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Abstract

Multiple-instance learning (MIL) has served as an im-

portant tool for a wide range of vision applications, for

instance, image classification, object detection, and visu-

al tracking. In this paper, we propose a novel method to

solve the classical MIL problem, named relaxed multiple-

instance SVM (RMI-SVM). We treat the positiveness of in-

stance as a continuous variable, use Noisy-OR model to en-

force the MIL constraints, and jointly optimize the bag label

and instance label in a unified framework. The optimiza-

tion problem can be efficiently solved using stochastic gra-

dient decent. The extensive experiments demonstrate that

RMI-SVM consistently achieves superior performance on

various benchmarks for MIL. Moreover, we simply applied

RMI-SVM to a challenging vision task, common object dis-

covery. The state-of-the-art results of object discovery on

Pascal VOC datasets further confirm the advantages of the

proposed method.

1. Introduction

Exploring big visual data is a new trend in computer vi-

sion in recent years [29, 9, 5]. Especially, with the devel-

opment of deep learning, the performances of many large-

scale visual recognition tasks have been significantly im-

proved. However, the supervised deep learning methods,

e.g., deep convolutional neural networks (DCNN) [18], rely

heavily on the huge number of human-annotated data that

are non-trivial to get. Finely labeled images/videos, which

have pixel-level labels and bounding-box labels, are very

limited and expensive. However, there are hundreds times

of weakly labeled visual data that have image-level labels or

noisy labels. For example, we can extract image label from

its text caption on Flickr [15]. How to use the weakly la-

beled visual data for object recognition is a quite important

research problem.

† equal contribution; ∗ corresponding author.

Figure 1. Iteratively discover the locations of objects using the pro-

posed RMI-SVM algorithm. 1st row: The top 100 object proposals

detected by Edgebox [38]. 2nd row: Randomly initialized object

locations in iteration 0. 3rd - 6th rows: The detected object loca-

tions in iteration 100, 500, 1000, and 2000, respectively. The blue

boxes show the object proposals, the red boxes show the detect-

ed objects that do not enough overlap with ground-truth, and the

green boxes show the detected objects that own enough overlap

with ground-truth. (Best viewed in color.)

The multiple-instance learning (MIL), proposed by Di-

etterich et al. [11] for the purpose of drug activity predic-

tion, is a popular tool for exploring sematic information in

weakly labeled visual data. In MIL, instead of being given

the labels of each individual instance, the learner receives a

set of labeled bags, each containing plenty of instances. In

the binary-classification task, a bag may be labeled as pos-

itive if at least one instance is positive. On the other hand,

a bag will be labeled as negative if none of the instances

is positive. Typically, we can regard an image/video as a
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bag, and a patch/cube inside as an instance. Objects of in-

terest are considered as positive instances, and the rest are

considered as negative instances. Besides of learning bag

distribution, we expect MIL can infer the label of instance

to find objects of interest. However, not all MIL algorithms

can reach this goal; most of them only focus on bag classi-

fication [11, 36, 32].

Selecting positive instances and learning a discrimina-

tive/generative instance model to classify bag is a popular

way for solving MIL problem in computer vision. For ex-

ample, online multiple-instance Boosting was applied for

robust visual tracking in [3]; multiple instance SVM [1]

was used to learn deformable object detector [16], which

is also called latent SVM; and, unsupervised multiple in-

stance Boosting was developed for multi-class learning in

[37]. However, these existing methods all treat instance se-

lection and model learning as two separated procedures, and

use EM-style algorithm for optimization. In this paper, we

propose a unified framework to jointly optimize the label

of instance and learn instance model by taking the advan-

tage of relaxing the discrete instance label and stochastic

gradient descent. The MIL constraints are formulated using

a Noisy-OR model. The instance model is a simple lin-

ear SVM model which allows fast training and prediction.

The optimization problem can be efficiently solved using s-

tochastic gradient descend algorithm, and is very robust to

initialization in practical applications.

As shown in Fig. 1, the proposed MIL algorithm can be

applied to object discovery, which is also called weakly-

supervised object location and object co-localization. At

first, we obtain hundreds of object proposals using the

Edgebox [38] and extract the deep feature for each propos-

al using DCNN [18] in each image. Then, The proposed

RMI-SVM algorithm is able to gradually find the true object

location from the initialization location which is randomly

selected. In the procedure of training RMI-MIL, we get

exact object locations; besides, the learned instance model

(object model) can be even used for object detection in un-

seen images. Our object discovery method is clean, simple

but effective. It uses the off-shelf Edgebox object propos-

als and DCNN features. After feature extraction is done, it

takes about 35 minutes using a single CPU to discover all

the 20 classes in the Pascal VOC 2007 dataset. In the exper-

iments, RMI-SVM shows superior performance when com-

pared to both other MIL algorithms and the state-of-the-art

object discovery methods.

To summarize, our main contributions are three folds: 1)

a novel MIL formulation that relaxes the MIL constraints

into convex program; 2) a fast and robust MIL solution vi-

a SGD; 3) an effective weakly-supervised object discovery

based on the proposed RMI-SVM, which can obtain the

state-of-the-art performance on the challenging Pascal 2007

dataset.

2. Related Work

Multiple-instance learning was firstly proposed by Di-

etterich et al. [11] for drug activity prediction. After that,

since it is very useful in both machine learning and com-

puter vision, lots of MIL algorithms have been proposed.

Some of the typical methods are briefly introduced as fol-

lows: The diverse density (DD) method [21] tackles MIL

by finding regions in the instance space with instances from

many different positive bags and few instances from nega-

tive bags. In [35], DD is refined using expectation maxi-

mization (EM). In DD-SVM [7], instance prototype is ex-

tracted based on DD function in the instance feature space,

followed by a nonlinear mapping to project each bag to a

point in the bag feature space. miSVM and MILBoost were

proposed in [1] and [34] in which they train SVM and boost-

ing classifier for instances respectively. Recent work on

MIL includes: representing the bags as graphs and explic-

itly modeling the relationships between instances within a

bag in [36], studying the problem if there are infinite num-

ber of instances in a bag in [2], mining key instances from a

citer kNN graph for bag classification [20], building a deep

learning framework in a weakly supervised setting [33], and

using bag-of-word model to solve large-scale MIL problem

[32].

MIL is highly related to and plays an important role

in many visual recognition tasks, especially in weakly-

supervised object discovery, for example, person head dis-

covery [34], object part discovery [12, 16], object class dis-

covery [37]. For generic object discovery in the wild, MIL

also works very well. A generative and convex MIL al-

gorithm was proposed in [31] for object discovery based

salient object detection. Very recently, MIL is trained on

the top of DCNN to discover object for automatically im-

age captioning [15].

Object discovery has recently drawn lots of attentions.

Top-down segmentation priors based object detector is com-

bined for pixel-level object discovery in [5]. A part-based

matching between object proposals is proposed for unsuper-

vised object discovery in [8]. A multi-fold MIL is designed

for object discovery in [9]. And, a joint box-image formu-

lation is proposed in [29] and applied for large-scale object

discovery on the ImageNet dataset. Different from the exist-

ing object discovery methods, our object discovery method

utilizes the proposed novel RMI-SVM, Edgebox and off-

the-shelf DCNN feature to construct an end-to-end system,

in which all the components are very efficient and effective.

3. Relaxed Multiple-Instance SVM

3.1. MIL Relaxations

We first give notation of MIL as preliminaries. In MIL,

we are given a set bags X = {X1, . . . , Xn}; each bag

is consisted with a set of instance Xi = {xi1, . . . ,ximi
},
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where mi denotes the number of instances in the bag Xi;

and each instance is represented by a d-dimensional vec-

tor xij ∈ R
d×1. Each bag is associated with a bag label

Yi ∈ {0, 1}; and each instance is associated with an in-

stance label yij ∈ {0, 1} too. The relation between bag

label and instance labels, which is also called MIL con-

straints, is interpreted in the following way:

• If Yi = 0, then yij = 0 for all j ∈ [1, . . . ,mi], i.e., no

instance in the bag is positive.

• If on the hand Yi = 1, then at least one instance xij ∈
Xi is a positive instance of the underlying concept.

In RMI-SVM, we relax the instance label yi to be a con-

tinues variable in the range of [0, 1], which is the probability

of xij being positive, denoted as pij . Without loss of gener-

ality, we use a linear model as instance model. pij is given

by a logistic function

pij = Pr(yij = 1|xij ;w) =
1

1 + e−w
T
xij

, (1)

where w is the weight vector of the linear model which

needs to be optimized through in our formulation.

Only knowing the positive probability of instances is

far from enough since the final goal of MIL is to predict

whether a bag is positive. And we only know the bag-level

label, but do not know the instance-level label. To bridge

the gap between instance level and bag level, we adopt the

Noisy-OR(NOR) model. The probability of bag regarded

as positive is computed via

Pi = Pr(Yi = 1|Xi;w) = 1−
mi∏

j=1

(1− pij). (2)

Assuming that one instance in the bag is predicted as pos-

itive, e.g., pij = 1, then we can find Pi = 1 according to

Eq.(2). If all the instances in the bag are predicted as zero,

we can find Pi = 0. The NOR model is a relaxed version of

the MIL constraints.

3.2. Objective Function

The above relaxations make the MIL problem more

tractable, because there is no discrete variable and all parts

in Eq. (3) are differentiable. Considering the instance-level

loss, bag-level loss, and model regularization, we give our

MIL objective function as follows:

min
w

λ

2
‖w‖2 + β

n

n∑

i=1

Lbagi +
1

n

n∑

i=1

1

mi

mi∑

j=1

Linsij , (3)

where the first regularization item is to avoid overfitting;

Lbagi denotes the cost item for i-th bag prediction and

Linsij denotes the cost item for ij-th instance prediction.

More specifically, they are denoted as

Lbagi = −{Yi logPi + (1− Yi) log(1− Pi)}, (4)

Linsij = max(0, [m0 − sgn(pij − p0)w
T
xij ]). (5)

where sgn is the sign function; m0 is a crucial margin pa-

rameter used to separate the positive instances and negative

instances distant from the hyper line in the feature space; p0
is a threshold parameter to determine positive or instance.

The goal of RMI-SVM is to find an optimal instance

model to determine the label of instances and bags. There-

by, the optimal instance model is given by:

w
∗ = argmin

w

λ

2
‖w‖2+β

n

n∑

i=1

Lbagi+
1

n

n∑

i=1

1

mi

mi∑

j=1

Linsij .

(6)

The positiveness of instance is given by pij =
1

1+e−w
∗T

xij
.

If pij ≥ p0, yij = 1; otherwise, yij = 0.

3.3. Derivations

The above optimization problem in Eq. (3) can be solved

using stochastic gradient descent. Therefore, we derive the

partial derivative of Lbagi and Linsij to the weight vector

w.

Using the chain rule of calculus in Eq. (4), the partial

derivative of Lbagi with respect to w is derived as

∂Lbagi

∂w
=

∂Lbagi

∂Pi
·

mi∑

j=1

∂Pi

∂pij

∂pij
∂w

, (7)

where
∂Lbagi

∂Pi
and ∂Pi

∂pij
is given by

∂Lbagi

∂Pi
= −{Yi

Pi
− (1− Yi)

1− Pi
} = − Yi − Pi

Pi(1− Pi)
; (8)

∂Pi

∂pij
=

∏

k=1,k 6=j

(1− pik) =

∏mi

k=1(1− pik)

(1− pij)
=

1− Pi

1− pij
. (9)

According to Eq. (1), we can find the partial derivative of

pij to w is

∂pij
∂w

= −(1 + e−w
T
xij )−2 · e−w

T
xij · (−xij)

= pij(1− pij) · xij .
(10)

Appying Eq.( 8, 9, 10) to Eq. (7), the final expressoin of

partial derivative of Lbagi with respect to w is

∂Lbagi

∂w
= −

mi∑

j=1

pij(Yi − Pi)

Pi
xij . (11)
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As for the partial derivative of Linsij with respect to w,

this expression is derived as

∂Linsij

∂w
= −1[sgn(pij−p0)wT

xij < m0]·sgn(pij−p0)xij ,

(12)

where 1[sgn(pij−p0)wT
xij < m0] is an indicator function

which equals one if its argument is true and zero otherwise.

3.4. SGD Optimization

We describe the optimization method in this subsection

and also provide the pseudo-code. As mentioned in Sec. 3,

our method performs SGD on the objective in Eq. (3) with a

varied learning rate strategy. On a iteration t in our algorith-

m, we randomly choose a bag (Xkt
, Ykt

) from the training

sets D via picking an index kt ∈ {1, 2, ..., n} in a stan-

dard uniform distribution. Then we change the objection in

Eq. (3) to an approximation based on the sample bag, ob-

taining

f(w;Xkt
) =

λ

2
‖w‖2+βLbagkt

+
1

mkt

mkt∑

j=1

Linsktj
. (13)

Considering the gradient of the approximate function, given

by

∇t =
∂f(w;Xkt

)

∂w
= λw −

mkt∑

j=1

xktj{β ·
pktj(Ykt

− Pkt
)

Pkt

+

sgn(pktj − p0)

mkt

· 1[sgn(pktj − p0)w
T
xktj < m0]}, (14)

we update the weight vector using a varied learning rate

ηt = 1/[(t+ 1) · λ], that is wt+1 ← wt − ηt · ∇t. When t
reaches a predefined iteration T , we output the last weight

wT . It is worth noting that after each gradient update, we

employ a projection operation of w on the L2 ball of radius

1/
√
λ just as mentioned in [24] via the following update,

wt+1 ← min{1, 1/
√
λ

‖wt+1‖
}wt+1. (15)

This modification can significantly accelerate the rate of

convergence in the optimization step.

In summary, the pseudo-code for solving RMI-SVM is

given in Algorithm 1, which is granted to get a local opti-

mal solution for the objective function Eq. (3). In practical

application, it gives satisfactory accuracy and fast speed.

4. Experiments on MIL Benchmarks

In this and the following section, we perform experi-

ments to test RMI-MIL for bag classification on MIL bench-

marks and object discovery in the wild, respectively. RMI-

MIL is implemented in MATLAB and experiments are car-

ried out on a desktop machine with Intel(R) Core(TM) i7-

3930K CPU (3.20GHz) and 64GB RAM. The code will be

Algorithm 1: Pseudo-code for solving RMI-SVM.

Input: D, λ, β, p0, m0, T
Output: wT+1

begin

Initialize: Set w1 = 0
for t = 1, 2, ..., T do

choose kt ∈ {1, 2, ..., n}, uniform distribution

Set j+ = {j| sgn(pktj − p0)wtxktj < m0}
Set mkt

= |Xkt
|

Set ηt =
1
λt

Set wt+1 ←
{(1− ηtλ)wt + βηt

∑
j xktj

pktj
(Ykt

−Pkt
)

Pkt

+
ηt

mkt

∑
j+ sgn(pktj+ − p0)xktj+}

Set wt+1 ← min{1, 1/
√
λ

‖wt+1‖}wt+1

released on publication. In the following subsections, three

widely-used MIL benchmarks on different applications are

tested.

4.1. Drug Activation Prediction

The task is to predict whether a new drug molecule can

bind well to a target protein, which is mainly determined by

the shape of the molecule. A “right” molecular shape can

bind well to the target protein. Unfortunately, a molecule al-

ways exhibits multiple shapes. In this case, a good molecule

will bind well if at least one of its shapes is right, while a

poor molecule will not bind well if none of its shapes can

bind. Therefore, the drug prediction task can be formulated

as a MIL problem.

The widely-used MUSK datasets described in [11] for

drug prediction are the benchmarks in nearly every previous

MIL algorithm. Both of the datasets, MUSK1 and MUSK2,

are composed of representations of molecules (bags) in

multiple low-energy conformations (instances). Each con-

formation is described by a 166-dimensional feature vec-

tor derived from its surface properties. MUSK1 contains

476 instances divided into 47 positive bags and 45 negative

bags, while MUSK2 owns approximately 6600 instances

grouped into 39 positive bags and 63 negative bags. Anoth-

er difference of these two datasets is that MUSK2 consists

of more fraction of negative instances in a bag.

For this task, we set λ = 0.05, β = 1.5 and m0 = 0.5 in

the proposed algorithm. For all our experiments including

this and the following tasks, we fix the p0 in Eq. (5) to 0.5
and the maximum iteration T to 2000 by default if we don’t

particularly point out. We compare our results with miS-

VM and MISVM proposed in [1] in Table 1, which show

that both MISVM and RMI-SVM achieve a similar accu-

racy on MUSK1 dataset and outperform miSVM by a few

percent. Furthermore on MUSK2 dataset, RMI-SVM per-
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forms marginally better than miSVM, which is susceptible

to local minima. Note that the results of miSVM and MIS-

VM are implemented via linear kernel for fair comparison

with RMI-SVM.

Table 1. Average prediction accuracy (%) via ten times 10-fold

cross validation on MUSK datasets. Please note that we all adopt

linear kernels for fair comparison.

Dataset MISVM miSVM RMI-SVM

MUSK1 80.4 78.0 80.8

MUSK2 77.5 70.2 82.4

4.2. Automatic Image Annotation

Widely applied to image retrieval systems, this task is

the process by which an intelligent system automatically as-

signs context information in the form of keywords to digital

images. An image (bag) contains a set of regions/segments

(instances) which denote different visual objects. Assum-

ing that a user is searching for a target object, an image is

regarded as a relevant retrieval if only one of its regions is

relevant, while other regions are relevant or not.

We perform three classification experiments on “ele-

phant”, “fox” and “tiger” classes in the Corel dataset [4].

More specifically, each image (bag) consists of plenty of

segments (instances) and a 320-dimensional feature is ex-

tracted to represent the color, texture and shape character-

istics of a segment. There are 100 positive/relevant images

and 100 negative/irrelevant ones for each dataset. As for

each image, the number of positive segments (instances) is

approximately the same with that of negative ones.

In this task, all instance feature are preprocessed by

L2 normalization as input. The parameters are given as

λ = 0.02, β = 5 and m0 = 2. We compare our method

with miGraph and MIGraph in [36], miFV in [32], miSVM

and MISVM in [11], EM-DD in [35], MILES [6], MIForest-

s in [19] and PPMM in [30] via ten times 10-fold cross val-

idation and report the average results and corresponding s-

tandard deviation in Table 2. The results of MI-Kernel was

taken from [36]. Note that some standard deviations in for-

mer studies are not available. RMI-SVM achieves the best

results on the three datasets.

4.3. Text Categorization

The task is to assign predefined categories to text doc-

uments. A document (bag) may be labeled as relevan-

t to certain topic only if some unspecified paragraph-

s/keywords(instances) of it are relevant. In other words, a

document is usually regarded as irrelevant if there are no

relevant paragraphs/keywords. Therefore, document classi-

1The results are reported in integer over 5 runs in [19].

Table 2. Average prediction accuracy (%) via ten times 10-fold

cross validation on benchmarks. Some standard deviations in for-

mer approaches are not available.

Algorithm Elephant Fox Tiger

RMI-SVM 87.8±0.7 63.6±2.8 87.9±0.9

MIGraph 85.1±2.8 61.2±1.7 81.9±1.5
miGraph 86.8±0.7 61.6±2.8 86.0±1.6
miFV 85.2±0.8 62.1±1.1 81.3±0.8
MI-Kernel 84.3±1.6 60.3±1.9 84.2±1.0
MISVM 81.4 57.8 84.0

miSVM 82.2 58.2 78.4

EM-DD 78.3 56.1 72.1

PPMM 82.4 60.3 82.4

MIForests1 84 64 82

MILES1 81 62 80

Object 

Proposals 

Deep 

Features 

RMI-SVM 

Figure 2. Illustration of our object discovery pipeline in the exper-

iments. At first, the object proposal method Edgebox extracts can-

didate object regions. Then, for every candidate, its DCNN feature

is extracted. At last, RMI-SVM identifies positive instances as ob-

ject discovery results.

fication can be naturally formulated as a multiple instance

problem.

We test the proposed method on datasets from text cat-

egorization. The evaluated datasets are randomly split and

subsampled from the original TREC9 dataset. Compared

with those datasets used in Sec. 4.1 and 4.2, the representa-

tion is extremely sparse and high-dimensional with more

than 66000 dimension but less than 32 non-zero values,

which makes them challenging datasets.

In this task, we set parameters as λ = 0.0003, β = 4 and

m0 = 2 and all data is L2 normalized. During the exper-

iments, we find that slight changes in the parameters make

minor difference to the final average accuracy. Results of

the proposed approach are reported in Table 3. We achieve

the best results over the previous methods in all the seven

subsets. The average classification accuracy is improved by

more than 3 percent. Note that RMI-SVM with linear kernel

consistently performs better than both miSVM and MISVM

whatever the kernels they adopt.

5. Experiments of Object Discovery in the Wild

5.1. Datasets and Evaluation Criteria

In this section, we perform weakly-supervised objec-

t discovery in natural images following the pipeline shown
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Table 3. Classification accuracy (%) of methods on seven subsets from TREC9. The standard deviations of other methods are not available.

Dataset Dims EM-DD miSVM MISVM RMI-SVM

Category Ins/Feat linear poly rbf linear poly rbf

TST1 3224/66552 85.8 93.6 92.5 90.4 93.9 93.8 93.7 95.0± 1.0

TST2 3344/66153 84.0 78.2 75.9 74.3 84.5 84.4 76.4 86.3± 0.8

TST3 3246/66144 69.0 87.0 83.3 69.0 82.2 85.1 77.4 87.9± 0.6

TST4 3391/68085 80.5 82.8 80.0 69.6 82.4 82.9 77.3 85.3± 1.0

TST7 3367/66823 75.4 81.3 78.7 81.3 78.0 78.7 64.5 82.3± 0.8

TST9 3300/66627 65.5 67.5 65.6 55.2 60.2 63.7 57.0 71.2± 0.7

TST10 3453/66082 78.5 79.6 78.3 52.6 79.5 81.0 69.1 83.9± 0.8

Average 3332/66638 77.0 81.4 79.2 70.3 80.1 81.4 73.6 84.8± 0.8

in Fig. 2. Given a set of images, we firstly utilize Edge-

box [38] to capture plenty of windows/patches as object

proposals. This strategy turns the object discovery prob-

lem into a well-defined MIL problem, in which an image is

a bag, an object proposal is an instance, and image label is

used as bag label. Then, a pre-trained DCNN is applied to

extract the rich semantic feature for each object proposal.

Here, we use the BVLC AlexNet model provide in Caffe

Model Zoo [17]. Furthermore, we treat the images contain-

ing a shared object as the positive set and randomly select

images from the remaining images as negative. At last, after

that the models adopting the proposed method are learnt, we

report the object proposals with maximal value predicted by

RMI-SVM as the detected object. The final results evaluat-

ed via CorLoc measure [10], which is the percentage of the

correct location of objects under the Pascal criteria (inter-

section over union (IoU) > 0.5 between detected bounding

boxes and the ground truth).

The popular Pascal 2006 and 2007 datasets [13] are

extremely challenging and have been widely used as the

benchmarks to evaluate object discovery methods. Follow-

ing the protocol of [10], two subsets are taken from Pascal

2006 and 2007 train+val dataset, which are then divided

into various of class and view combinations. The two sub-

sets are referred as Pascal06-all and Pascal07-all below,

respectively. There are in total 2047 images divided in-

to 45 class/viewpooint combinations in Pascal07-all while

total 2184 images from 33 class/viewpoint in Pascal06-all.

Besides of Pascal06-all and Pascal07-all, recent methods s-

tart to focus on the 20 classes Pascal 2007 training set (de-

noted as Pascal 2007) without considering view variations,

which makes the object discovery task more challenging.

Thus, in the experiments, we have three different testing

sets: Pascal06-all, Pascal07-all, and Pascal 2007. Follow-

ing the common setting [10], for the three sets, we use all

images that contain at least one object instance not marked

as truncated or difficult in the ground truth.

We utilize the Structured Edge Detection Toolbox in [38]

to extract a large number of object proposals. The parame-

ters are given via the step size of 0.65, Non-maximal sup-

pression (NMS) threshold of 0.55, minimum score of boxes

Table 4. Object discovery results evaluated via CorLoc on

Pascal06-all and Pascal07-all.

Dataset Ours bMCL ADMM MIForestsWSDPM Deselaers

[37] [31] [19] [22] et.al.[10]

Pascal06-all 53 45 43 36 N/A 49

Pascal07-all 37 31 27 25 30 28

to detect of 0.1 and maximal number of boxes to detect of

400. For two object proposals in NMS, if the ratio of in-

tersect area to union area is greater than a given threshold,

then the proposal with the lower score is suppressed. As for

the DCNN feature extraction, we adopt the exact output of

the fc6 layer, whose dimension is 4096. On Pascal07-all

dataset, we set λ = 0.0015, β = 5 and m0 = 1.2, while

λ = 0.0015, β = 6 and m0 = 0.2 on Pascal06-all dataset.

5.2. Comparison to Stateofthearts

5.2.1 Pascal06-all and Pascal07-all

The results of the proposed method on Pascal06-all and

Pascal07-all are compared with the former state-of-the-art

works and shown in Table 4. Our method consistently yield-

s better performance than other former state-of-the-art ap-

proaches on the two datasets. The CorLoc measures have

been improved by 4% and 9% on Pascal06-all and Pascal07-

all respectively. Some object discovery results are shown in

Fig. 4.

The CorLoc measure is not accurate enough since there

may have more than one object of interests in image. To

better characterize the discovery performance, we plot the

detection v.s. the number of detections curve in Fig. 3, and

compare our method to miSVM and Edgebox. In the com-

pared classes, our RMI-SVM can consistently and signifi-

cantly improves Edgebox; but miSVM failed. The curves

also show that our RMI-SVM is more robust than miSVM.

5.2.2 Pascal 2007
The object discovery results on the 20 classes Pascal 2007

set measure by CorLoc are given in Table 5. Recent weakly-

supervised detectors are compared, including the previous

state-of-the-art method named Multi-fold MIL [9]. The av-

erage CorLoc of Multi-fold MIL is 38.8%. It uses the ad-
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Figure 3. Detection rates when changing the number of detections/proposals on four class/viewpoint combinations. These combinations

are, from left to right and top to bottom, Bicycle/Left, car/Left, House/Frontal, Bus/Left.

Figure 4. Results of object discovery on several class/viewpoint combinations on Pascal07-all set. Each row denotes one combination.

These combinations are, from top row to bottom, Aeroplane/Left, Bicycle/Frontal, Bird/Right, Boat/Frontal, Bus/Left, Person/Frontal. It

is worth noting that the solid green rectangle denotes the matched ground truth; the dashed green rectangle denotes the matched detection;

and the solid red rectangle denotes the missed ground truth. Best viewed in color.

vanced fisher vector coding [23] to extract object feature.

Our RMI-SVM based method improves the average Cor-

Loc to 40.2% and wins in 7 out of 20 classes. The good

results indicate that: (1) The proposed RMI-SVM is more

robust and effective than other MIL algorithms, such as, the

Multi-fold MIL and miSVM; (2) The DCNN feature used

in our paper is very robust to view variation, since DCNN

is learnt from the huge ImageNet dataset.

5.3. Improvement of detection performance over
Edgebox

Edgebox is a method for generating object bounding box

proposals using informative edges. However, it is impera-

tive to extract a large number of proposals to reach a high

detection rate. Given the labels of each image, we con-

duct experiments to demonstrate that RMI-SVM can assist
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Table 5. Object discovery results evaluated via CorLoc of all 20 classes on Pascal 2007 training set. Note that the last column is the average

CorLoc of all 20 classes. The best result of each class is emphasized in bold.

Algorithm aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Multi-fold MIL[9] 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8

Shi et al.’13[25] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2

Siva et al.’13[27] – - - - - - - - - - - - - - - - - - - - 32.0

Siva&Xiang’11[28] 42.4 46.5 18.2 8.8 2.9 40.9 73.2 44.8 5.4 30.5 19.0 34.0 48.8 65.3 8.2 9.4 16.7 32.3 54.8 5.5 30.4

Siva et al.’12 [26] 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2

Ours 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2

Edgebox on detection task to a great margin even with a

few number of object proposals. Under the criteria of IoU

> 0.5, we show the detection rates on Pascal07-all when

varying the number of detections. Several results of differ-

ent class/viewpoint combinations are given in Fig. 3. We

can find that the detection rates are greatly improved via

using the weakly supervised information.

5.4. Comparison to miSVM

We compare the effectiveness of the proposed RMI-

SVM with the conventional miSVM on the object discovery

task. As stated in 5, we first make use of the Edgebox to ex-

tract object proposals. Then deep representation is captured

using Convolutional Neural Network, which is finally the

process of multiple instance learning. To keep fair compar-

ison, we replace the RMI-SVM with miSVM to guarantee

the exactly same features as input in the final learning step.

Results are given in Table 6, which demonstrates that the

learning ability of RMI-SVM is superior over miSVM to a

great margin under the MIL constraints. The Liblinear [14]

toolbox is chosen in the implementation of miSVM.

As shown in Fig. 3, the RMI-SVM is superior to miS-

VM when choosing the number of proposals as 1, which

is exactly the CorLoc evaluation. It obviously shows that

miSVM fails in learning the common attributes in the same

class/viewpoint. In miSVM framework, all the instances

in positive bag are initialized as positive, followed by up-

dating instance labels in each iteration. This learning s-

trategy seems reasonable in Sections 4.1, 4.2 and 4.3 since

the ratio of positive instances to negative ones is approxi-

mately 1, except the MUSK2 dataset where the ratio is 1
6 .

When the number of positive instances makes up to quite

a large portion in a positive bag, miSVM can find a hyper-

plane that divides the negative instances as true negative.

However, positive proposals in positive images hold a small

portion after the NMS on object discovery, usually less than
1
20 . Even though miSVM wrongly classifies the negative in-

stances in negative bag as positive, it considers little penalty

in each iteration. Thus, miSVM which is always suscep-

tible to local minima cannot distinguish background win-

dows/patches well from the shared object proposals. How-

ever, RMI-SVM accounts for the penalty of false positive

via the term in Eq. (8). Thus, RMI-SVM can well separate

the background proposals from the common object propos-

als.

Table 6. Comparison between RMI-SVM and miSVM via CorLoc

evaluation and running time on object discovery experiments.

Evaluation RMI-SVM miSVM

CorLoc (%) on Pascal06-all 53 30

CorLoc (%) on Pascal07-all 37 20

Running time (s) on Pascal07-all 854 4300

Furthermore, we experimentally compare the time com-

plexity of RMI-SVM with miSVM. On Pascal07-all dataset

for object discovery, it takes RMI-SVM around 854 second-

s to learn 45 models for all combinations, while miSVM

spends more than 4300 seconds. RMI-SVM is 5 times effi-

cient than the conventional miSVM. The performance gain

in running time should be owned to our novel formulation

and the fast SGD. The SGD in RMI-SVM randomly uses

only one bag. As for in every iteration of miSVM, it takes

all instances of all bags as input, which is the crucial is-

sue of time consuming. Other EM-style MIL methods, e.g.,

MILBoost, have the same mechanism, and are less efficient

than our RMI-SVM.

6. Conclusion
In this paper, we have proposed a novel formulation for

MIL and applied it for robust weakly-supervised object dis-

covery. Different from the traditional EM-style MIL solu-

tions, we relax the highly combinatorial MIL optimization

problem into a convex program and solve it efficiently us-

ing SGD. Our idea of solving MIL in a relaxed formulation

is general. More complex discriminative model and model

regularization method, e.g., deep neural networks, can be

adopted. Besides of object discovery, RMI-SVM can al-

so be used to solve other recognition tasks, such as visual

tracking, image classification, and learning part-based ob-

ject detection model.
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