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Abstract

In this paper we propose a novel approach to localiza-

tion in very large indoor spaces (i.e., shopping malls with

over 200 stores) that takes a single image and a floor plan

of the environment as input. We formulate the localiza-

tion problem as inference in a Markov random field, which

jointly reasons about text detection (localizing shop names

in the image with precise bounding boxes), shop facade

segmentation, as well as camera’s rotation and translation

within the entire shopping mall. The power of our ap-

proach is that it does not use any prior information about

appearance and instead exploits text detections correspond-

ing to shop names as a cue for localization. This makes our

method applicable to a variety of domains and robust to

store appearance variation across countries, seasons, and

illumination conditions. We demonstrate our approach on

our new dataset spanning two very large shopping malls,

and show the power of holistic reasoning.

1. Introduction

Due to the development of cost-effective solutions such

as the global positioning system (GPS), people can eas-

ily localize, navigate and route through the city by simply

clicking on their phone. Localization in large indoor spaces

is, however, much more difficult, since GPS typically can-

not communicate with the satellites inside the buildings. As

a consequence, indoor navigation is still an open, yet crucial

problem with a huge potential impact on many commercial

and public services. The goal of this paper is to perform lo-

calization in large shopping malls given only a single image

and a floor plan of the mall.

Sensor-based approaches to indoor localization have

been developed, but require either a large number of nearby

anchor points [39, 10] (e.g., WiFi access points or bea-

cons with known positions) that are densely distributed

within the scene or pre-assume initial absolute locations [2,

1]. Most vision-based localization systems rely on a pre-

recorded dataset containing all places of interest, and lo-

calization involves indexing in the dataset by matching

Figure 1. Given a monocular image and a shopping mall’s floor-

plan, our goal is to estimate the 3D camera pose, and parse the

facades of the visible shops.

the visual appearance [18, 31, 23, 42] and/or geometry

[9, 34, 5, 30]. These approaches have the disadvantage that

requires a priori knowledge of how the world looks like

and are thus not very robust to appearance and geometric

changes. The former is particularly important in indoor sce-

narios such as shopping malls, where the shops vary their

display regularly to show their new seasonal products.

SfM and SLAM methods [3, 34, 13] estimate camera

pose and a map of the environment by capturing a large

collection of images. Recently, [8] proposed to localize

a car by matching the vehicle’s trajectory to cartographic

maps annotated with the road topology. This is appealing

as it does not require knowledge of the world’s appearance

and only requires the cartographic map to be up to date.

However, such an approach would likely fail in large indoor

spaces since the corridor topology is not very discriminative

as well as people move in less structured ways.

Instead, our work builds on the following observation:

Suppose you are lost somewhere inside a big shopping mall

and you need to meet your friend in Starbucks for a cup

of overpriced coffee. The most common way of finding

one’s path is to find the name of one or two of the shops

around you, and look them up in the shopping mall’s floor-
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Figure 2. Overview of our dataset. Left: example images; right: 3D floorplan

Malls Retailers Images Images with labeled texts Images with labeled facades Images with labeled locations

2 358 15984 3099 701 246

Table 1. Statistics about our shopping mall dataset, collected in two large malls (Promenade and Yorkdale in Toronto).

plan (typically available at the info point). Once you are

localized, you can start planning a path to the desired desti-

nation based on the information provided by the map.

Following this intuition, our first contribution is a novel

approach that can perform accurate localization within large

200+ store shopping malls using a single RGB image and

the mall’s floor plan. The floor plan contains rich informa-

tion about which stores the mall has and their location, as

well as the widths of the corridors and store facades. We

formulate the indoor localization problem as inference in a

Markov random field (MRF), which jointly reasons about

text detection (localizing shop’s names in the image with

precise bounding boxes), shop facade segmentation, as well

as camera’s rotation and translation within the entire shop-

ping mall. The power of our approach is that it does not

use any prior information about appearance (such as image

examples of particular stores) and instead only exploits text

detections corresponding to the shop names. This makes

our method applicable to a variety of domains and robust

to store appearance variation across countries, seasons, and

illumination conditions. Our second contribution is a new

dataset containing precise ground-truth annotations for all

these tasks for two large shopping malls. Our experiments

show that our holistic model achieves good accuracy, out-

performing the baselines that solve the individual tasks.

All our code and data is publicly available at: http://

www.cs.toronto.edu/˜slwang/lostShopping/. We

are also planning to set up an online benchmark in order

to inspire the community to work on and push forward the

performance of this challenging problem.

2. Related Work

The most popular solution to indoor positioning are

sensor-based methods [10, 39, 40], which rely on measur-

ing distance to nearby anchor nodes (e.g. WiFi AP, Blue-

tooth iBeacon). They require distributed geolocated anchor

nodes and sometimes specific sensors for users. For in-

stance, a WiFi-based positioning system [10] measures the

intensity of the received signal from the surrounding WIFI

access points for which the location is known. As a conse-

quence it relies heavily on maintaining a geolocalized wifi

dataset which can be out-of-date very quickly. Moreover,

the localization accuracy may fluctuate due to changes in

signal strength and only works for regions with a sufficient

number of sensors to enable trilateration and triangulation.

Simultaneous localization and mapping (SLAM) [13,

16] and structure-from-motion (SfM) [3, 34] are used for

mobile robot localization [37]. These methods require a

large collection of images to perform localization and build

a 3D map of the environment. Recently, [8, 15] proposed to

use the ego-trajectory and a cartographic map to localize a

car. Similar ideas have been used in Project Tango, which

localizes based on the estimated trajectory and the manually

annotated starting point. However, the difficult conditions

in shopping malls (e.g., moving crowds, occlusion, specu-

larities, transparency), present a challenge for visual odom-

etry and SfM. In contrast, in our work we aim to localize

from a single RGB image and a floor plan. This makes a

very natural setting where a user can simply take a photo

and get her/his geolocation. Our work is also related to [38]

who performed 3D parsing of a single outdoor image by

exploiting a crowd-sourced cartographic map. However, in

this work the authors assumed that localization was given

by the vehicle’s GPS and IMU.

Place recognition approaches [18, 42, 23, 36, 7] local-

ize by matching an image against a large database. These

approaches rely on large collections of pre-registered im-

ages with a dense coverage, which is especially difficult

to acquire for indoor scenes. Retrieval approaches in in-

door environments have typically been limited to relatively

constrained spaces [29, 24]. For indoor scenes like shop-

ping malls, they would require very frequent updates, mak-

ing them impractical. In [5], the authors proposed an ap-

pearance free approach to outdoor localization that matches

buildings’ corner-points in the elevation map. For in-

doors, [4] perform localization by matching objects such as

chairs/doors to configurations in the floorplan. This is a very

interesting approach, however, it cannot be used in our set-

ting since the shopping mall’s floorplans do not contain this

information. Our work also falls in the domain of egocen-

tric computer vision. Previous work on egocentric cameras

tackle scene [35, 28] and action recognition [14], field-of-
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Figure 3. Ground-truth examples. Left: text and shop facade la-

beling; right: ground-truth camera location.

view localization [7] and story summarization [26].

Our approach is also related to work on room layout es-

timation [20, 32, 22] in indoor images and facade labeling

in outdoor scenes [11]. We go beyond this line of work by

jointly reasoning about layout and localization in large 3D

spaces. A variety of approaches also make use of floor plans

in indoor scenarios. These approaches typically tackle the

problem of 3D reconstruction [17, 41, 27], where single or

multi-camera rigs are used to record a site. In [27], indoor

tourist sites are reconstructed by exploiting photos from the

web, SfM and floorplans.

Perhaps the closest to our work is [25], which tries to re-

construct rental apartments from non-overlapping monocu-

lar images using the apartment’s floorplan. They perform

joint room layout estimation and camera localization with

wall and window information. Here, we tackle localization

in much larger spaces which requires a very different model

formulation as well as different image cues (such as text

and shop facade boundaries, etc.). It is also worth noting

that we generalize the layout from the typical 3D box as-

sumption to a set of facades that are oriented with the three

dominant orientations. This is necessary due to the complex

shape of shopping malls, see Fig. 2 for an illustration.

3. Data Collection and Overview

We collected a new dataset since there is no freely avail-

able datasets of large indoor spaces. Our aim was to get

a set of geo-registered images in shopping malls with addi-

tional annotations for shop facades – facade segmentation as

well as bounding boxes around text that indicates the shops’

names. We visited two large shopping malls: Yorkdale and

Promenade in Toronto, and collected data in two phases

with time spanning from December 2014 to March 2015,

in order to capture appearance, illumination, and lighting

changes. For both of these malls high quality floor plans are

available in an easy parseable, vector format. We recorded

several video sequences with a GoPro camera mounted on

the head to mimic one’s field of view during shopping. In

both visits, we recorded the whole shopping mall. We col-

Figure 4. Our candidate text detections: We compute a saliency

map (left) and evaluate scores for bounding boxes along direc-

tions of left, frontal, and right wall (right). We rectify the patches

within each hypothesis to be fronto-parallel to avoid perspective

distortion in the text.

lected videos instead of single images in order to have a

larger set of images based on which we could test robust-

ness to viewpoint changes, etc.

We used AMT to label (tight) 2D polygons enclos-

ing shops’ names in the images, and curated the labels if

needed. The shop facades were labeled by in-house annota-

tors, who were asked to mark a quadrilateral indicating the

left and right vertical boundaries of the shop as well as the

bottom and top. An example of these annotations is shown

in Fig. 3. Based on the corner points of the annotated fa-

cades and its corresponding corner points in the floor plan

we computed ground-truth camera pose within the shopping

mall. We note that due to the imperfect camera intrinsic pa-

rameters (estimated via the vanishing points) and noise in

human labeling, the GT camera poses are not perfect. We

manually corrected the shop’s corner locations to improve

the quality of our ground-truth. Fig. 2 illustrates a few image

examples as well as 3D models that we estimate from the

2D correspondences. Note that resources such as wikipedia

contain ceiling height information for our shopping malls.

Overview: In this paper we formulate the localization

problem as inference in a Markov random field, which

jointly reasons about text detection (localizing shop’s names

in the image with precise bounding boxes), shop facade

segmentation, as well as camera’s rotation and translation

within the entire shopping mall. In the following we first

present how to localize text in indoor scenes, followed by

our holistic formulation.

4. Text Detection in Indoor Scenes

When arranging a meeting with a friend in a mall, one

typically says e.g. “I’m in front of the Adidas store, come

and meet me there”. For humans one of the most important

cues to localization inside a shopping mall is the name of the

shops that surround you. Our first goal here is thus to detect

store names in monocular images. The main difficulty is the

presence of large perspective distortions.

Towards this goal, we extend the text detector of [21]

to reason about text in a Manhattan world. [21] first runs

an image through a convolutional neural network to obtain

the probability of each pixel being text or background. It
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Figure 5. Our energy terms encode agreement of the camera pose

and the input image (1st row) in terms of edges (2nd row), text

detections, shop names (3rd row), and layouts (4th row). The

best camera pose is selected among all sampled candidates.

then employs a running length smoothing algorithm to de-

tect horizontal lines, followed by an Otsu thresholding to

separate the individual words. This approach works well

when text is fronto-parallel or has little viewpoint distor-

tion, but would fail in our challenging imagery.

Motivated by the observation that most text in a shopping

mall is aligned with the three Manhattan directions, we in-

corporate vanishing directions in our text detection pipeline.

We first estimate the vanishing points (VP) corresponding to

three dominant orthogonal directions using [19]. We then

cast rays from the three VPs and generate quadrilaterals by

intersecting rays from different VPs. The box proposals are

then extracted from the set of quadrilaterals on the left, right

and frontal walls only, due to the fact that text very rarely

appears on ceilings and floors. See Fig. 4 for an illustra-

tion. The score of each possible bounding box is computed

by summing the pixel-wise convnet score for all pixels that

form the quadrilateral. Note that this can be very efficiently

computed via integral geometry [33]. This score is then nor-

malized by a factor which is a function of aspect ratio of the

quadrilateral. Intuitively we prefer bounding boxes with a

reasonable aspect ratio (from 1:2 to 5:1) and penalize boxes

outside this interval linearly.

We then rectify the sub-image inside each bounding box

b via homography, which can be computed from the corre-

sponding pair of vanishing points. Text classification is then

conducted on the rectified image by scoring letter N-grams

and sequential character classifiers of [21]. The output of

the N-gram classifier is a 10000-dimensional vector indi-

cating the probability of the presence of an N-gram with-

out considering orders. The sequential classifier generates

a 37× 23 probability matrix representing the probability of

the i-th letter in the box (23 in total) to have label j (0-9,

Figure 6. Shop name recognition with N-gram and sequential char-

acter classification with partial observations.

a-z, null; 37 in total). For each candidate box b and each

shop s (characterized by its name), we compute a weighted

score based on the sum of these two probability matrices:

fshop(s,b) = fseq(s,b) + λfngram(s,b)

where the sequential score is:

fseq(s,b) =

{

maxj
∑|s|

i=1 pseq(i+ j, s(i)), if |s| ≤ |b|

maxj
∑|b|

i=1 pseq(i, s(i+ j)) if |b| < |s|

This score represents the highest matching score between

the shop’s name and the bounding box considering incom-

plete observations, where |b| is the maximum length of a

word in the candidate detection b and |s| is the length of the

shop’s name. Given the sequential probability matrix [21]

of a candidate detection, its maximum length |b| is decided

by the number of characters with the highest classification

score excluding the character class ’null’. For example, as

shown in Figure 7, the maximum length of the candidate de-

tection is seven, since the rest of the characters have highest

score on the “null” class (the last row).

The N-gram score is defined as:

fngram(s,b) =
∑

g∈Gs

pngram(g,b),

where Gs is the N-gram set of the s shop’s name. For in-

stance, {‘g’, ‘a’, ‘p’, ‘ga’, ‘ap’, ‘gap’} is the N-gram set for

the shop “gap”. We refer the reader to Fig. 6 for a visual-

ization of our scoring function.

5. Indoor Self-localization

We are interested in performing self-localization in large

indoor environments given a single image and a floor plan.

Towards this goal, we exploit both geometric and semantic
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cues and frame the problem as the one of inference in a

Markov random field (MRF). We assume that the world is

Manhattan and exploit the relationships between the layout

and localization problems. This requires us to generalize

the traditional layout representation from a 3D box [20, 33]

to a set of facades, each of which is aligned with one of the

three dominant orientations. This is due to the fact that the

floor plans contain non-concave regions.

Since we have access to the mall’s floor plan, then for

a candidate camera location and orientation, the number of

facades visible in the image is known and can be estimated

by rendering. We can then score a candidate camera based

on the agreement between the projected facades and several

image cues. One of the most important sources of infor-

mation is the fact that for most shops its name (or at least

part of it) appears in the shop’s facade (anywhere inside

the facade). Our scoring function will exploit the relevant

text detections and their classification scores. Our model

also scores surface normals estimated from an image and

how they agree with our camera (facade) hypothesis. Ad-

ditionally, we exploit the fact that some edges in the image

should correspond to facade boundaries between the differ-

ent shops. We refer the reader to Fig. 5 for an illustration.

5.1. Problem Formulation

Given a single image x and a floorplan M, we parame-

terize localization with a tuple y = {t,R}, where t ∈ R3

is the 3D camera center and R ∈ SO(3) is the rotation

matrix, as shown in Fig. 5. Given the estimated vanishing

points, we can recover the camera intrinsic parameters as

well as the camera rotation up to a flipping ambiguity along

the horizontal direction. This ambiguity reflects which side

of the corridor represents the left wall (see Fig. 7 for an il-

lustration). As a consequence, the localization problem can

be formulated with 3 degrees of freedom representing the

translation as well as binary variable for the flip.

A key component necessary to compute many of our en-

ergy terms is the ability to project the shop facades into the

image, taking into account occlusions. This is very simple

if the layout is a cuboid, but it is more complex in real-

world scenarios such as shopping malls where the layout

contains several non-concave regions. Given a camera pose

y and our floor plan M, we can however employ render-

ing to compute the visible part of each shop facade. We

conduct frustum culling and look-up-table based depth or-

dering to ensure a correct projection. This process is fairly

efficient as it runs at 550 images per second. The output

is a set of semantic 2D quadrilaterals visible in the image

Q(y,M) = {qi, si, ℓi} where qi is the quadrilateral, si is

the corresponding shop (e.g. Gap) and ℓi corresponds to the

wall label (left/right/ceiling/floor).

Given the floor plan and a camera pose hypothesis, our

energy scores the agreement between the facades and the

Figure 7. The left-right wall ambiguity comes from the fact that

there exist two rotation matrices that agree with the vanishing

points extracted from an image.

surface normals estimated from the image, the agreement

between the wireframe of visible shop facades and the im-

age edges as well as the containment of text detection and

text classification within the correct shop. Thus

E(y;x,M) = Elayout(y;x,M) + Eedge(y;x,M)

+Edet(y;x,M) + Eshop(y;x,M)
(1)

We next describe the potentials we employ in more detail.

Facade Surface Normals: Following recent work on

room layout estimation [20, 33], we utilize geometric con-

text (GC) [20] and orientation maps (OM) [22] as image

features. This provides a 10-dimensional feature vector per

pixel. We define the energy as the weighted sum of features

in each facade. This encodes the agreement between the

facades and the image evidence. Thus

Efacade(y) =
∑

i∈Q(y,M)

wT
i φnor,i(qi, ℓi) (2)

and φnor(qi, ℓi) = [
∑

p∈qi
φom(p);

∑

p∈qi
φgc(p)] is the

sum of all features in i-th quadrilateral. The weights wi

are a set of +1 and −1 and encode the agreement. Fig.

5 illustrates the potentials. Note that since the facades are

defined along Manhattan directions, integral geometry [33]

can be used to compute these potentials in constant time.

Edge: This energy term encodes the fact that many image

edges correspond to shop facades or wall junctions. We de-

fine the energy as the sum of minimum distances between

the shop wireframe and the image edges

Eedge(y) = wedge

∑

p∈E

min
i∈Q(y,M)

dist(p,qi), (3)

where E is the set of all edge pixels extracted via the edge

detector of [12] and dist(p,qi) is the distance from a pixel

to a polygon, which is defined to be the distance from a

pixel to its nearest line segment on the polygon. This term

can be efficiently calculated using the distance transform.

Detection: Motivated by the fact that the shop name usu-

ally appears inside the shop facade, we penalize text detec-

tions that cross shop boundaries

Edet(y) = −wdet

∑

b∈B

fdet(b) · max
i∈Q(y,M)

IOB(b,qi) (4)
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