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Abstract

Fine-grained categorization, which aims to distinguish

subordinate-level categories such as bird species or dog

breeds, is an extremely challenging task. This is due to

two main issues: how to localize discriminative regions for

recognition and how to learn sophisticated features for rep-

resentation. Neither of them is easy to handle if there is

insufficient labeled data.

We leverage the fact that a subordinate-level object al-

ready has other labels in its ontology tree. These “free” la-

bels can be used to train a series of CNN-based classifiers,

each specialized at one grain level. The internal represen-

tations of these networks have different region of interests,

allowing the construction of multi-grained descriptors that

encode informative and discriminative features covering all

the grain levels.

Our multiple granularity framework can be learned with

the weakest supervision, requiring only image-level label

and avoiding the use of labor-intensive bounding box or

part annotations. Experimental results on three challenging

fine-grained image datasets demonstrate that our approach

outperforms state-of-the-art algorithms, including those re-

quiring strong labels.

1. Introduction

Psychologists have showed that humans do well in

basic-level recognition before developing their ability of

subordinate-level recognition[20]. Perhaps not coinci-

dentally, researches in the field of computer vision have

followed a twin trajectory, moving from coarse-grained

to fine-grained. Fine-grained categorization, referring to

subordinate-level recognition, has emerged as a popular re-

search area in the computer vision community. In contrast

to basic-level categorization, subordinate-level classifica-

tion needs to explicitly discriminate against subtle differ-

Figure 1. Any subordinate-level label has its parenting labels in

the ontology tree that are informative and discriminative for clas-

sification, with respect to their grain levels. Acorn Woodpecker,

Downy Woodpecker and Nuttall’s woodpecker are three distin-

guish species, but all of them belong to the same family.

ences among similar subcategories. Progress in fine-grained

categorization not only expands the scope of generic object

recognition, but also directly benefits domain experts.

In general, fine-grained categorization is extremely chal-

lenging. This is due to two main issues: how to 1) local-

ize discriminative regions and 2) learn their corresponding

representations. Identifying such regions is critical, as they

contain informative details for subordinate-level categoriza-

tion. As an example, domain experts always characterize

bird species with some special parts such as spotted chest

and white back. Basic-level classification only requires the

“where” of the object, while fine-grained one additionally

asks for the “where” of the most discriminative parts.

Classification at subordinate-level is difficult because

of large inner-class variations and inter-class confusions,

which could be resolved if sufficient labels were available.

Unfortunately, unlike basic-level classification where lit-

tle domain expertise is required to label the data and tools

such as crowd-sourcing can be leveraged, subordinate-level

recognition demands well-annotated data which is compar-

atively scarce and expensive to acquire.
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Our idea is based on the core observation that a

subordinate-level label carries with an implied hierarchy of

labels, each corresponding to a level in the domain ontol-

ogy. Following the assumption that domain experts dis-

tinguish finer classes with visually distinctive features, hi-

erarchies thus have embedded and latent knowledge. Our

goal is therefore to explore the rich semantic relationships

among these extra labels. For instance, Melanerpes Formi-

civorus, also known as Acorn Woodpecker, can also be

called Melanerpes at genus level, or Picidae at family level

(Figure 1). These labels are free for extracting their corre-

sponding discriminative patches and features.

Our framework contains a parallel set of deep convolu-

tional neural networks, each optimized to classify at a given

granularity. In other words, our framework is composed of

a set of single-grained descriptors. Saliency in their hidden

layers guides the selection of regions of interest (ROI) from

a common pool of bottom-up proposed image patches. ROI

selection is therefore by definition granularity-dependent, in

the sense that selected patches are results of the associated

classifier of a given granularity. Meanwhile, ROI selections

are also cross-granularity dependent: the ROIs of a more

detailed granularity is typically sampled from those at the

coarser granularities. This is built upon the intuition we dis-

cussed earlier, by emulating the process of multi-level atten-

tion. Finally, per-granularity ROIs are fed into the second

stage of the framework to extract per-granularity descrip-

tors, which are then merged to give classification result.

Our experiments on three challenging fine-grained

benchmarks, CUB-200-2011[34], Birdsnap[3] and

Aircraft[27], outperform the existing state-of-art ap-

proaches, while only requiring the weakest, per-image

labels, validating our approach. We find that finding the

discriminative regions and extracting the corresponding

features are complementary, delivering 3% and 2%

performance improvements respectively. We note that

while specific techniques can vary, the approach to explore

richer and semantically hierarchical labels is generalizable.

In summary, we make the following contributions:

1. We overcome the scarcity of labeled data by enrich-

ing a subordinate label with its parenting labels in the

taxonomy hierarchy.

2. We derive a multi-granularity learning framework that

leverages the hierarchical labels to generate compre-

hensive descriptors.

3. We propose a two-step fine-tuning mechanism consist-

ing of salient region localization followed by classifi-

cation of patches.

The rest of the paper is organized as follows. Section 2

covers related work, Section 3 describes our framework, ex-

periment results are reported in Section 4 and we conclude

and discuss future work in Section 5.

2. Related Work

Fine-grained classification, whose domains vary from

animal breeds[34][3][21] to man-made objects[27][23], be-

comes increasingly popular recently. In contrast to coarse-

grained classification tasks, differences in appearances

among objects in the same basic-level category are ex-

tremely subtle. Consequently, it requires more sophisticated

features which in turn heavily rely on abundance of labeled

training data. We attack the problem by using more im-

plied labels from the ontology structure. From that perspec-

tive, previous work exploring similar idea is [9], which in-

troduces Hierarchy and Exclusion (HEX) graphs to capture

semantic relations between labels instead.

To our best knowledge, our approach is the first to in-

tegrate taxonomic hierarchy and feature learning in fine-

grained categorization. Other related works have focused

on boosting performance from the following two aspects:

part localization and representation learning.

2.1. Part­based Model

To tackle the issue of the insufficient discriminative

power for fine-grained categorization, some of the ex-

isting works focused on feature encoding, such as part-

based or pose normalized frameworks[5][36][38][37] and

segmentation-based methods[1][7][14]. [38] made use of

deformable part models[13] for pose-normalized represen-

tations of fine-grained objects. Several approaches used

poselets[4], a part detector based on key-points to capture

a specific viewpoint and pose, as a part localization method

for fine-grained classification[12][37].

Part-based representations are very prevailing for object

recognition from basic-level to subordinate-level, but it is

unclear what those parts should be at different granularity

levels. Some existing approaches[36][5][26] regard CNNs

as visual descriptors and provide part-level supervisions to

guide learning progress. These pipelines attempt to capture

image patches containing subtle differences from training

images. The strongest supervision setting requires part in-

formation in both training and testing phase, which is an

unrealistic requirement in practice. Our approach localizes

and learns granularity-specific features automatically, using

only image-level labels and their ontology structures.

2.2. Representation Learning

Since domain training data is limited, [15] proposed

a transfer learning strategy, where a convolutional neu-

ral network [25] is first pre-trained on ImageNet[24] and

then fine-tuned on the smaller task-specific dataset. Mean-

while, several other researches reported similar settings on

a wider range of visual tasks[29]. [35] designed domain-

nets and filter-nets to simulate two-level attention mecha-

nism like human beings. [30] proposed recurrent neural net-
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work simulating attention mechanism while utilizing pre-

trained CNNs as region feature extractors. [22] utilized co-

segmentation and alignment to generate parts without ex-

tra annotations. After fine-tuning, CNNs have shown great

promise in capturing a great amount of feature representa-

tions with its tremendous learning power. Our work shares

the same spirit, but extends it in the multi-granularity frame-

work with a carefully designed two-step refining process.

3. The Proposed Model

3.1. Overview

An object at subordinate-level carries with it all its par-

enting labels along the path of its taxonomy tree. As an ex-

ample, downy woodpecker is Picidae, Dryobates and Dry-

obates Pubescens at the family-, genus- and species-grain,

respectively. The question is how to leverage these labels.

Our idea is to derive per-grain descriptor, and combine them

into what we call the multiple granularity descriptors, or

MGD in short.

Ideally, MGD should correspond well with how human

detect such objects, and its constituent descriptors should

complement each other. For instance, the family-grained

descriptor focuses on body and shape, whereas genus- and

species-grained descriptor describes increasingly localized

details. Our goal is to derive these descriptors without

knowing their spacial distribution on raw image in advance.

Consider the problem of getting an informative single-

grain descriptor. Suppose a bottom-up process has proposed

a pool of image patches (or regions). The next step is to

select the patches that are most discriminative for classi-

fication at this grain-level. Once such patches are selected,

refining a network to derive the grain-specific descriptor be-

comes possible (the right part of Figure 2 and Section 3.3).

We choose to generate grain-specific regions of interests

(ROIs) first. This is described in the left half of Figure 2.

Importantly, ROIs are generated by detecting high saliency

points in the heatmap of a network fine-tuned for a given

grain. Figure 3 gives a preview of multi-grained heatmap in

comparison to crowd-sourcing interests[11]. The score of

an image patch, a measure of how relevant it is to a given

grain, is then evaluated against the ROIs. Section 3.2 de-

scribes this part of the pipeline in more detail.

The complete pipeline of a grain has a clear division

of labor. The network that generates ROIs to pick grain-

specific region candidates is called the detection network,

and the network that generates feature representation is

called the description network. Detection network is fine-

tuned from a generic CNN using its associated grain labels,

with original raw input image; description network is fur-

ther refined from detection network with the same label

set, but is instead fed with the image regions selected by

ROIs from the detection network. To map well with the

intuition given earlier, ROIs are loosely regularized across-

grain: ROI candidates of a detailed grain are encouraged to

be part of the ROIs of the next coarse level, and thus operate

at a more localized level. This two-step refinement process

and the composition of MGD are the subject of Section 3.3

and Section 3.4, respectively.

3.2. Region Discovery

Generating Saliency Heatmap We first create multi-

ple granularity detection networks. These networks are

refined from the same VGGNet pre-trained on ImageNet,

feeding each with an entire image with one grained la-

bel (e.g. fine-grained detection CNN is fed with labels at

species level). After training, we obtain 512 channels of fil-

ter response map from the last pooling layer of VGGNet.

Detection CNNs produces heatmap of spatial distribution

of ROIs deep inside network, since filter parameters are

learned from domain-specific training data. Our goal is to

uncover saliency in their hidden layers to guide selection of

ROIs.

Stacking together the feature maps across all channels

generates a heatmap that is polluted with cluttered activa-

tions driven by unrelated background noises. Therefore we

perform data preprocessing. Inspired by [18], we applies

a map normalization operator N (·), its effect is to glob-

ally suppresses numerous comparable peak responses and

simultaneously enhances strong peaks. The steps are:

1. Normalizing the map to a fixed range [0 . . .M ], here

M is shared across maps

2. Computing the average m̄ of all other elements

3. Cultiplying the map by (M − m̄)2

The normalization operator N (·) compares the maxi-

mum response in a map to its average overall activations by

figuring out the difference between the maximum and the

average. When this difference is large, the peak stands out

naturally. On the contrary, when this difference is small, the

map is suppressed as whole. N (·) derives from biological

mechanisms, cortical lateral inhibition, where the neighbor-

ing similar features inhibit each other via specific, anatom-

ically defined connections[6].

The heatmap that describes the spatial distribution of in-

terest points is then produced:

ϕ(I) =

512∑

i=1

N (ϕi(I)) (1)

where ϕi(·) denotes the i-th filter response map of image I

while ϕ(·) indicates the heatmap.

Identifying Region of Interest Our next step is to fil-

ter irrelevant patches among those proposed by bottom-

up mechanism adaptively, guided by energy distribution of

heatmap. Although heatmap highlights some discriminative

area, between the poles of foreground and background there
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Figure 2. Overview of our Multiple Granularity Descriptors (MGD) framework.

still lie intermediary areas. Another issue we need to deal

with is that CNNs are sensitive to certain texture pattern,

and as a result background clutter may be more influential

(e.g. due to bird’s protective coloration).

We employ [17], an interactive image segmentation

tool, which introduced geodesic star convexity for inter-

active image segmentation. Its principle is to fully uti-

lize star-convexity as shape cues[33]. Global foreground

estimation helps filter background patches while extend-

ing object-level regions from the highest energy points of

interest. Here we define energy as the sum of all en-

closing elements of heatmap. Instead of operating on in-

put image, we apply it to heatmap and simulate a robot

user. Pixels with higher energy are regarded as fore-

ground seeds, whereas lower energy areas are background

seeds, and the rest are labeled as unknown. Thus we es-

tablish a mapping of pixels of heatmap to three seedmap

labels (foreground, unknown, background), colored as

(white, gray, black) respectively. At the end, we generate

foreground segmentation rather than bounding box, with the

hope to produce more accurate location of the object.

Our next step is to choose the regions. We measure con-

fidence of foreground regions by pixel-level overlap of re-

gion candidate and object segmentation. Specifically, we

calculate ratio of Intersection-over-Union(IoU) as follows:

φ(region) =
Area(region ∩ seg)
Area(region ∪ seg) (2)

where ∩ and ∪ denotes intersection and union while

Area(·) is the number of pixels. seg is the foreground

pixels discovered in the previous step. At the same time,

we calculate the density of box’s energy, which implies the

confidence of discriminative regions:

Figure 3. Heatmap of human and multi-grained CNNs interests.

ρ(region) =
Energy(region)

Area(region)
(3)

whereArea(·) denotes the area of box. Finally, we com-

pute the score of a region as:

ψ(region) = φ(region) · ρ(region) (4)

The idea is to unite two factors: low-level visual clues given

by segmentation of foreground object, measured by pixel-

level overlap, and high-level semantic hints obtained from

heatmap via density of energy.
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Figure 4. Process of interactive segmentation based on heatmap.

3.3. Two­Step Finetuning

The bottom-up proposed regions are divided into three

groups according to their size: large, medium and small.

They are now distributed to the detection networks accord-

ing to this rule: coarse-grain takes the large regions only,

mid-grain picks both large and medium, and the finer-grain

takes all three. The rational is that finer-grain is the hardest

to classify due to subtle differences, and thus needs as many

candidate regions as possible.

Given the set of regions assigned to it, a detection work

ranks them according to its ROIs as is described in Section

3.2, and picks positive and negative samples according to

two thresholds (in our experiment, they are 0.35 and 0.15

determined by grid search, for high and low respectively).

They are now fed to description network, which is initial-

ized from its corresponding detection network.

Figure 5 illustrates the hierarchical supervision for mul-

tiple granularity CNNs. For instance, the top level of tax-

onomic tree, such as order-grained or family-grained la-

bels, tells woodpecker from sparrow and tanager. The finer

grained label, such as genus-grained or species-grained at

the bottom level, provides more details about red-cockaded

comparing to downy and pileated. As for input image

patches, larger regions like object-level patches are fed into

all three levels, while smaller regions like part-level patches

are utilized to distinguish subtle differences.

3.4. Multiple Granularity Descriptor

Based on region proposals from detection networks,

multi-grained descriptors can be extracted by description

networks of different grains. The image I can be repre-

sented as a set of multiple granularity descriptors:

MGD = {F1(R1), F2(R2), . . . , FL(RL)} (5)

where F,R denote the specific grained feature vector and

the corresponding regions of interest respectively, and L is

the total number of granularity. Note that at test time, each

grain only selects the highest scored region.

Our final feature space concatenates the outputs of the

first fully connected layer of multiple descriptor networks

across grains. In general, the progression through the 19-

layer VGGNet can be seen as a movement from low to

mid to high-level features. The pooling layers aggregate

complex structural information, with max-pooling opera-

tion grab hold of deformable parts, and the later fully con-

nected layers summarize complex co-occurrence statistics

and remove the influence of spatial displacement. To han-

dle fully connected layers with different scales of magni-

tude, each representation is normalized independently.

Finally, we employ a linear SVM to learn weights for

the final classification. The application of a linear SVM

instead of softmax layers by CNNs is mostly for technical

convenience to combine multi-grained features.

4. Experiments

In this section, we report our experiment results. First,

we compare the framework’s overall performance against

state-of-the-art algorithms on three standard subcategory

datasets. We then perform detailed analysis on the gains

contributed by individual components.

We start with the 19-layers VGGNets[31] pre-trained on

of ImageNet[10], with the publicly available implementa-

tion Caffe[19]. In our framework, each grain refines a VG-

GNet, and then 4096-dimensional representation after the

first fully-connected layer is extracted. Therefore, a three-

grained pipeline has an internal representation of 12,288 di-

mensional global features. We utilize Selective Search[32]

to obtain the initial hypothesis of regions of interest for each

image. Multi-grained labels references for a three-level tax-

onomic hierarchy (family, genus and species) come from

the followings: American Ornithologists’ Union Check-list

of North American Birds[8] and WordNet[28]. For a fair

comparison, we try to reproduce experiment of state-of-the-

art method[36] on the same baseline network.

4.1. Comparison with State­of­the­art Methods

We report our results on three challenging datasets:

CUB-200-2011[34], Birdsnap[3] and Aircraft[27] where

classification accuracy indicates average over test samples.

CUB-200-2011 This dataset contains 200 bird species

and 11,788 images, and is a wildly-used fine-grained classi-

fication benchmark. Each image in CUB-200-2011 has rich

supervision, including image-level label, bounding box and

fifteen part landmarks. For fair comparison, we use stan-

dard dataset split, with about 30 samples of each breed for

both training and testing phases.

Birdsnap This dataset contains 49,829 images of 500

of the most common species of North American birds with

most species have 100 images. Each image in BirdSnap is

labeled with a bounding box and seventeen parts landmarks

along with image-level label. Compared to CUB-200-2011,
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Figure 5. Illustration of the hierarchical supervision for multiple granularity descriptors.

it contains much more species and images, well reflecting

the visual variation among almost all the commonly birds

in the United States. We follow [3] experimental setting

and hold out a test set of 2,443 images.

Aircraft This dataset contains 100 aircraft variants and

10,000 images. Each image in Aircraft has both image-level

label and bounding box annotation. The training and test set

consists of around 67 and 33 images per class, respectively.

Compared to birds, airplanes usually occupy a large area

of whole image with relatively clean background. How-

ever, the difficulty can be substantial inter-class confusion:

the difference of Boeing 737-300 and Boeing 737-400 may

only appear in the number of windows in the model. For fair

comparison, we use standard evaluation metric mA, average

classification accuracy by category.

Quantitative and Qualitative Results Comparisons of

our performances (termed “multi-grained”) against other al-

gorithms are given in Table 1, 2 and 3, along with require-

ments of supervision. To understand the performance dif-

ference caused by imperfect location detection, we also re-

port results when we replace segmentation in Eq.(2) with

the ground truth bounding box.

Interestingly, our framework delivers the best result with

and without bounding box. In CUB-200-2011 dataset, it is

even better than the methods that require part-level annota-

tion. The only exception is when the oracle bounding box

is also provided at the test time.

Some example segmentation results of our multiple

granularity descriptors are shown in Figure 6, including

both successful and failure cases. The failures are mainly

caused by intra-class variability which remains challenging,

where cluttered background shares high visual similarities

with the undetected objects.

Figure 6. Some example segmentation results by our approach on

CUB-200-2011[34] and Birdsnap[3] datasets. Successful segmen-

tations (left 2 columns) and failure cases (right column).

4.2. Individual Component Effectiveness

The performance of our framework is affected by differ-

ent factors as follows:

1. Choice of descriptor is the most significant

2. More accurate region discovery has an impact, more

so when accuracy is overall quite low

3. Combining multiple regions of interest helps both fine-

tuning and classification

We now elaborate on these conclusions, using the well stud-

ied CUB-200-2011. The results are listed in Table 4.

Analysis of Multiple Granularity In upper half of Table

4, we show how single-, double- and triple-grained differ.

Independent of whether ground truth bounding box is used,

performance steadily improves.

Analysis of Region Discovery The difference between

results using the same number of grained pipeline but with

or without bounding box is caused by region detection ac-

curacy. The gap is not significant, but meaningful. Earlier,

we have shown that this gap is more significant for the other

two benchmarks, where the general accuracy is lower.
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Methods Feature BBox Part Oracle BBox Oracle Part Accuracy (%)

Zhang et al. [38] KDES
√ √

51.0

Chai et al. [7] Fisher
√ √

61.0

Gavves et al. [14] Fisher
√ √

62.7

Zhang et al. [38] KDES
√ √ √ √

64.5

Berg et al. [2] POOF
√ √ √ √

73.3

Zhang et al. [36] AlexNet
√ √

73.5

Branson et al. [5] AlexNet
√ √

75.5

Zhang et al. [36] AlexNet
√ √ √

76.7

Lin et al. [26] AlexNet
√ √

80.3

Zhang et al. [36] VGGNet
√ √

81.6

Krause et al. [22] VGGNet
√

82.0

Zhang et al. [36] VGGNet
√ √ √

85.0

Multi-grained VGGNet
√

83.0

VGG-19[31] VGGNet 67.0

Xiao et al. [35] AlexNet 69.7

Xiao et al. [35] VGGNet 77.9

Multi-grained VGGNet 81.7

Table 1. Quantitative results on the CUB-200-2011 dataset [34] in comparison with state-of-the-art methods.

Methods Annotation Accuracy (%)

VGG-19[31] BBox 62.3

Berg et al. [3] BBox 66.6

Multi-grained BBox 74.8

VGG-19[31] None 51.7

Multi-grained None 65.9

Table 2. Quantitative results on the Birdsnap dataset [3] in com-

parison with state-of-the-art methods.

Methods Annotation mA (%)

VGG-19[31] BBox 63.2

Chai et al. [7] BBox 75.8

Gosselin et al. [16] BBox 81.5

Multi-grained BBox 86.6

VGG-19[31] None 56.6

Multi-grained None 82.5

Table 3. Quantitative results on the Aircraft dataset [27] in com-

parison with state-of-the-art methods.

Analysis of Two-Step Finetuning Once a region is dis-

covered, how its associated features are extracted makes a

difference. We could feed it into detection CNN (which is

refined from ImageNet with the target grain labels) to ex-

tract features (second half of Table 4). Or, alternatively let

the detection CNN act as region of interest generator which

picks up potential region hypothesis according to feature

map scores. The selected domain relative patches are used

to train the description CNN. Results show that, for CUB-

200-2011 dataset, this brings the most significant gain.

Methods Annotation Accuracy (%)

Single-grained BBox 81.2

Double-grained BBox 82.4

Multi-grained BBox 83.0

Single-grained None 79.5

Double-grained None 81.0

Multi-grained None 81.7

Detection CNN BBox 77.3

Description CNN BBox 81.2

Detection CNN None 76.2

Description CNN None 79.5

Table 4. Evaluation of individual components contributing to the

overall performance on CUB-200-2011 dataset[34].

5. Conclusion

In this paper, we propose a fine-grained categorization

framework that is trained from multiple granularity labels.

Our framework can simultaneously handle both represen-

tation learning and region discovery, and discover features

across grain levels fully automatically.

Experimental results on three challenging datasets,

CUB-200-2011, Birdsnap and Aircraft demonstrate that our

method outperforms most of the existing approaches, and

makes it under the weakest supervision signal.

Our approach is generalizable, and we will actively look

into ways to adapt the idea to other algorithms. We also

plan to make more aggressive use of taxonomic hierarchy

and on other difficult fine-grained domains.
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