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Abstract

Semi-supervised dictionary learning aims to construct a

dictionary by utilizing both labeled and unlabeled data. To

enhance the discriminative capability of the learned dictio-

nary, numerous discriminative terms have been proposed

by evaluating either the prediction loss or the class separa-

tion criterion on the coding vectors of labeled data, but with

rare consideration of the power of the coding vectors corre-

sponding to unlabeled data. In this paper, we present a nov-

el semi-supervised dictionary learning method, which uses

the informative coding vectors of both labeled and unla-

beled data, and adaptively emphasizes the high confidence

coding vectors of unlabeled data to enhance the dictionary

discriminative capability simultaneously. By doing so, we

integrate the discrimination of dictionary, the induction of

classifier to new testing data and the transduction of la-

bels to unlabeled data into a unified framework. To solve

the proposed problem, an effective iterative algorithm is

designed. Experimental results on a series of benchmark

databases show that our method outperforms other state-

of-the-art dictionary learning methods in most cases.

1. Introduction

Semi-Supervised Dictionary Learning (SSDL) is a learn-

ing paradigm that usually suits for the situation when la-

beled data Xl are scarce while unlabeled data Xu are abun-

dant. To take advantages of the abundant unlabeled data

in real-world applications such as classification, a variety

of semi-supervised discriminative dictionary learning ap-

proaches [2, 19, 20, 27, 9] have been proposed recently, the

general model of which can be summarized as follows:

min
D,Zl,Zu,W

R(Xl,Xu,D,Zl,Zu)

+ λ1S (Zl,Zu) + λ2D(Zl),
(1)

∗Corresponding Author

where R(Xl,Xu,D,Zl,Zu) denotes the reconstruction er-

ror term for both labeled and unlabeled data over the desired

dictionary D. S (Zl,Zu) stands for the regularizer on the

coding matrix of labeled data Zl and that of unlabeled Zu.

D(Zl) represents the discriminative term on Zl. In addition,

λ1 and λ2 are the trade-off parameters.1

From the perspective of different evaluations on the dis-

criminative term D(Zl), existing methods can be mainly

divided into two categories. One type of SSDL methods fo-

cuses on the class separation criterion on the coding vectors.

Specifically, Pedro et al. [9] employed the Laplacian graph

to encourage the closeness of the link counts, if two coding

vectors are connected in the graph. Shrivastava et al. [20]

used Fisher discriminant analysis on the coding vectors of

labeled data to train the semi-supervised dictionary, which,

however, very likely leads to overfitting due to the fact that

the number of the labeled data is typically much smaller

than that of the unlabeled. While the other type of SSDL

evaluates the prediction loss on the coding vectors. Pham

et al. [19] combined the classification error on the coding

vectors of labeled data with the sparse reconstruction error

of both labeled and unlabeled data into a joint framework.

Zhang et al. [27] incorporated the reconstruction error, la-

bel consistency, and classification error of the coding vec-

tors of labeled data into a joint objective function for online

semi-supervised dictionary learning. Mohamadabadi et al.

[2] proposed a probabilistic framework for semi-supervised

dictionary learning and exploited a geometrical preserving

term on both labeled and unlabeled data. Similarly, they al-

so added a classification error term on the coding vectors of

labeled data.

Although the above approaches generally provide more

promising results than most discriminative Supervised Dic-

tionary Learning (SDL) methods like [25, 10, 28], they have

two main shortcomings. 1) Due to the lack of labeled data,

only the coding vectors of labeled data to enhance the dic-

tionary discriminative capability are insufficient. 2) When

learning the dictionary by evaluating the prediction loss,

1The specific meaning of other symbols will be described in Section 3.
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they only take care of the induction of classifier to new test-

ing data, without considering the transduction of labels to

unlabeled data. In other words, they require an extra step to

predict the labels of unlabeled data.

To overcome the above shortcomings, this paper propos-

es a novel semi-supervised dictionary learning algorithm

by introducing an adaptive discriminative term. Compared

with the coding vectors of labeled data, we argue that some

coding vectors of unlabeled data also consist of discrimina-

tive information, although the coding vectors of unlabeled

data are with no labels. And also, not every coding vec-

tors of labeled data are helpful to determine the classifier

hyperplane. Thus, only the “informative” coding vectors

of labeled data are (adaptively) employed for enhancing the

dictionary discriminative capability. We call all these in-

volved coding vectors the active points in this paper. As

a consequence, our discriminative term can be rewritten as

D(Zl,Zu). To consider both the induction of classifier to

new testing data and the transduction of labels to unlabeled

data, we develop a unified dictionary learning model.

2. Related work

Our method is closely relevant to supervised dictionary

learning, which can be described as:

min
D,Zl,W

R(Xl,D,Zl) + λ1S (Zl) + λ2D(Zl). (2)

In last decades, a large body of research on SDL has been

carried out [25, 10, 14, 6, 28, 15, 24]. The main differ-

ence among existing methods lies in the discrimination ter-

m D(Zl), which concentrates on the discriminative capa-

bility of the desired dictionary. Yang et al. [25] proposed

a Fisher discrimination dictionary learning method called

FDDL, which applies the Fisher discrimination criterion on

the coding vectors to improve the discrimination. Mairal et

al. [14] incorporated a logistic loss function into the prob-

lem and jointly learned a classifier and a dictionary. Zhang

et al. [28] extended the original K-SVD [1] algorithm to

learn a linear classifier for face recognition. Mairal et al.

[15] proposed a task-driven SDL framework, which mini-

mizes different risk functions of the coding vectors of la-

beled data for different tasks. Jiang et al. [10] introduced a

label consistent regularization to enforce the discrimination

of coding vectors, which is named LC-KSVD algorithm.

Yang et al. [24] introduced a latent vector to build the re-

lationship between dictionary atoms and class labels, which

can reduce the correlation of dictionary atoms between d-

ifferent classes. Cai et al. [6] used the support vector to

guide the dictionary learning (SVGDL). The SVGDL ex-

hibits good classification results. Most of these supervised

learning methods can achieve promising classification per-

formance when there are sufficient and diverse labeled sam-

ples for training.

3. Proposed Model

3.1. SSDL for Sparse Reconstruction

The training data consist of both labeled {(xl
i,yi)}

nl

i=1

and unlabeled data {xu
j }

nu

j=1
, where nl and nu are the num-

bers of labeled and unlabeled samples, respectively. xl
i ∈

R
d denotes the d dimensional feature vector extracted from

the ith labeled data points, yi ∈ {1,−1}C is its correspond-

ing class label, which forms the label matrix Y as a column.

C is the number of classes. xu
j ∈ R

d is the jth unlabeled

feature vector. Moreover, n = nl + nu is the total num-

ber of available training samples and usually nl is much

smaller than nu. D = [d1,d2, ...,dm] ∈ R
d×m is the de-

sired dictionary containing m atoms. Zl = [zl1, z
l
2, ..., z

l
nl
]

is composed of the coding vectors with respect to Xl =
[xl

1,x
l
2, ...,x

l
nl
] over D and Zu = [zu1 , z

u
2 , ..., z

u
nu

] consists

of the coding vectors of Xu = [xu
1 ,x

u
2 , ...,x

u
nu

] over D.

We first focus on the sparse reconstruction term. It is ex-

pected that both the labeled data Xl and unlabeled data Xu

can be well represented by the items of the learned dictio-

nary. Formally, the reconstruction error can be formulated

as follows:

R(Xl,Xu,D,Zl,Zu) = ||Xl −DZl||2F + ||Xu −DZu||2F ,
(3)

where ‖ · ‖F designates the Frobenius norm. As regard the

regularizer on the representation (coding vectors), without

loss of generality, we impose the ℓ1 norm on the coding

vectors of both labeled and unlabeled data to achieve the

sparsity. Consequently, the regularization can be written as:

S (Zl,Zu) = ||Zl||1 + ||Zu||1. (4)

Please note that, for brevity, we rename the coding vectors

of labeled data the labeled coding vectors, and those of unla-

beled the unlabeled coding vectors for the rest of this paper.

3.2. SSDL for Adaptively Unified Classification

For the optimality of the learned dictionary to classifica-

tion, it would be helpful to jointly learn the dictionary and

the classification model, as in [27, 19], which attempts to

optimize the learned dictionary for classification tasks. And

a simple quadratic loss function on labeled coding vectors is

used to measure the classification loss. Our model follows

this line due to its strong motivation, but differently, further

makes uses of the unlabeled data.

Intuition says that considering the coding vectors where

the classifier is fairly certain usually has no effect on the

learning problem. That means the coding vectors near the

boundary are more crucial for learning the classifying hy-

perplane. So we only punish the coding vectors within the

(temporary) margin to rectify the hyperplane. For the la-

beled coding vectors within the margin, we rename them

the clear points (solid triangles shown in Fig. 1 (a)). For the
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unlabeled ones, we call them the confidence points (solid

circles in Fig. 1 (a)). Because of the lack of label infor-

mation, the confidence points around the decision boundary

should be paid less attention to (the low confidence points,

solid purple circles in Fig. 1 (a)), as they may hurt the classi-

fication performance. In contrast, for the confidence points

with high probabilities (high confidence points) of belong-

ing to a certain class, we should pay more attention to them

(solid green circles in Fig. 1 (a)). We call clear points and

confidence points active points in this paper.

Unfortunately, in practice, we do not know which points

are active in advance, let along which are of high confi-

dence. So it is desirable to develop an algorithm that can au-

tomatically pick out the active points and adaptively weight

those unlabeled according to their confidence. More pre-

cisely, in each iteration, to automatically select the active

points, we jointly learn a dictionary and a classifier by in-

corporating squared hinge losses on the labeled and unla-

beled coding vectors. Furthermore, to adaptively empha-

size the high confidence points, we introduce a probability

matrix P ∈ R
nu×C , whose (j, k)th entry pjk correspond-

s to the probability of the jth unlabeled coding vector that

belongs to the kth class, and satisfies 0 ≤ pjk ≤ 1 and∑C

k=1
pjk = 1. We use a function f on the element pjk to

adaptively assign the weights to confidence points. So our

discriminative term can be naturally defined as follows:

D(Zl,Zu) = ||W||2F + θ(

nl∑

i=1

C∑

c=1

||yci (w
T
c z

l
i + bc)− 1||22

+

nu∑

j=1

C∑

k=1

f(pjk)

C∑

c=1

||ycj(k)(w
T
c z

u
j + bc)− 1||22),

(5)

where W = [w1,w2, ...,wC ] ∈ R
m×C is the mod-

el parameter matrix that needs to be learned; b =
[b1, b2, ..., bC ] ∈ R

C is the corresponding bias; yci = 1 if

yi = c, and otherwise yci = −1; ycj(k) = 1 if k = c, oth-

erwise ycj(k) = −1; θ is a regularization parameter; (.)T

denotes the transposition operation.

For the function f , on one hand, it should be able to

adaptively emphasize more on the high confidence points

and less on the low confidences. On the other hand, the

function could balance the two classification error terms.

Since the probability is employed to reflect how possible

an unlabeled coding vector belongs to a certain class, its

weight should be never larger than that of a labeled cod-

ing vector. In other words, the range of f is in [0,1]. Dif-

ferent choices of the function f that satisfy the above two

properties, can be found in Fig. 1 (b). For simplicity, we

choose the power function (as green curve in Fig. 1 (b))

f(pjk) = prjk with r ∈ [1,∞], which has been used in

[5, 21] for other tasks like fuzzy clustering. It is easy to see

(a)

0 0.5 1
0

0.5

1

x

f(
x
)

(b)

Figure 1. (a) shows an illustrative two-class example, in which

the black dotted line depicts the decision boundary, the margin is

determined by two solid lines. The triangles and circles denote

the labeled and unlabeled coding vectors, respectively. The solid

triangles are the clear points, the green solid circles are of high

confidence, while the purple circles of low confidence. In (b), four

example strategies of f , the green curve f(x) = x3, the red curve

f(x) = sin(π
2
x), the blue curve f(x) = 0.5(2x− 1)

1

3 + 0.5 and

the black curve f(x) = x are given for two-class cases.

that as r increases, prjk decreases for both high and low con-

fidence points. But, the weights of low confidence points

are suppressed much faster than those of high confidences.

Putting every concern together, say Eqs. (3), (4) and (5),

the final USSDL model turns out to be like:

min
Θ

R(Xl,Xu,D,Zl,Zu) + λ1S (Zl,Zu) + λ2D(Zl,Zu)

s. t. ∀j, pjk ∈ [0, 1],
C∑

k=1

pjk = 1,

(6)

where Θ = {D,Zl,Zu,W,b,P} and, λ1 and λ2 are the

trade-off parameters to balance the relative importance of

the reconstruction error, the sparsity of the coding vectors,

and the discrimination of both the labeled and unlabeled

coding vectors.

4. Optimization

4.1. Solver of Problem (6)

The objective of USSDL model (6) is not jointly convex

in Θ, but is convex with respect to each variable when the

others are fixed. Thus we derive an effective iterative algo-

rithm that alternatively optimizes the objective function (6)
with respect to P,W,b,Zl,Zu and D.

Update P. With {W,b,D,Zl,Zu} fixed, the objective

associated with P reduces to:

min
P

nu∑

j=1

C∑

k=1

prjk

C∑

c=1

||ycj(k)(w
T
c z

u
j + bc)− 1||22

s. t. ∀j, pjk ∈ [0, 1],

C∑

k=1

pjk = 1.

(7)
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Denote ejk =
∑C

c=1
||ycj(k)(w

T
c z

u
i + bc) − 1||22, which is

the distance of the jth unlabeled data to the kth class. If

ycj(k)(w
T
c z

u
i + bc)−1 > 0 in the previous iteration, we use

0 to replace the loss and remain others. Obviously, Eq.(7)

can be decoupled between samples, so it is equivalent to:

min
pjk

C∑

k=1

prjkejk

s. t. ∀j, pjk ∈ [0, 1],
C∑

k=1

pjk = 1.

(8)

When r is chosen to 1, the optimal solution of Eq.(8) is:

pjk =

{
1, k = k∗

0, otherwise
(9)

where k∗ = argmin
k∈{1,2,...,C}

eik. It indicates that the possible

class label of an unlabeled point is determined by the mini-

mum distance to a certain class. Alternatively, when r > 1,

the Lagrangian function of Eq.(8) gives:

C∑

k=1

prjkejk − β(

C∑

k=1

pjk − 1), (10)

where β is the Lagrangian multiplier. Setting the derivative

of Eq.(10) with respect to pjk to zero leads to the optimal

solution of the subproblem, i.e.

pjk =

(
β

r(ejk + ε)

) 1

r−1

, (11)

where ε is a very small constant, which is to prevent from

the invalid solution. Substituting (11) into the constraint∑C

k=1
pjk = 1 provides the following:

pjk = (
1

ejk + ε
)

1

r−1 /

C∑

k=1

(
1

ejk + ε
)

1

r−1 . (12)

Update (Zl,Zu). When {D,P,W,b} are fixed, we

solve Zl and Zu by columns. For each zli, the optimization

problem is as follows:

min
zl
i

||xl
i −Dzli||

2

F + λ1||z
l
i||1+

λ2θ
∑

c∈C1

||yci (w
T
c z

l
i + bc)− 1||22,

(13)

with the definition C1 = {c|yci (w
T
c z

l
i + bc) − 1 < 0, c ∈

{1, ..., C}}. We can write Eq.(13) into a compact represen-

tation form in the following way:

min
zl
i

∣∣∣∣
∣∣∣∣
[

xl
i

x̃l
i

]
−

[
D

D̃1

]
zli

∣∣∣∣
∣∣∣∣
2

2

+ λ1||z
l
i||1, (14)

where x̃l
i =

√
(λ2θ)[1−y1i b1, ..., 1−y

|C1|
i b|C1|]

T and D̃1 =√
(λ2θ)[y

1
iw1, ..., y

|C1|
i w|C1|]

T .

For each zuj , the optimization problem can be written as:

min
zu
j

||xu
j −Dzuj ||

2

2 + λ1||z
u
j ||1+

λ2θ

C∑

k=1

prjk
∑

c∈Ck
2

||ycj(k)(w
T
c z

u
j + bc)− 1||22,

(15)

where Ck
2 = {c|ycj(k)(w

T
c z

u
j +bc)−1 < 0, c ∈ {1, ..., C}},

k = 1, ..., C, which is equivalent to:

min
zu
j

∣∣∣∣
∣∣∣∣
[

xu
j

x̃u
j

]
−

[
D

D̃2

]
zuj

∣∣∣∣
∣∣∣∣
2

2

+ λ1||z
u
j ||1, (16)

where x̃u
j =

[√
(λ2θprj1)[1− y1j (1)b1, ..., 1− y

|C1

2
|

j (1)

b|C1

2
|], ...,

√
(λ2θprjC)[1− y1j (C)b1, ..., 1− y

|CC
2
|

j (C)

b|CC
2
|]
]T

, D̃2 =
[√

(λ2θprj1)[y
1
j (1)w1, ..., y

|C1

2
|

j (1)w|C1

2
|

], ...,
√

(λ2θprjC)[y
1
j (C)w1, ..., y

|CC
2
|

j (C)w|CC
2
|]
]T

.

Obviously, the objective functions of Eq.(14) and (16)

are exactly the Lasso problem, which can be solved by the

standard l1 algorithm [8, 23].

Update D. With {P,W,b,Zl,Zu} fixed, we solve the

subproblem of D through optimizing:

min
D

||Xl −DZl||2F + ||Xu −DZu||2F

s. t. ∀m ||dm||2 ≤ 1,
(17)

where the additional constraints are introduced to avoid the

scaling issue of the atoms. The D subproblem can be solved

effectively by the Lagrange dual method [12].

Update (W,b). With the updated {P,Zl,Zu,D}, we

solve the subproblem of the classifier (W,b) by optimiz-

ing:

min
W,b

1

θ
‖W‖2F +

nl∑

i=1

C∑

c=1

||yci (w
T
c z

l
i + bc)− 1||22

+

nu∑

j=1

C∑

k=1

prjk

C∑

c=1

||ycj(k)(w
T
c z

u
j + bc)− 1||22,

(18)

For each c, if yci (w
T
c z

l
i + bc) − 1 > 0 or ycj(k)(w

T
c z

u
j +

bc)−1 > 0 in the previous iteration, we use 0 to replace the

loss. As a result, the objective function becomes:

min
wc,bc

1

θ
||wc||

2

2 +
∑

i∈CP 1

||yci (w
T
c z

l
i + bc)− 1||22

+
∑

j∈CP 2

C∑

k=1

prjk||y
c
j(k)(w

T
c z

u
j + bc)− 1||22,

(19)
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Algorithm 1: USSDL

Input: Labeled data {(xl
i,yi)}

nl
i=1

, unlabel data {xu
j }

nu
j=1

,

Dinit, Z
l
init, Z

u
init, Winit, binit, λ1 > 0, λ2 > 0,

θ > 0 and r ≥ 1.

while not converged do
1. Update the probability matrix P via Eq.(9) or

Eq.(12).

2. Update the coding matrix (Zl,Zu) by columns, the

Eq.(14) and Eq.(16) can be solved by the standard l1
algorithm [8, 23].

3. Update the dictionary D by solving the Eq.(17) using

Lagrange dual method [12].

4. Update the classifier (W,b) via Eq.(20) and Eq.(21).

end

Output: The optimal dictionary D, the classifier (W,b),
the probability matrix P, and the coding matrix

(Zl,Zu).

where CP 1 and CP 2 denote the clear points set and the

confidence points set, respectively. Setting the derivative of

Eq.(19) with respect to wc to 0 directly offers:

wc =

( ∑

i∈CP 1

zli(z
l
i)

T +
∑

j∈CP 2

C∑

k=1

prjkz
u
j (z

u
j )

T +
I

θ

)†

( ∑

i∈CP 1

zli(y
c
i − bc) +

∑

j∈CP 2

C∑

k=1

prjkz
u
j (y

c
j(k)− bc)

)
,

(20)

where (·)† denotes the pseudo-inverse.

Similarly, setting the derivative of Eq.(19) with respect

to bc to zero, we obtain:

bc = q1/q2, (21)

where q1 =
∑

i∈CP 1
(yci − zli

T
wc) +

∑
j∈CP 2

∑C

k=1
prjk

(ycj(k)−zuj
Twc), q2 = (|CP 1|+

∑
j∈CP 2

∑C

k=1
prjk), and

| · | designates the cardinality of a set.

For clarity, the entire algorithm of solving the problem

(6) is summarized in Algorithm 1, which terminates when

the change of objective function value between two neigh-

boring iterations is sufficiently small (< 10−3) or the max-

imal number (20) of iterations is reached. The initialization

of the dictionary is executed as follows. For each class,

if the required size of sub-dictionary is over the number

of corresponding labeled data, all the labeled are embraced

and the excess is filled up with randomly selected unlabeled

points. Otherwise, the sub-dictionary is composed of the

randomly selected labeled data. Then we concatenate all the

sub-dictionaries together as the final Dinit. (Zl
init Z

u
init)

are the corresponding coding matrices. The initialization of

the classifier (Winit,binit) is calculated by [22].

(a) Ext. Yale-B (b) AR

(c) LandUse-21 (d) Texture-25

Figure 2. Sample images from each data set.

4.2. Unified Classification Strategy

In the USSDL model, once the dictionary D, the prob-

ability matrix P and the classifier (W,b) are learned, we

can perform the classification task as follows. For the trans-

duction of unlabeled data in the training process, we adopt a

voting strategy on P to tag the unlabel data. For the induc-

tion of classifier on the new testing data xt, we first compute

the coding vector zt over the learned D by solving the lasso

problem: zt = argmin
zt

||xt −Dzt||2F + λ1||z
t||1. Then we

simply apply the C classifier (wc, bc) (c ∈ {1, 2, ..., C}) on

zt to predict the label y of the test data xt by:

y = argmax
c∈{1,2,...,C}

wc
T zt + bc. (22)

5. Experiments

For clearly viewing the property of our model, we first

conduct two tests on synthesized data. To show the efficacy

of our method, we then apply our USSDL on two tasks in-

cluding face recognition and object classification. For face

recognition, two representative face datasets, i.e. Extended

Yale-B [13] and AR [16] are employed. As for object clas-

sification, we adopt LandUse-21 [26] and Texture-25 [11].

Figure 2 shows sample images from these four databases.

Several most representative SDL methods including FDDL

[25], LC-KSVD [10], SVGDL [6], and SSDL approaches

including S2D2 [20] and JDL [19] and our USSDL, are in-

volved for performance comparison. In addition, we also

compare the proposed USSDL with the classic classifica-

tion method, i.e. the multi-class linear SVM (M-SVM) [22].

Please notice that, for the compared methods in terms of

transduction, they treat the unlabeled data as new testing da-

ta and use the learned dictionary or classifier to predict the

labels of unlabeled data. To verify the effectiveness of our

method to semi-supervised problem, different numbers of
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(a) (b) (c) (d)

Figure 3. (a) and (c) Case Ic and IIc data, respectively. (b) and (d) Affinities of Zl (left) and Zu (right) on clean (upper) and noisy (lower)

data, respectively.

Ext. Yale-B M-SVM FDDL LC-KSVD SVGDL S2D2 JDL USSDL

kl = 2
Unlabeled 34.7±3.3 51.0±3.4 47.2±3.2 51.9±3.0 53.6±2.9 54.2±2.6 59.4±2.7

Testing 38.0±2.6 52.4±2.5 48.5±2.8 53.4±2.2 53.4±2.1 55.2±1.8 60.5±2.1

kl = 5
Unlabeled 62.9±1.8 80.1±1.0 68.4±3.6 76.7±1.9 78.3±1.0 76.9±3.1 85.9±2.8

Testing 66.6±1.1 82.3±0.7 69.6±3.6 81.1±1.0 76.1±1.3 77.4±2.8 86.5±2.1

kl = 10
Unlabeled 80.6±1.2 91.7±1.0 83.2±4.0 90.5±1.1 85.9±1.7 84.4±2.1 92.1±1.3

Testing 83.8±0.8 92.1±0.3 84.6±3.8 91.7±5.8 83.2±1.9 85.3±1.6 93.6±0.8

AR M-SVM FDDL LC-KSVD SVGDL S2D2 JDL USSDL

kl = 2
Unlabeled 75.3±3.4 92.0±1.3 68.5±3.6 90.7±2.1 89.3±3.0 87.4±1.4 92.8±2.3

Testing 60.1±2.2 83.6±1.8 67.4±4.2 82.1±1.8 85.3±3.1 87.2±2.0 89.1±2.3

kl = 3
Unlabeled 88.2±1.6 93.4±1.3 89.5±2.8 94.1±1.5 92.6±1.4 89.1±1.6 94.8±1.6

Testing 74.3±1.2 89.7±2.1 89.2±3.6 90.3±2.0 89.2±1.9 88.2±1.8 91.3±1.4

kl = 5
Unlabeled 93.7±2.1 96.2±1.1 92.8±1.6 97.6±0.6 94.5±1.4 91.2±1.8 96.9±1.0

Testing 84.9±2.0 93.6±0.9 91.5±2.1 93.8±1.5 92.1±1.1 90.7±1.2 94.1±1.3

Table 1. Classification accuracy and standard deviation (%) for running different compared methods with different number (kl) of labeled

data per class on Extended Yale-B (upper) and AR (lower) datasets, respectively.

labeled data from each class are used for training. And for

those SDL methods, the dictionary size is set correspond-

ing to the number of labeled data. For all the involved ap-

proaches, the best possible results obtained by tuning their

parameters are finally reported.

5.1. Synthetic Data

Toy datasets are randomly generated from 5 Gaussian

components with 3-D, i.e. N3(μ, I). There are 100 points

(50 for training, 50 for testing) from each component. Fur-

thermore, 20 training points perform as labeled data while

the remaining as unlabeled. It is worth noting that we em-

ploy the diagonal-block property of affinities formed by the

representation matrices Zl and Zu with 5 nearest neighbors

to reflect the performance, as it is the key to classifier train-

ing and dictionary learning. Case Ic: Figure 3 (a) shows the

clean data produced by {μ1 = [4, 0, 0]T , μ2 = [−4, 0, 0]T ,

μ3 = [0, 4, 0]T , μ4 = [0,−4, 0]T , μ5 = [0, 0, 4]T }, in

which the overlap between different components is relative-

ly small. We can see from the upper row given in Fig. 3

(b), the diagonal-block property of the affinities constructed

from both Zl and Zu is almost perfect. Case In: We intro-

duce Gaussian white noise into Ic to see the robustness of

our method. From the lower row, the diagonal blockness is

well preserved by both Zl and Zu. Case IIc: As displayed

in Fig. 3 (c), the dataset generated by {μ1 = [2, 0, 0]T ,

μ2 = [−2, 0, 0]T , μ3 = [0, 2, 0]T , μ4 = [0,−2, 0]T ,

μ5 = [0, 0, 2]T } is no longer as separable as the previous,

say the overlap between different components grows. Case

IIn: Again, the Gaussian white noise is added to the corre-

sponding clean data. The affinities shown in Fig. 3 (d) are

still of high quality, although a few more non-zero elements

are at wrong positions, compared with those in Fig. 3 (b).

5.2. Face Recognition

In this part, we evaluate the performance of the proposed

algorithm on Extended Yale-B [13] and AR [16] datasets.

In both the two face recognition experiments, each sample

has a reduced dimension of 300.

The Extended Yale-B database consists of 2414 frontal

face images of 38 individuals. Each individual has 64 im-

ages and we randomly select 20 images as training set and

use the rest as testing set. The number of dictionary atom-

s for our algorithm is fixed as 570 in this experiment. We
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Figure 4. Left : the effectiveness of using unlabeled data on

Texture-25 dataset. Right : the accuracy vs. iteration number

curves of induction and transduction on Extended Yale-B dataset.

randomly select {2, 5, 10} samples from each class in the

training set as labeled data, and the remaining as unlabeled

data. The mean accuracies and standard deviations over 5

independent trials are summarized in the upper part of Ta-

ble 1. We can observe that the merit of USSDL is more

apparent when less data are labeled, compared with SDL

methods. In addition, to see the performance of our algo-

rithm can be iteratively improved, we give the accuracy vs.

iteration number curves of induction and transduction in the

first picture of Fig. 4. Evidently, both of them rapidly go up

within only 7 iterations and almost keep afterwards.

The AR database consists of over 4000 images of 126 in-

dividuals. For each individual, 26 face images are collected

from two separated sessions. We select 50 male individuals

and 50 female individuals for our standard evaluation pro-

cedure. Focusing on the illumination and expression condi-

tion, we choose 7 images from Session 1 for training, and

7 images from Session 2 for testing. The number of dictio-

nary atoms for our algorithm is fixed as 500 in this experi-

ment. We randomly select {2,3,5} samples from each class

in the training set as labeled data, and the remaining as un-

labeled data. The lower part of Table 1 reports the numbers

with regard to the cases with different settings. From Table

1, we can see that USSDL outperforms the others in most

cases. This is consistent with the fact that when the labeled

data are statically sufficient, they are already able to con-

struct dictionaries well enough.

5.3. Object Classification

We here assess the performance of our USSDL on more

complex datasets including LandUse-21 [26] and Texture-

25 [11] for object classification. Different to the experi-

ments on face recognition, we use the low-level features

[7, 3], including PHOG [4], GIST [18] and LBP [17].

PHOG is computed with a 2-layer pyramid in 8 direction-

s. GIST is computed on the rescaled images of 256 × 256
pixels, in 4, 8 and 8 orientations at 3 scales from coarse to

fine. As for LBP, the uniform LBP is used. All the features

are concatenated into a single 119-dimensional vector. We

then reduce the dimension to 100. LandUse-21 consists of

satellite images from 21 categories, 100 images each. We
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Figure 5. Left : the effect of λ1 with λ2 fixed. Right : the effect

of λ2 with λ1 fixed.

randomly select 10 categories as the dataset. Texture-25

dataset contains 25 texture categories, 40 samples each. In

all our experiments, the dictionary sizes are fixed to 300 and

500 for LandUse-21 and Texture-25, respectively.

Different numbers of labeled samples per class are e-

valuated: LandUse-21 with {2, 5, 10, 30}, Texture-25 with

{2, 5, 10, 15}. In all cases, 33% of the datasets are random-

ly left out for testing, and the remaining data are random-

ly split into labeled and unlabeled. The numbers shown in

Table 2 is the average accuracies and standard deviation-

s over 5 independent runs with random labeled-unlabeled

splits for LandUse-21 and Texture-25 datasets, respective-

ly. It is clear to see that our method outperforms the other

compared approaches.

5.4. Effects of λ1 and λ2

This part attempts to reveal the influence of the main pa-

rameters appeared in our algorithm, including λ1 and λ2.

Due to the complex dependence of the algorithm on these

parameters, we test them separately, say varying one pa-

rameter with the other fixed. Figure 5 depicts the changes

of accuracy on Extended Yale-B database (10 classes, 5 la-

beled samples from each class, and 100 dimension). From

the curves, we can see that each parameter has a certain ef-

fect on the performance. In particular, for testing λ1, we set

λ2 = 5e−4. From the first picture in Fig. 5, we can see that

the accuracy in general increases in terms of both induction

and transduction when tuning λ1 from 5e−5 up to 1e−3,

and drops afterward. For evaluating the effect of λ2, we

fix λ1 as 1e−4. The second picture in Fig. 5 tells that the

best performance is obtained at λ2 = 5e−4 in terms of both

induction and transduction. With the value of λ2 departed

from 1e−3, the performance degrades. 2

5.5. Effectiveness of Using Unlabeled Data

We evaluate the performance gain from using extra unla-

beled data in our unified semi-supervised dictionary learn-

ing. Various percentages {10%, 20%, 50%, 80%, 100%} of

unlabeled data are emerged into labeled data for training. In

the second picture of Fig. 4, we draw the curve of accuracy

2The parameter θ is used to avoid overfitting. We empirically set θ = 5,

which works sufficiently well for all the experiments shown in this paper.
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LandUse-21 M-SVM FDDL LC-KSVD SVGDL S2D2 JDL USSDL

kl = 2
Unlabeled 40.7±1.9 42.9±3.1 40.3±3.2 40.9±2.8 44.6±2.1 43.7±2.4 47.8±2.4

Testing 35.7±2.1 36.9±2.3 34.0±2.9 37.5±2.1 40.3±2.3 39.3±1.8 43.9±1.3

kl = 5
Unlabeled 47.6±1.4 50.5±1.8 44.3±2.5 45.1±1.3 49.1±1.3 48.9±2.8 55.8±2.1

Testing 41.3±3.0 40.5±4.5 39.4±4.8 40.2±2.2 44.7±2.1 43.6±1.9 51.3±2.7

kl = 10
Unlabeled 59.2±1.8 60.6±2.0 50.1±2.1 51.8±3.6 53.5±1.3 55.7±1.6 64.2±2.8

Testing 47.9±1.9 49.9±2.2 42.3±1.7 45.9±1.3 47.8±1.3 46.4±1.9 54.2±2.2

kl = 30
Unlabeled 69.1±1.6 66.9±1.3 55.8±2.9 56.0±3.4 59.3±1.3 57.9±1.7 71.9±1.9

Testing 53.0±2.9 54.0±4.2 48.9±2.7 50.8±1.3 50.9±1.7 49.3±0.8 63.5±1.6

Texture-25 M-SVM FDDL LC-KSVD SVGDL S2D2 JDL USSDL

kl = 2
Unlabeled 32.8±3.2 38.8±3.4 33.6±2.5 35.6±4.1 36.5±2.7 32.5±2.1 39.5±3.1

Testing 24.9±3.4 31.4±4.0 28.0±4.1 29.8±3.9 31.7±2.3 27.6±2.1 34.2±3.7

kl = 5
Unlabeled 47.2±1.5 54.6±1.8 40.6±1.7 42.1±4.5 51.5±1.3 46.7±1.6 56.9±1.8

Testing 41.6±1.7 48.9±1.7 38.2±1.3 37.9±1.3 43.8±1.4 39.2±1.9 51.1±2.2

kl = 10
Unlabeled 60.0±2.8 57.8±2.4 49.6±3.1 45.8±2.4 56.3±2.2 49.7±2.7 64.0±1.9

Testing 52.9±2.7 52.6±3.1 48.6±2.9 40.3±2.3 47.9±2.4 43.3±0.8 54.6±1.6

kl = 15
Unlabeled 62.6±0.8 63.6±1.7 57.8±3.2 63.9±1.4 59.3±1.3 54.9±1.7 68.3±1.9

Testing 55.3±1.2 56.7± 1.4 54.1±2.9 56.8±1.3 50.9±1.7 50.3±0.8 57.7±1.6

Table 2. Classification accuracy and standard deviation (%) for running different compared methods with different number (kl) of labeled

data per class on LandUse-21 (upper) and Texture-25 (lower) dataset, respectively.
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Figure 6. The curve of the objective value versus the number of it-

erations on LandUse-21 (left) and AR (right) dataset, respectively.

for the case with a fixed number (10) of labeled data from

each class by varying amounts of used unlabeled data on

Texture-25 database as an example. As can be seen from

the curve, the classification accuracy goes up as the amount

of unlabeled data increases. So we can conclude that our u-

nified dictionary learning algorithm benefits from unlabeled

data, which indicates that our dictionary learning model is

suitable for the task of semi-supervised classification.

5.6. Convergence Speed

In this experiment, we show the converge speed of the

proposed algorithm empirically. Similar to the analysis in

[25], the four alternative optimizations in our USSDL mod-

el are convex, so the USSDL algorithm is guaranteed to con-

verge at least at a stationary point. For convergence speed

of the proposed dictionary learning method, without loss of

generality, Figure. 6 reveals that the objective value drop-

s as the number of iterations on LandUse-21 [26] and AR

dataset [16] increases, respectively. It can be seen that the

objective value drops quickly and becomes very small. In

all the experiments shown in this paper, our algorithm em-

pirically converges in less than 20 iterations.

6. Conclusion

In this paper, we have proposed a novel adaptively u-

nified semi-supervised dictionary learning model named

USSDL. Differently to the previous SSDL methods, our

model merges the coding vectors of unlabeled data to the

classification error term for enhancing the dictionary dis-

criminative capability. Moreover, we automatically distin-

guish active points and adaptively assign weights to confi-

dence points. We have integrated the discrimination of dic-

tionary, the induction of classifier to new testing data and

the transduction of labels to unlabeled data into a unified op-

timization framework and designed an effective iterative al-

gorithm to seek the solution. The experiment results on sev-

eral benchmark datasets have demonstrated that the active

points are very helpful to learn better dictionaries for classi-

fication tasks, and shown the superior performance over the

state-of-the-art supervised and semi-supervised dictionary

learning methods in most cases.
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