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Abstract

Most existing successful photometric stereo setups re-

quire large angular variations in illumination directions,

which results in acquisition rigs that have large spatial ex-

tent. For many applications, especially involving mobile de-

vices, it is important that the device be spatially compact.

This naturally implies smaller angular variations in the il-

lumination directions. This paper studies the effect of small

angular variations in illumination directions to photometric

stereo. We explore both theoretical justification and prac-

tical issues in the design of a compact and portable photo-

metric stereo device on which a camera is surrounded by

a ring of point light sources. We first derive the relation-

ship between the estimation error of surface normal and the

baseline of the point light sources. Armed with this the-

oretical insight, we develop a small baseline photometric

stereo prototype to experimentally examine the theory and

its practicality.

1. Introduction

Size, weight, and power (SWaP) are key factors in de-

signing a practical 3D acquisition system. The popularity of

commercial depth cameras such as the Kinect [14], which

is based on time-of-flight technology, and RealSense [10],

which is based on stereo and active illumination, can be at-

tributed to their careful SWaP consideration. In contrast to

this, 3D acquisition based on photometric stereo is yet to

gain widespread commercial adoption. There are many ad-

vantages to use photometric stereo — all arising from its

ability to compute surface orientation at the same resolu-

tion as the input images [20, 18], which is achieved by de-

termining surface normal per pixel from shading variations

observed under varying lightings. Reliable surface normal

estimates are obtained when the light sources have a large

angular spread [4]; however, lighting with a large angular

spread necessarily requires a large space especially when

imaging macroscopic objects, and hence, does not satisfy

small SWaP.
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z
Figure 1. A compact photometric stereo system with a light ring of

radius r and a camera placed at the center of the ring. We seek to

image a scene whose depth d is significantly larger than the radius

of the light ring, i.e., d ≫ r.

This paper deals with photometric stereo under small an-

gular variations. Our envisioned acquisition setup is as fol-

lows. A camera is surrounded by a small light ring. It is

used to capture the surface normal of a scene whose spatial

extent is significantly larger than the system itself. We de-

fine the baseline as the greatest distance between every two

lights, which is the diameter of the light ring here. To fulfill

the small SWaP requirement, we want the baseline to be as

small as possible.

1.1. Problem setup

In this paper, we analyze the estimation error with regard

to baseline and other system parameters like the number of

lights, camera noise level and scene location. Our problem

formulation is as follows.

As illustrated in Fig. 1, our setup consists of n identical

point light sources distributed uniformly on a circle of ra-

dius r, centered at the camera. We obtain n images, one

for illumination under each light source. The camera is as-

sumed to make intensity measurements corrupted by addi-

tive noise with mean 0, variance σ2, and i.i.d both across

pixels and across images. Finally, the baseline of the sys-

tem is small, which translates to the condition r ≪ d.

We consider a Lambertian scene point P at the

location p = [0, h, d]⊤ ∈ R
3 with a surface normal

n ∈ R
3, ‖n‖2 = 1 and diffuse albedo ρ. When P is illu-

minated by a point light source at the location s ∈ R
3, its
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intensity is given as

î = i+∆ig =
l⊤(ρn)

‖l‖3
+∆ig, (1)

where l = s − p is the illumination direction, ‖l‖3 comes

from normalization and light fall-off [2], light source in-

tensity at a unit distance is assumed as 1, and ∆ig is the

measurement noise. In the absence of measurement noise,

the baseline of the system can be infinitely small as long as

it is non-zero.1 However, in the presence of measurement

noise, the variations in shading become less obvious with

decreasing baseline, and thus the recovered surface normals

will have larger errors. We note here that the variance of

∆ig , σ2, accounts for the camera response function. Given

three or more intensity observations obtained under vary-

ing lightings l1, . . . , ln located at s1, . . . , sn, respectively,

b̂ which is the estimate of the albedo-scaled surface normal

ρn is given as a least-squares approximate solution as

b̂ = (LL⊤)−1L̂i, (2)

where

L =
[

l1

‖l1‖3

l2

‖l2‖3 . . . ln

‖ln‖3

]
,

and

î =
[
î1 î2 . . . în

]⊤
.

The matrix L is referred to as the light matrix or the light

calibration matrix. This matrix is often estimated via a cal-

ibration procedure, i.e., placing known targets at suitable

depths in the scene.

Traditional photometric stereo systems assume distant

lighting — which implies that the light matrix L is iden-

tical at all pixels/scene points. In contrast, it is extremely

important in the small angular case to account for variation-

s of the light matrix as the scene point P of interest varies.

1.2. Main results

Given b = ρn and the estimated b̂ in (2), the contri-

butions of this paper are in analyzing the expected error

E[‖b̂− b‖2]. We summarize these results below.

Theorem 1 In the small-baseline scenario, i.e., d ≫ r,

E∆ig [‖b̂− ρn‖2] = σ2(d2 + h2)3
2(2d2 + h2)

nr2d2
, (3)

or equivalently,

E∆ig [‖b̂− ρn‖2] = σ2(d2 + h2)2
4π

nΩ 2 cos θ
1+cos2 θ

, (4)

1When the baseline is zero, the problem reduces to shape-from-shading

which is known to be severely ill-posed [9].

where Ω is the solid angle subtended at scene point by the

light ring and θ = atan(h/d) is the angle between surface

normal of the light ring and the line from center of light ring

to the scene point.

Theorem 1 predicts the accuracy of the estimate in (2)

as a function of measurement noise and the location of the

scene point. Intuitively, we expect that the estimation error

increases as we move away from the optical axis of the cam-

era since the solid angle subtended by the light ring reduces

to a 1D line with increasing height h. This is reflected im-

plicitly in (3) as well as in (4) where the dependence on the

subtended solid angle is explicitly characterized. The proof

of Theorem 1 is presented in Section 3.

Also note that the estimate b̂ is dependent on the light

matrix L which relies on knowledge of the scene point P
and hence, depth d. In practice, this matrix is estimated via

a calibration procedure. So, this reduces to approximate the

unknown depth d with a value d̂. Our second contribution

is bounding the error due to use of incorrect depth in the

estimation of b̂.

Theorem 2 (Sensitivity to calibration error) Consider a

scene point that is actually at depth d, but we assume that it

is at depth d̂ (d, d̂ ≫ r). Further, if we assume the surface

normal at this point, n, to be uniformly distributed, then

En[‖b̂−ρn‖2] =
ρ2

3
(λ−1)2

(
2(λ2 + λ+ 1)2 + (λ+ 1)2

)
,

(5)

where λ = d̂/d.

The proof of Theorem 2 is presented in Section 4.

From Theorem 1, we observe that a practical photomet-

ric stereo system faces a trade-off between small SWaP and

the accuracy. From Theorem 2, we observe that the de-

crease in estimation accuracy caused by depth mismatch is

gradual on each side of the calibrated depth, and there is a

depth range where error is tolerable, which relaxes the exact

placement of the target scene. Based on these observations,

we develop a small baseline photometric stereo prototype to

experimentally examine the theory and its practicality.

2. Related work

Many practical systems based on photometric stereo

have been proposed since the early work of Woodham [20]

and Silver [18]. For example, Hernández et al. [7] used

colored lights to capture images under multiple illumina-

tion directions simultaneously; this enabled estimation of

surface normals of moving objects under a snapshot acqui-

sition system. Vlasic et al. [19] built a large light stage to

capture surface normal of actors from nearly 360◦. How-

ever, both systems are too large to be portable. Compact

acquisition devices were proposed by Higo et al. [8], Zhou
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and Tan [22], Zhou et al. [23], Shiradkar et al. [17], and

Johnson et al. [11]; however, all of these devices were used

to image scenes with spatial extent that was comparable to

the size of the light path [8] or light ring [22, 23, 17, 11].

In contrast, the primary focus of this paper is to understand

a more extreme setup where we seek to use a portable de-

vice to capture scenes that are much larger than the device

(see Fig. 1). Jones et al. [12] used a device similar to ours

to capture expressions of a human face, but did not provide

a detailed error analysis including a characterization of the

dependence of the normal estimation error on the baseline.

Closely related to this paper is the work of Drbohlav and

Chantler [4] where an error analysis of Lambertian photo-

metric stereo is presented. However, a key difference is the

assumption of distant lighting which is only applicable to

large baseline systems. The analysis in [4] can be seen as a

special case when h = 0 in our setting.

Our small baseline photometric stereo setup is similar to

multi-flash cameras [16, 5]. However, the goal of such cam-

eras is to recover depth discontinuities. Further, our focus is

largely a theoretical analysis of the estimation error which

was not considered in these papers.

3. Error due to measurement noise

We analyze the error in estimation of albedo-scaled sur-

face normals with regard to the baseline and the solid angle

subtended at scene point by the light ring, and in the pro-

cess, provide the proof for Theorem 1.

There are many sources of noise in the process of imag-

ing including photon, thermal, and dark-current noise. For

simplicity, we model the measurement noise as zero mean

and bounded variance. Specifically, we assume an intensity

measurement made at any pixel can be written as

î = i+∆ig, (6)

where i is the noise-free measurement and ∆ig is the addi-

tive measurement noise with mean 0 and variance σ2. We

assume the measurement noise ∆ig is i.i.d. across different

pixels in an image and across images.

Given the albedo-scaled surface normal b = ρn and its

estimate b̂ in (2), we define the error metric el2 = ‖b̂−b‖2.

The expected value of el2 can be written as

E [el2 ] = σ2trace
[
(LL⊤)−1

]
, (7)

following the derivation of (33) in [4].

3.1. Dependence of error on baseline

We derive the error expectation with regard to baseline

and other system parameters like measurement noise level,

number of lights and the 3D location of the target.

From (7), we observe that E [el2 ] is the product of the

variance of measurement noise, σ2, and trace
[
(LL⊤)−1

]
.

Here, we further express trace
[
(LL⊤)−1

]
as a function of

the radius of light ring r, the number of lights n, and scene

point’s location by using the following four steps.

Step 1 — Location of light sources. Because lights are

uniformly distributed on a ring, their locations can be writ-

ten as

S = [s1 s2 . . . sn]

=




r cos( 2π
n
1) . . . r cos( 2π

n
n)

r sin( 2π
n
1) . . . r sin( 2π

n
n)

0 . . . 0


 ,

(8)

where each column si is 3D location of each light.

Step 2 — Expression for L. Given the definition of S, we

can derive the light matrix L as

L = [l1 l2 . . . ln]

=

[
s1 − p

‖s1 − p‖3
s2 − p

‖s2 − p‖3
. . .

sn − p

‖sn − p‖3

]

(a)
≈

1

(d2 + h2)
3

2

[s1 − p s2 − p . . . sn − p]

=
1

(d2 + h2)
3

2


S−




0
h
d


1⊤


 ,

(9)

where
(a)
≈ uses the small baseline criteria, r ≪ d, so that

‖si − p‖ ≈ (d2 + h2)
1

2 .

Step 3 — Expression for LL⊤ and its inverse.

LL⊤ =
1

(d2 + h2)3


S−




0
h
d


1⊤




S−




0
h
d


1⊤



⊤

=
1

(d2 + h2)3




n
2
r2 0 0
0 n

2
r2 + nh2 ndh

0 ndh nd2




(10)

(LL⊤)−1 = (d2 + h2)3




2

nr2
0 0

0 2

nr2
− 2h

ndr2

0 − 2h
ndr2

r2+2h2

nr2d2




(11)
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Step 4 — Expression for trace(LL⊤)−1.

trace
[
(LL⊤)−1

]

= (d2 + h2)3(
2

nr2
+

2

nr2
+

r2 + 2h2

nr2d2
)

= (d2 + h2)3
r2 + 4d2 + 2h2

nr2d2

(a)
≈ (d2 + h2)3

2(2d2 + h2)

nr2d2
,

(12)

where
(a)
≈ follows that r ≪ d.

Replacing (12) in (7), we obtain

E [el2 ] = σ2(d2 + h2)3
2(2d2 + h2)

nr2d2
. (13)

This proves the first part of Theorem 1.

3.2. Dependence of error on solid angle

We now investigate the dependence of the estimate on

the solid angle subtended by the light ring at a scene point.

Intuitively, the solid angle is more meaningful from a geo-

metric perspective since it better captures the light configu-

ration as seen at a scene point (see Fig. 2).

The solid angle Ω subtended by the light ring at a scene

point p = (0, h, d)⊤ can be written as

Ω =

∫ 2π

0

∫ r

0

ld

(l2 + h2 + d2 + 2hl sinφ)
3

2

dldφ, (14)

but the closed form of the double integration is analytically

intractable [6]. We instead approximate it as

Ω ≈
πr2 cos θ

h2 + d2
, (15)

where we employ two approximations: first, the numera-

tor, which is the area of an ellipse with semi-major axis r
and semi-minor axis r cos θ, is approximated as πr2 cos θ,

and second, the denominator, which is the distance from the

point to the ellipse, as the distance of the point p to the cen-

ter of the light ring.

Substituting (15) in (13), we obtain:

E [el2 ] = σ2(d2 + h2)2
4π

nΩ 2 cos θ
1+cos2 θ

. (16)

This provides the proof for the second part of Theorem 1.

In the expression, factor (d2 + h2)2 is caused by light fall-

off; 2 cos θ
1+cos2 θ

decreases from 1 to 0 when θ increases from

0 to π/2, thus it can be viewed as discount rate of the sol-

id angle Ω; in other words, error is inversely proportional

to “discounted” solid angle (Ω 2 cos θ
1+cos2 θ

). In particular, it is

noteworthy that the error is not just inversely proportional

to Ω, but also dependent on the angle θ.

Figure 2. Solid angle subtended at point P by the light ring.

Figure 3. Illustration of error due to mis-calibration. Surface nor-

mal of point P is computed using light matrix of point P̂ .

4. Error due to incorrect calibration

In this section, we derive the error due to our lack of

knowledge of the exact depth at which the target is placed.

Recall that, our results hold for scenarios where the dis-

tant lighting assumption is violated and hence, we need to

account for spatial variations in the direction of the inci-

dent illumination. However, this requires knowledge of the

scene depth which is often the goal of photometric stere-

o. While we can often simply use an approximate value

for depth and hope to get reasonable results, we provide a

theoretical characterization of the error incurred due to this

“mis-calibration”.

Suppose that the true scene point is at a location P and

we assume it to be, incorrectly, at P̂ (see Fig. 3). When

scene point is at P , intensities i are L⊤b where L is the light

matrix. When using light matrix associated with the point

P̂ to compute the albedo-scaled surface normal, according

to (2), we obtain the estimate

b̂ = (L̂L̂⊤)−1L̂L⊤b, (17)

where L̂ is light matrix of point P̂ .

4.1. The hypothesized light ring

We first introduce the so-called “hypothesized light

ring” and use it to obtain an approximation for the term

(L̂L̂⊤)−1L̂L⊤. Subsequently, we derive expected value of

el2 both in the absence and presence of measurement noise.

Specifically, we assume that the light ring as seen at a

point P can be replaced by a “hypothesized light ring”,
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Figure 4. Illustration of the hypothesized light ring, which is or-

thogonal to the line from the camera to the scene point.

with radius r′ and distance d′, that is orthogonal to the

line from camera to the scene point (see Fig. 4). Clearly,

d′ = d/ cos θ. An expression for r′ is obtained by ensuring

that the original light ring and the hypothesized light ring

should generate equal error. Specifically, the expression in

(13) for a scene point (0, h, d)⊤ with a light ring of radius r
should be identical to that of a scene point at (0, 0, d′)⊤ and

a light ring with radius r′. This gives us

r′ =

(
2 cos2 θ

1 + cos2 θ

) 1

2

r. (18)

In contrast to derivation by foreshortening (r cos θ), the de-

rived error estimation by r′ matches much better with sim-

ulations.

The light matrix of hypothesized lights L can be ex-

pressed as

L =
1

q3
R


S(r′)−




0
0
q


1⊤


 (19)

where q is (d2 + h2)
1

2 , S(r′) is the hypothesized lights’

locations which is obtained by changing r of (8) to r′, and

R is the coordinate rotation matrix given as




1 0 0
0 cos θ sin θ
0 − sin θ cos θ


 .

We can now express L̂L̂⊤ as

L̂L̂⊤ =
1

q̂6
R




n
2
r′2 0 0
0 n

2
r′2 0

0 0 nq̂2


R⊤ (20)

where q̂ is (d̂2 + ĥ2)
1

2 , and L̂L⊤ as

L̂L⊤ =
1

q̂3q3
R




n
2
r′2 0 0
0 n

2
r′2 0

0 0 nq̂q


R⊤. (21)

Combining (20) and (21) together, we have

(L̂L̂⊤)−1L̂L⊤ equal to

d̂3

d3




1 0 0
0 cos2 θ + sin2 θ d

d̂
− sin θ cos θ(1− d

d̂
)

0 − sin θ cos θ(1− d

d̂
) sin2 θ + cos2 θ d

d̂


 .

Denoting D = (L̂L̂⊤)−1L̂L⊤, (17) can be written as

b̂ = Db, and el2 = ‖b̂ − b‖2 = (b̂ − b)⊤(b̂ − b) =
(Db− b)⊤(Db− b) = b⊤(D− I)⊤(D− I)b.

To obtain an expression for el2 that is independent of the

surface normal, we assume a uniform distribution on the

surface normals, described in its Euler angles. Specifically,

letting

n = [ρ sinΘ cosΦ, ρ sinΘ sinΦ, ρ cosΘ]
⊤
,

with probability density function fΘ,Φ = 1

4π
sin(Θ), Θ

from 0 to π and Φ from 0 to 2π, and λ = d̂
d

, we can compute

EΦ,Θ[el2 ] =
1

3
ρ2(λ− 1)2

(
2(λ2 + λ+ 1)2 + (λ+ 1)2

)
.

(22)

This completes the proof for Theorem 2. The result is quite

surprising because it only relates to λ and does not depend

on r, n and h.

Finally, in the presence of measurement noise, where the

image intensities î is given as (L⊤b+∆ig), we can write

b̂ = (L̂L̂⊤)−1L̂(L⊤b+∆ig) = Db+ (L̂L̂⊤)−1L̂∆ig.
(23)

Now, the expression for E[el2 ] can be derived as

E [el2 ] = EΘ,Φ,∆ig

[
(b̂− b)⊤(b̂− b)

]

=EΘ,Φ,∆ig

[(
(D− I)b+ (L̂L̂⊤)−1L̂∆ig

)⊤

(
(D− I)b+ (L̂L̂⊤)−1L̂∆ig

) ]

=EΘ,Φ

[
b⊤(D− I)⊤(D− I)b

]
+

2EΘ,Φ,∆ig

[
b⊤(D− I)⊤(L̂L̂⊤)−1L̂∆ig

]
+

E∆ig

[
((L̂L̂⊤)−1L̂∆ig)

⊤(L̂L̂⊤)−1L̂∆ig

]

(a)
=EΘ,Φ

[
b⊤(D− I)⊤(D− I)b

]
+ σ2trace

[
(L̂L̂⊤)−1

]

(24)

where
(a)
= follows from the second term being 0 and (7). The

final error is a linear combination of error due to incorrect

placement (the first term in the sum), denoted as E1 below,

and error due to measurement noise (the second term). E1

is only related to the albedo ρ and the ratio λ, and not related

to n, r and h. When d̂ = d, i.e., λ = 1, E1 is zero. When
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d̂ deviates from d, E1 increases gradually. Such analysis is

particularly useful to compute a range of depth values where

error is tolerable.

Limitations of Theorems 1 and 2. It is often more mean-

ingful to analyze the accuracy of a photometric stereo sys-

tem in terms of angular error e∠ = arccos b̂
⊤
b

‖b̂‖‖b‖
for sur-

face normal estimates. However, while e∠ is physically

meaningful, analyzing it analytically is significantly harder

than el2 which enjoys closed-form expressions. A second

limitation is that we employ approximations in the deriva-

tion of both theorems. Next, we show using a wide range of

simulations that in spite of these approximations, the error

expressions are extremely precise.

Verification of the approximations. We compare the

theoretical predictions of expected error in Theorems 1 and

2 to simulation results. Recall that our system is completely

defined using five parameters: the radius of the light ring, r;

the number of point light sources, n; the depth of the scene

point, d; the height of the scene point h; and the variance of

measurement noise, σ2. In addition to these, d̂ is the depth

at which we calibrate the light sources. We note that unless

otherwise stated it is to be taken that d̂ = d.

Given a system configuration, denoted by the values of

{r, n, d, h, σ2}, we compute the expected error from the ex-

pressions in Theorem 1 as well as from simulations. Using

the simulations as ground truth, we compute the relative er-

ror defined as

|ground truth − approximation|

ground truth
.

Figure 5(a) verifies Theorem 1 by comparing relative er-

ror as a function of h and r for fixed values of d = 2000,

and n = 8 (σ2 does not matter here). Figure 5(b) veri-

fies the approximation of solid angle by (15) as a function

of r/d and θ. Figure 5(c) verifies Theorem 2, assuming

no measurement noise, by presenting accuracy in estimat-

ing calibration error as a function of the true depth d from

1500 to 3000 when we have incorrectly calibrated lights at

d̂ = 2000. As expected, when d = d̂ = 2000, the error due

to mis-calibration is zero.

Next, in Fig. 6, we show scatter plots that compare the

ground truth to the theoretical expressions in the theorems.

The proximity of the scatter plot to the “y = x” line in-
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Figure 7. Mean angular error maps when σ2 = 2, n = 8, r =
{20mm, 40mm, 60mm}, and the true depth and calibrated depth

both equal to 2000mm. Notice how the angular error is radially

symmetric — a consequence of the circular light ring. Angular

error of the region enclosed by white line is smaller than 10◦.
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Figure 8. Mean angular error maps when σ2 = 2, n = 8,

r = {20mm, 40mm, 60mm}. The system is calibrated for

a depth d̂ = 2000mm while we vary the true depth d ∈
[1000mm, 3000mm]. The plots shown are a function of d (hor-

izontal axis) and h (vertical axis). Angular error of the region

enclosed by white line is smaller than 10◦.

dicates that our theoretical predictions are very precise and

broadly independent of system parameters.

5. Experiments

We showcase the predictions of the Theorems 1 and 2

by building an experimental prototype and comparing its

performance to our theoretical predictions.

Choice of baseline. Before we build our prototype with a

fixed baseline, it is first instructive to look at the theoreti-

cal predictions. Let us consider a system with eight lights,

n = 8, and measurement noise with variance σ2 = 2. We

assume calibration for a depth d̂ = 2000mm. We vary the

radius of the light ring r ∈ {20mm, 40mm, 60mm} and

consider two scenarios. First, in Fig. 7, we assume that the

scene is at the calibrated depth d = d̂ = 2000mm and look

at mean angular error as a function of h. Second, in Fig. 8,

we vary the true depth d ∈ [1000mm, 3000mm] when the

system is calibrated for d̂ = 2000mm and plot the error

Camera

LED

Baseline = 80 mm

Figure 9. Our portable surface normal sensor with a light ring of

radius r = 40mm (diameter of 80mm).

Figure 10. Light calibration method.

as a function of both d and h. In both cases, we mark the

10◦ equi-error contour in white. An important observation

is that around r = 40mm we get a sufficiently large region

where the error is smaller than 10◦. This suggests that we

can have a system that can be fit onto a smart-phone.

Prototype. We used a Point Grey camera FL3-U3-

13E4C-C and Cree XLamp XM-L LEDs to build a small

baseline photometric stereo device (see Fig. 9) with the goal

of recovering surface normals and depth maps of scenes

placed nearly 2000mm away. We fixed the number of light

sources on the ring as 8 for all experiments. Note that the

number of lights in the rings controls the trade-off between

accuracy (1/n as detailed in Theorem 1) and acquisition

time (proportional to n). While more lights lead to less er-

ror, they also result in longer acquisition time.

Light calibration. Due to the small baseline, precise cal-

ibration of the light matrix is very important. We observed

that the traditional method of using specular and diffuse

spheres provided calibration results were not sufficiently ac-

curate. To resolve this, we propose a novel light calibration

technique using a diffuse checkerboard pattern. Figure 10

illustrates our light calibration method. We use the Cam-

era Calibration Toolbox [1] for estimating the location and

surface normal of the checkerboard pattern. By observing

the checkerboard at a certain 3D location under a certain

lighting condition, we can recover light matrix by varying

the orientation of the checkerboard. Once calibration is per-

formed at certain locations, we interpolate to obtain the light
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Figure 11. Mean angular error as a function of the baseline.

(a) One of the input (b) Surface normal map

(c) Reconstructed surface
Left/right views Top/bottom views

Figure 12. Surface normal map and reconstructed surface of a s-

culpture scene of 1m× 0.6m.

matrix at the remaining locations.

Results. We used the same diffuse checkerboard pattern

for light calibration to quantitatively test our device. We ro-

tated the checkerboard at 20 poses and computed the differ-

ence between the recovered surface normal and the ground

truth (obtained by the use of the Camera Calibration Tool-

box for Matlab [1]). The change of mean angular error with

radius of the light ring is shown in Fig. 11. The error when

baseline is 40mm is smaller than 10◦.

We show the surface normals and reconstructed surfaces

of real scenes captured by our device in Fig. 12. The radius

of the light ring was set to r = 40mm. In spite of this small

baseline, it is encouraging to see reliable normal estimates.

Finally, in Fig. 13, we obtain surface normal estimates of

a scene while varying the radius of light ring. We observe

that for a radius of 20mm, the surface normal estimates are

noisy. Beyond a radius of 40mm, the gains due to increas-

ing baseline seem to be minimal. These results confirm the

theoretical predictions outlined in Figs. 7 and 8.

r = 20mm r = 40mm r = 100mm r = 200mm
Figure 13. Surface normals of a real scene for varying baseline.

Note that there is only marginal improvement in the quality of the

surface normals beyond r = 40mm.

6. Conclusions

Photometric stereo with a small SWaP can be immensely

useful. In this paper, we provide the theoretical scaffolding

for understanding the dependence of estimation error as a

function of various system parameters including the radius

of the light ring, the number of light sources, measurement

noise level as well as the dependence of the error on the lo-

cation of the scene point. The systems we consider are the

photometric duals of micro baseline stereo [13, 21, 15, 3].

However, to the best of our knowledge, we are the first to

address the small baseline problem in the context of photo-

metric stereo. We believe that our analysis will be useful in

the design of compact and mobile photometric stereo.
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