
p (fp) =

∑

q∈Np,q′∈N
p′

C(q) = C(q′) (12)

DR
p (fp) =

∑

q∈Np,q′∈N
p′

C(q) ̸= C(q′) (13)

DRID
p (fp) = min{DNR

p (fp)|RG, D
R
p (fp)|RG, (14)

DNR
p (fp)|RB , D

R
p (fp)|RB}

where {RG,RB} is the set of cross color channel pairs. p′

is the corresponding pixel of pixel p with disparity label fp.

As shown in Figure 3 (b), the proposed census data cost ob-

tains smaller value at the ground truth disparity. Subjective

comparison is shown in Figure 4 (e) and (f). Modified cen-

sus data cost gains better results in the regions that are under

reverse intensity distribution.

3.3. Segmentation-based Plane Fitting Data Cost

The segmentation-based plane fitting data cost is used as

a soft constraint to produce more accurate results [9]. The

data cost using segmentation-based plane fitting (DSeg
p (fp))

is formulated as:

DSeg
p (fp) = |asxp + bsyp + cs − fp| (15)

where as, bs, and cs are the estimated 3D plane coefficients

of segment s to which pixel p belongs, and (xp, yp) are the

coordinates of pixel p in x and y directions. We refer to [9]

for details of the segmentation-based plane fitting data cost.

3.4. Data Cost Integration

The integration of two novel data costs is required be-

cause each data cost may have cost ambiguity depends on

the patch. The adaptive cost meets the ambiguity when

there is similar spatial structure with high weight value. On
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Figure 6: Cost curve comparison of patches in (a) Figure 5

(c) and (d); and (b) Figure 5 (e) and (f).

(a) (b) (c)

Figure 7: Intermediate disparity results of Tsukuba image.

(a) Result of integrated data cost; (b) Result of 1st iteration;

(c) Result of final (5th) iteration.

the contrary, census data cost faces ambiguity when sim-

ilar relative ordering of patch intensity occurrs. Figure 5

(c) ∼ (f) shows two patch pairs example. To mitigate these

ambiguities, integration of both data costs is performed by

computing the average value. The cost curve of each patch

pair is shown in Figure 6. It verifies that the cost ambiguity

is removed by integrating both costs together. Finally, the

cost is optimized to obtain smooth disparity maps. Figure 7

(a) displays the result of the integrated data cost which can

be compared with the results of each data cost in Figure 4

(c) and (e).

At the first iteration, we utilize only the proposed data

costs to obtain accurate dense correspondence map from

an anaglyph image and then reconstruct the missing colors.

From the second iteration, the proposed data costs are coop-

erated by the conventional adaptive and census data costs.

This is due to the possibility of having inaccurately recon-

structed color at the first iteration which may lead to inac-

curate dense matching if we utilize the conventional data

costs only. Figure 7 (b) and (c) illustrate the intermediate

disparity results of the first and last iterations.

4. Anaglyph Colorization

Anaglyph colorization is performed using the obtained

disparity values of non-occluded regions. First, a left-right

consistency check is performed to find the occluded regions

in both images. Each pixel from the known color channel is

warped to another image using the disparity map. Note that

the pixels in occluded regions are not warped because they

do not exist in the corresponding image.

To colorize the remaining pixels in occluded regions, we

utilize a novel optimization function that improves Levin’s

colorization algorithm [12]. To improve the accuracy, we

propose an additional constraint based on the novel simi-

larity weight kernel for the occluded pixels around image

border. For each pixel in occluded regions in border region

B, we compute the most similar patch (5 × 5) in a desig-

nated window (15×W ) using template matching where W

is the image width. Then, the diffusion energy function is

defined as:

J(R) =
∑

p

(

R(p)−
∑

q∈Np

wc(p, q)R(q)−
∑

q∈Mp

wc(p, q)R(q)δ(p ∈ B)

)2

(16)

wc(p, q) = exp(−
∆cpq

λc

)δ(∆cpq < Tc) (17)

where R(p) is the value of pixel p in the color channel that

will be colorized, wc(p, q) is the colorization weight be-

tween pixel p and q, and Tc is the color threshold. δ is

membership function which results in 0 or 1. Np and Mp

are the neighborhood pixels (= 9× 9) of pixel p and its sim-

ilar pixel. To minimize J(R), we use a least-square solver

for sparse linear systems.

The conventional weight kernel function could accu-

rately colorize the pixel in occluded regions around the im-

age center. However, it might give inaccurate colorization

to the region near the image border that appears only in one

image. The additional constraint is well performed when

the obtained disparity maps have good quality. These re-

sults can be obtained because we consider pixels with simi-

lar patches in the energy optimization.

5. Experimental Results

The proposed algorithm is implemented on an Intel i7

4770 @ 3.4GHz with 8GB RAM. We generate anaglyph

images by extracting the red channel from the left image

and green/blue channels from the right image. Several

stereo dataset are used for qualitative as well as quanti-

tative evaluation including Middlebury dataset [17], FhG-

HHI 3D video database [1], and stereo frames captured by

3D TV broadcasting in service. Note that we utilize Mid-

dlebury dataset especially for quantitative evaluation since

it has ground truth of both disparity and color.

In our experiment, the window size used for computing

the data costs is 19 × 19. We set λc = 5, λs = 5, T =
75, Tc = 10, and Vmax = 5. The number of iterations

is 5. The parameters for mean-shift segmentation are fixed

as (CSeg, SSeg, RSeg) = (5, 5, 20), where CSeg , SSeg , and

RSeg represent the color bandwidth, spatial bandwidth, and

the size of the minimum region, respectively. The algorithm

is implemented using C++ without optimization although a

few computationally complex functions are parallelized on

the GPU.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8: Stereo matching comparison between the pro-

posed method and the conventional approaches. (a) Ground

truth; (b) Results of Lin [13]; (c) Results of MI [11]; (d) Re-

sults of Census+GC [21]; (e) Results of ASIFT flow [10];

(f) Results of the proposed method (without plane fitting);

(g) Results of the proposed method (with plane fitting).

5.1. Anaglyph Stereo Matching Evaluation

To evaluate the accuracy of anaglyph stereo matching,

the proposed framework is first compared with the popu-

lar data costs that are invariant with illumination changes,

such as MI [11] and census data cost [21]. The origi-

nal optimization method for each data cost is implemented

to perform fair comparison. The proposed framework is

further compared with Lin’s algorithm [13], in which the

result is provided by the authors of [13]. In addition,

ASIFT flow map [10] is computed since it is the correspon-

dence algorithm used in the state-of-the-art of anaglyph

colorization [10]. To prove the strength of the proposed

data costs, we also evaluate the proposed method without

segmentation-based plane fitting data cost.

Figure 8 shows the qualitative comparison of disparity

result. It is evident that the proposed algorithm produces

significantly better disparity compared to other approaches.

The bad pixel percentage is computed for each image to

measure disparity error quantitatively, as summarized in Ta-

Table 1: Comparison of the bad pixel percentage

Test Images
Tsukuba Venus Cones Teddy

Left Right Left Right Left Right Left Right

MI [11] 11.58 N/A 20.35 41.86 47.50 71.60 48.60 65.00

Census + GC 6.52 N/A 15.81 12.91 16.50 16.08 23.12 20.03

Lin’s [13] 10.50 N/A 20.44 16.71 34.38 27.50 51.42 39.82

ASIFT Flow [10] 6.69 N/A 12.77 13.00 22.24 22.65 35.38 34.11

Proposed (w/o Plane Fitting) 4.29 N/A 9.15 9.31 6.94 7.83 10.89 15.40

Proposed (w/ Plane Fitting) 2.55 N/A 6.37 7.43 5.49 5.50 7.24 7.07

(a) (b) (c) (d)

Figure 9: Comparison of correspondence map and recon-

structed color images between Joulin’s algorithm [10] and

the proposed method with zoomed region. (a) Disparity

result of ASIFT flow [10]; (b) Disparity result of the pro-

posed method (with plane fitting); (c) Colorization result of

Joulin [10]; (d) Colorization result of the proposed method.

ble 1. The illumination invariant data costs (MI and census)

do not work well on the anaglyph image because they de-

pend on similar intensity distribution heavily. Lin’s algo-

rithm [13] performs better than the illumination-invariant

data costs, but it also fails when the cross color channels

have reverse intensity distribution. Similarly, ASIFT flow

results in inaccurate correspondence map. To the best of

the authors’ knowledge, the proposed method is the first

anaglyph stereo matching algorithm that produces accurate

disparity results. Figure 9 (a) and (b) show the zoomed ver-

sion of correspondence map comparison between ASIFT

flow and the proposed method.

5.2. Anaglyph Colorization Evaluation

To evaluate the proposed colorization algorithm, the

peak signal-to-noise-ratio (PSNR) is calculated to deter-

mine how similar the reconstructed image is to its ground

truth. We compare the performance to the state-of-the-art

anaglyph colorization algorithm [10, 13]. In our exper-

iment, Joulin’s colorization consists of two different im-

plementations depending on the initial dense correspon-

dence: ASIFT flow (ASIFT-Joulin) and our disparity map

(P-Joulin). Table 2 summarizes the PSNR of each method,

which shows that the proposed method outperforms oth-

ers in all cases. A subjective comparison is additionally

performed as shown in Figure 10. It shows the difference

map (shown in double scale) between each result and its

ground truth, which confirms that the proposed method has

the smallest difference.

Lin’s algorithm [13] and ASIFT-Joulin [10] obtain com-

parable colorization for stereo images with small disparity

values (e.g. Tsukuba and Venus). However, they fail on

the stereo images with large disparity values (Cones and

Teddy). This is due to the cost ambiguity for large dis-
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Table 2: PSNR comparison of the colorization results

Test Images
Tsukuba Venus Cones Teddy Supporters Javelin1 Javelin2 Javelin3 Book Arrival

Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right

Lin’s [13] 32.35 33.15 27.74 28.62 18.12 21.33 18.49 23.54 26.56 30.43 24.58 29.03 28.10 31.81 27.26 33.93 27.45 32.27

ASIFT-Joulin [10] 30.83 32.88 29.66 31.97 21.52 24.54 21.16 24.59 28.68 30.83 27.61 26.83 29.39 32.10 32.16 35.67 32.56 37.45

P-Joulin [10] 32.47 33.87 30.33 33.20 21.79 24.02 26.69 31.57 29.41 31.56 28.98 27.05 31.21 33.93 34.50 38.30 33.09 34.21

Proposed 33.38 35.11 31.47 33.90 25.44 27.06 31.47 33.90 30.06 32.86 30.66 33.72 31.55 34.76 34.38 39.15 36.20 38.64

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 10: Colorization results comparison between the

proposed framework and the conventional methods. (a) Re-

sults of Lin [13]; (b) Difference maps of Lin [13]; (c) Re-

sults of ASIFT-Joulin [10]; (d) Difference maps of ASIFT-

Joulin [10]; (e) Results of P-Joulin [10]; (f) Difference maps

of P-Joulin [10]; (g) Results of the proposed method; (h)

Difference maps of the proposed method.

parity candidates. Both algorithms also fail on the regions

with reverse intensity distribution because they highly rely

on their correspondence estimation. On the other hand, the

proposed framework and P-Joulin obtain better colorization

results in general stereo images. However, P-Joulin fails

on colorizing boundary region while the proposed method

achieves better PSNR value due to the additional constraint.

Figure 9 (c) and (d) show the zoomed version of

colorization comparison. The state-of-the-art ASIFT-

Joulin [10] fails to reconstruct the original color because

of the inaccurately computed correspondence map. On the

contrary, the proposed method performs more robustly than

others. Additional results and comparisons on real dataset

are shown in Figure 11 and Figure 12. It shows that the

proposed method still shows stable and outstanding perfor-

mance on a variety of real data. This also proves that the

proposed local color prior and reverse intensity distribution

are practical and effective for real anaglyph applications.

5.3. Limitation and Failure Case

Although accurate depth is obtained by using the pro-

posed data costs, it still cannot achieve the sub-pixel accu-

racy nor preserve the object edges accurately. As shown in

Figure 12, there are some artifact around the object edges

with depth discontinuity. Another limitation is that the pro-

posed method is computationally expensive to reconstruct

an anaglyph image. We leave some of them as future works

to improve the quality of the current work, including effi-

cient implementation of the proposed data costs, edge pre-

serving matching, and colorization optimization.

6. Conclusion

We proposed a joint iterative method to reconstruct the

disparity map and missing color information in anaglyph

images. First, the local color prior was proposed to compute

the pseudo color of missing color channels. Second, the re-

verse intensity distribution was identified to model the cross

color channel correlation. Both were utilized effectively in

the cost function design. A novel weight kernel function

was proposed to colorize the image boundary region more

accurately. It was shown through extensive experiment that

both stereo matching and colorization results significantly

outperformed the conventional approaches.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 11: Disparity and colorization results comparison of real dataset. (a) Input left images; (b) Input right images; (c)

Disparity maps of the proposed method; (d) Disparity maps of MI [11]; (e) Disparity maps of Census+GC [21]; (f) Disparity

maps of ASIFT flow [10]; (g) Colorization results of the proposed method; (h) Difference maps of the proposed method; (i)

Difference maps of P-Joulin [10]; (j) Difference maps of ASIFT-Joulin [10]; (k) Difference maps of Lin [13]. PSNR values

are listed in Table 2.

(a)

(b)

(c)

Figure 12: Additional result of real dataset. (a) Input left images; (b) Disparity maps of the proposed method; (c) Colorization

results of the proposed method.
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