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Abstract

Common sense is essential for building intelligent ma-

chines. While some commonsense knowledge is explicitly

stated in human-generated text and can be learnt by mining

the web, much of it is unwritten. It is often unnecessary and

even unnatural to write about commonsense facts. While

unwritten, this commonsense knowledge is not unseen! The

visual world around us is full of structure modeled by com-

monsense knowledge. Can machines learn common sense

simply by observing our visual world? Unfortunately, this

requires automatic and accurate detection of objects, their

attributes, poses, and interactions between objects, which

remain challenging problems. Our key insight is that while

visual common sense is depicted in visual content, it is the

semantic features that are relevant and not low-level pixel

information. In other words, photorealism is not neces-

sary to learn common sense. We explore the use of human-

generated abstract scenes made from clipart for learning

common sense. In particular, we reason about the plausi-

bility of an interaction or relation between a pair of nouns

by measuring the similarity of the relation and nouns with

other relations and nouns we have seen in abstract scenes.

We show that the commonsense knowledge we learn is com-

plementary to what can be learnt from sources of text.

1. Introduction

Teaching machines common sense has been a longstand-

ing challenge at the core of Artificial Intelligence (AI) [8].

Consider the task of assessing how plausible it is for a dog

to jump over a tree. One approach is to mine text sources

to estimate how frequently the concept of dogs jumping

over trees is mentioned. A long history of works address

the problem is this manner by mining knowledge from the

web [5, 21, 24] or by having humans manually specify

facts [4, 28, 33, 34] in text. Unfortunately, text is known

to suffer from a reporting bias. If the frequency of men-

tion was an indication of occurrence in the real world, peo-
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Figure 1: We consider the task of assessing how plausible

a commonsense assertion is based on how similar it is to

known plausible assertions. We argue that this similarity

should be computed not just based on the text in the asser-

tion, but also based on the visual grounding of the assertion.

While “wants” and “looks at” are semantically different,

their visual groundings tend to be similar. We use abstract

scenes made from clipart to provide the visual grounding.

ple are ∼3 times more likely to be murdered than they are

to inhale, and people inhale ∼6 times as often as they ex-

hale [16]. This bias is not surprising. After all, people talk

about things that are interesting to talk about, and unusual

circumstances tend to be more interesting.

While unwritten, commonsense knowledge is not un-

seen! The visual world around us is full of structure mod-

eled by our commonsense knowledge. By reasoning visu-

ally about a concept we may be able to estimate its plausi-

bility more accurately. For instance, while “squirrels want-

ing nuts” is frequently mentioned in text, “squirrels look-

ing at nuts” is rarely mentioned even though it is equally

plausible. However, if we visually imagine a squirrel want-

ing a nut, we typically imagine a squirrel looking at a nut

(Figure 1). This is because wanting something and look-

ing at something tend to be visually correlated, even though
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they have differing underlying meaning. Interestingly, in

the word2vec [27] text embedding space that is commonly

used to measure word similarity, look at is more similar to

feel than to want. Clearly, vision and text provide comple-

mentary signals for learning common sense.

Unfortunately, extracting commonsense knowledge

from visual content requires automatic and accurate de-

tection of objects, their attributes, poses, and interactions.

These remain challenging problems in computer vision.

Our key insight is that commonsense knowledge may be

gathered from a high-level semantic understanding of a vi-

sual scene, and that low-level pixel information is typically

unnecessary. In other words, photorealism is not necessary

to learn common sense. In this work, we explore the use

of human-generated abstract scenes made from clipart for

learning common sense. Note that abstract scenes are in-

herently fully annotated, allowing us to exploit the structure

in the visual world, while bypassing the difficult intermedi-

ate problem of training visual detectors.

Specifically, we consider the task of assessing the plau-

sibility of an interaction or relation between a pair of nouns,

as represented by a tuple (primary noun, relation, secondary

noun) e.g., (boy, kicks, ball). As training data, we collect a

dataset of tuples and their abstract visual illustrations made

from clipart. These illustrations are created by subjects on

Amazon Mechanical Turk (AMT). We use this to learn a

scoring function that can score how well an abstract visual

illustration matches a test tuple.

Given a previously unseen tuple, we assess its plausi-

bility using both visual and textual information. A tuple

is deemed plausible if it has high alignment with the train-

ing tuples and visual abstractions. When measuring textual

similarity between tuples we exploit the significant progress

that has been made in learning word similarities from web

scale data using neural network embeddings [27, 29]. A

tuple’s alignment with the visual abstractions provides in-

formation on its visual plausibility. We model a large num-

ber of free form relations (213) and nouns (2466), which

may form over ≈1 billion possible tuples. We show that

by jointly reasoning about text and vision, we can assess

the plausibility of commonsense assertions more accurately

than by reasoning about text alone.

The rest of this paper is organized as follows. We dis-

cuss related work in Section 2. Our data collection method-

ology is described in Section 3. Our model for classifying

novel commonsense assertions (tuples) as plausible or not is

presented in Section 4. Section 5 describes our experimen-

tal setup, followed by quantitative and qualitative results in

Section 6, and a conclusion in Section 7.

2. Related Work

Common sense and text. There is a rich line of works

which learn relations between entities to build knowl-

edge bases either using machine reading (e.g., Knowl-

edge Vault [11], NELL [5], ReVerb [12]) or using collab-

oration within a community of users (e.g., Freebase [4],

Wikipedia1). We make use of the ReVerb Information Ex-

traction system to create our dataset of tuples (more de-

tails in Section 3.2). Our goal is to learn common sense

from a complementary source: our visual world. A task

closely related to learning common sense from text is an-

swering questions. Systems such as IBM Watson [13] com-

bine multiple text-based knowledge bases to answer factual

questions. Our work focuses on combining different modal-

ities of information (abstract scenes and text) for the task of

assessing the plausibility of commonsense assertions.

Common sense and vision. A popular use of common-

sense knowledge in vision has been for modeling context

for improved recognition [10, 14, 17, 18, 20]. Recently,

there has been a surge in interest in high-level “beyond

recognition” tasks which can benefit from external knowl-

edge beyond what is depicted in the image [3, 19, 23, 30,

31]. Zhu et al. [35] use attribute and action classifica-

tion along with information from various textual knowledge

bases to perform tasks like zero-shot affordance prediction

for human-object interactions. Their dictionary of relations

was specified manually and limited to 19 inter-object rela-

tions. We explore a larger number of free-form relations

(213 in total) extracted from text. Johnson et al. [22] build

a scene graph representation for image retrieval which mod-

els attribute and object relations. LEVAN [9] trains de-

tectors for a variety of bigrams (e.g., jumping horse) from

google n-grams using web-scale image data. NEIL [7] an-

alyzes images on the web to learn visual models of objects,

scenes, attributes, part-of, and other ontology relationships.

Our focus is less on appearance models and more on the un-

derlying semantics. Recent work has also looked at mining

semantic affordances, i.e. inferring whether a given action

can be performed on an object [6]. In contrast, we are in-

terested in the more general problem of predicting the plau-

sibility of interactions or relations between pairs of objects.

Lin and Parikh [26] propose to learn visual common sense

and use it to answer textual fill-in-the-blank and visual para-

phrasing questions, by imagining a scene behind the text.

While they model visual common sense in the context of a

scene, our task is at a more atomic level – reasoning about

the plausibility of a specific relation or interaction between

pairs of objects. Most similar to ours is a concurrent work

VisKE [32] which also studies the task of evaluating the

plausibility of commonsense assertions using visual cues.

Their visual cues are derived from webly-supervised detec-

tion models, while we use abstract scenes and text embed-

dings. A new test tuple can be processed almost instan-

taneously using our approach, while training their webly-

supervised detector takes ∼30 minutes per tuple. It is con-

1http://www.wikipedia.org/
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Figure 2: A subset of objects from our clipart library.

ceivable that text, abstract scenes and real images are all

complementary sources of information.

Learning from visual abstraction. Visual abstractions

have been explored for a variety of high-level scene under-

standing tasks. Zitnick and Parikh [37] learn the importance

of various visual features (occurrence, co-occurrence, ex-

pression, gaze, etc.) in determining the meaning or seman-

tics of a scene. Zitnick et al. also link the semantics of a

scene to memorability and saliency of objects [36]. [38]

learns the visual interpretation of sentences and generates

scenes for a given input sentence. Fouhey and Zitnick [15]

learn the dynamics of objects in scenes from temporal se-

quences of abstract scenes. Antol et al. [2] learn models

of fine-grained interactions between pairs of people using

visual abstractions, and evaluate their models on real im-

ages from the web. Lin and Parikh [26] “imagine” abstract

scenes corresponding to text, and use the common sense de-

picted in these imagined scenes to solve textual tasks such

as fill-in-the-blanks and paraphrasing. In this work, we

are interested in using abstract scenes as a complementary

source of commonsense knowledge to text for the task of

classifying commonsense assertions as plausible or not.

3. Datasets

3.1. Abstract Scenes Vocabulary

In order to learn comprehensive commonsense knowl-

edge, it is important for the library of clipart pieces to be

expressive enough to model a wide variety of scenarios.

Previous works on using visual abstractions depicted a boy

and a girl playing in a park [15, 37, 38] with a library of 58

objects, or fine-grained interactions between two people [2]

(no additional objects). Instead, our clipart library allows us

to depict a variety of indoor scenes. It contains 20 “paper-

doll” human models [2] spanning genders, races, and ages

with 8 different expressions. The limbs are adjustable to

allow for continuous pose variations. The vocabulary con-

tains over 100 small and large objects and 31 animals in

various poses, that can be placed at one of 5 discrete scales

or depths in the scene, facing left or right. Our clipart is

also more realistic looking than previous work. A snapshot

of the library can be viewed in Figure 2. Note that while we

restrict ourselves to indoor scenes in this work, our idea is

general and applicable to other scenes as well. More clipart

objects and scenes can be easily added to the clipart library.

3.2. Tuple Extraction

Extracting Seed Assertions: To collect a dataset of com-

monsense assertions, we start by extracting a set of seed

tuples from image captions. We use the MS COCO training

set [25] containing images annotated with 80 object cate-

gories and five captions per image. We pick a subset of

9913 images whose annotated objects all come from a list

of manually selected objects from our library of clipart.2

Note that MS COCO images are not fully annotated and

contain many more objects than those annotated. As a re-

sult, captions for these images could contain nouns that may

not be part of the annotated object list or our clipart library.

Our model can handle this by using word embeddings as

described in Section 4.1.

We split the images into VAL (4956 images) and TEST

(4957 images). We then run the ReVerb [12] information

extraction tool on the captions for these images (images are

not involved anymore), along with some post-processing

(described in supplementary) to obtain a set of (tP , tR, tS)

tuples, where tP is the primary noun, tR is the relation, and

tS is the secondary noun in the tuple t e.g., (plate, topped

with, meat). All tuples containing relations that occur less

than four times in the dataset are likely to be noisy extrac-

tions, and are removed. This gives us a set of 4848 tuples in

2List: person, cat, dog, frisbee, bottle, wine glass, cup, fork, knife,

spoon, apple, sandwich, hotdog, pizza, cake, chair, couch, potted plant,

bed, dining table, tv, book, scissors, teddy bear was selected to capture ob-

jects in our clipart library that are commonly found in living room scenes.
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VAL and 4778 in TEST, 213 unique relations in VAL and

204 in TEST, and 2466 unique nouns in VAL and 2378 in

TEST. VAL and TEST have 893 tuples, 814 nouns, and 151
relations in common. These tuples form our seed common-

sense assertions.

Expanding Seed Assertions: We expand our seed set of

assertions by generating random assertions. This is done

on both TEST and VAL independently. We iterate through

each tuple twice, and pair the corresponding tR with a ran-

dom tP and tS from all nouns that occur at least 10 times3.

So there are twice as many expanded tuples as there are

seed tuples. This results in 9700 expanded tuples in VAL

and 9554 in TEST. Note that we are sampling from a space

of 160 primary nouns (>10 occurrences) × 204 relations ×
160 nouns i.e., >5 million possible TEST assertions. In to-

tal across seed and expanded, our VAL set contains 14548
commonsense assertions spanning 213 relations, and our

TEST set contains 14, 332 commonsense assertions span-

ning 204 relations. To the best of our knowledge, ours is

the first work that models such a large number of relations

and commonsense assertions.

Supervision on Expanded Assertions: We then show

our set of assertions (seed + expanded) to subjects on Ama-

zon Mechanical Turk (AMT). We asked them to indicate

if the scenario described by the assertion is typical or not.

They are also given an option to flag scenarios that make no

sense. We collect 10 judgments per assertion. A snapshot

of this interface can be found in the supplementary material.

80.1% of annotations on seed tuples were positive. This

is not surprising because these tuples were extracted from

descriptions of images, and were thus clearly plausible. The

creation of random expanded tuples predominantly adds

negatives. But we found that some randomly generated as-

sertions such as (puppy, lay next to, chair) and (dogs, lay

next to, pepperoni pizza) were rated as plausible (positives).

15.3% of annotations on our expanded tuples were positive.

Overall, 36% of the labels in VAL and 37% of the labels in

TEST are positives.

3.3. Tuple Illustration Interface

We collect abstract illustrations for all 213 relations in

VAL. We get each relation illustrated by 20 different work-

ers on AMT using the interface shown in Figure 3. Each

worker is shown a background scene and asked to mod-

ify it to contain the relation of interest. We used living

room scenes from [1] as background scenes, which were

realistic scenes created by AMT workers using the same

abstract scenes vocabulary as ours (Section 3.1). Priming

workers with different background scenes helps increase

3This is a coarse proxy for sampling nouns proportional to how often

they occur in the seed set.

Figure 3: Our tuple illustration AMT interface.

the diversity in the visual illustrations of relations. For in-

stance, when asked to create a scene depicting ‘holding’, a

majority of workers might default to thinking of a person

holding something while standing. But if they are primed

with a scene where a woman is already sitting on a couch,

then they might place a glass in her hand to make her hold

the glass, resulting in a sitting person holding something.

Workers are then instructed to indicate which clipart pieces

in the scene correspond to the primary and secondary ob-

jects participating in the relation, and name them using as

few words as possible.

To summarize, we collect 20 scenes depicting each of the

213 relations in VAL (4260 scenes total), along with annota-

tions for the primary and secondary nouns and correspond-

ing clipart objects participating in the relation. These form

our set of TRAIN tuples that will be used to train our visual

models of what tuples looks like. The VAL tuples will be

used to learn how much visual alignment is weighted rela-

tive to the textual alignment. The TEST tuples will be used

to evaluate the performance of our approach.

Note that we do not collect illustrations for each VAL tu-

ple because tuples may contain nouns that our clipart library

does not have. Instead, we collect illustrations for each of

the VAL relations. Workers choose to depict these relations

with plausible primary and second objects of their choice,

providing an additional source of commonsense knowledge.

Regardless, as will be evident in the next section, our model

is capable of dealing with nouns and relations at test time

that were not present during training.

4. Approach

We first describe our joint text and vision model, fol-

lowed by a description of the training procedure.
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4.1. Model

Let us start by laying out some notation. We are given a

commonsense assertion t′ = (t′
P
, t′

R
, t′

S
) at test time, whose

plausibility is to be evaluated. t′
P

is the primary noun, t′
R

is the relation, and t′
S

is the secondary noun. For each ab-

stract training scene created by AMT workers i ∈ I we are

given the primary and secondary clipart objects ci
P

and ci
S

,

as well as a tuple ti = (ti
P
, ti

R
, ti

S
) containing the names of

the primary and secondary objects (nouns), and the relation

they participate in. Thus, a training instance i is represented

by Ωi = {ci
P
, ci

S
, ti}.

We score the plausibility of test tuple t′ using the follow-

ing linear scoring function:

score(t′) = α · ftext(t
′) + β · fvisual(t

′) (1)

Where α and β tradeoff the weights given to the text

alignment score ftext and the vision alignment score fvision
respectively. The text and vision alignment scores estimate

how well the test tuple t′ aligns to all training instances –

both textual (TRAIN tuples provided by AMT workers) and

visual (training abstract scenes provided by AMT workers).

Tuples which align well with known (previously seen and/or

read) concepts are considered to be more plausible.

Vision and text alignment functions: Both our vision

and text alignment functions have the following form:

f(t′) =
1

|I|

∑

i∈I

max(h(t′,Ωi)− δ, 0) (2)

Where f can be either ftext or fvision. The average goes

over all training instances (i.e., abstract scenes with associ-

ated annotated tuples) in our training set. The activation of

a training instance with respect to a test tuple is determined

by h, which has different forms for vision and text. A ReLU

(Rectified Linear Unit) function is applied to the activation

score offset by δ. We use a threshold of zero for the ReLU

because the notion of negative plausibility evidence for a

tuple is not intuitive. One can view Equation 2 as counting

how many times a tuple was observed during training. The

parameter δ is used to threshold the activation h to estimate

counts. From here on we refer to h as the alignment score

(overloaded with f ).

Text alignment score: The textual alignment score htext

between two tuples is a linear combination of similari-

ties between the corresponding pairs of primary nouns,

relations, and secondary nouns. These similarities are

computed using dot products in the word2vec embedding

space [27]. For nouns or relations containing more than one

word (e.g., “gather around” or “chair legs”), we average the

word2vec vectors of each word to obtain a single vector.

Let W (x) be the vector space embedding of a noun or

relation x. The text alignment score is given as follows:

htext(t
′,Ωi) = W (t′P )

T ·W (tiP )

+W (t′R)
T ·W (tiR) +W (t′S)

T ·W (tiS) (3)

Where · denotes the cosine similarity between vectors.

Vision alignment score: The visual alignment score

computes the alignment between (i) a given test tuple and

(ii) the pair of clipart pieces selected by AMT workers as

being the primary and secondary objects in a training in-

stance i. It measures how well the pair of clipart pieces (ci
P

,

ci
S

) depict the test tuple t′. If a test tuple finds support from

a large number of visual instances, it is likely to be plausi-

ble. Note that we are measuring similarity between words

and arrangements of clipart pieces. Consequently, this is a

multimodal similarity function.

Given the pair of primary and secondary clipart pieces

annotated in training instance Ωi, we extract features as de-

scribed in Section 5. We denote these extracted features

as u(ci
P
, ci

S
). Using these visual features from the training

instance Ωi and text embeddings from test tuple t′, we com-

pute the following vision alignment score:

hvision(t
′,Ωi) = u(ciP , c

i

S)
TAPW (t′P )

+ u(ciP , c
i

S)
TARW (t′R) + u(ciP , c

i

S)
TASW (t′S) (4)

Where AP , AR, and AS are alignment parameters to

be learnt. Our vision alignment score measures how well

the t′
P

, t′
R

, and t′
S

individually match the visual features

u(ci
P
, ci

S
) that describe a pair of clipart objects in training

instance Ωi. One can think of u(ci
P
, ci

S
)AP , u(ci

P
, ci

S
)AR,

and u(ci
P
, ci

S
)AS as embeddings or projections from the

vision space to the word2vec text space, such that a high

dot product in word2vec space leads to high alignment, and

subsequently a high plausibility score for plausible tuples.

The embeddings are learnt separately for t′
P

, t′
R

and t′
S

(as

parameterized by AP , AR and AS) because different visual

features might be useful for aligning to the primary noun,

relation, and secondary noun.

The parameters AP , AR, and AS can also be thought of

as grounding parameters. That is, given a word2vec vec-

tor W , we learn parameters to find the visual instantiation

of W . ARW (t′
R
) can be thought of as the visual instan-

tiation of t′
R

which captures what the interaction between

two objects related by relation t′
R

looks like. APW (t′
P
)

and ASW (t′
S
) can be thought of as identifying which cli-

part pieces and with what attributes correspond to nouns t′
P

and t′
S

. Our model finds the visual grounding of t′
P

, t′
R

, and

t′
S

separately, and then measures similarity of the inferred

grounding to the actual visual features observed in training

instances. Thus, given a test tuple, we hallucinate a ground-

ing for it and measure similarity of the hallucination with

the training data. Note that these hallucinations are learnt

2546



discriminatively to help us align concepts in vision and text

such that plausible tuples are scored highly.

4.2. Training

To learn the parameters AP , AR, AS in our vision align-

ment scoring function (Equation 4), we consider the outer

product space of the vectors u and W . We learn a linear

SVM in this space to separate the training instances (tuples

+ corresponding abstract scenes, Section 3.3), from a set

of negatives. Each negative instance is a tuple from our

TRAIN set, paired with a random abstract scene from our

training data. We sample three times as many negatives as

positives. Overall we have 4260 positives and 12780 nega-

tives. Finally, the learnt vectors are reshaped to get AP , AR

and AS respectively. We learn the vision vs. text tradeoff

parameters α and β (Equation 1) on the VAL set of tuples

(Section 3.2). Recall that these include seed and expanded

tuples, along with annotations indicating which tuples are

plausible and which are not. We use the vision and text

alignment scores as features and train a binary SVM to sep-

arate plausible tuples from implausible ones. The weights

learnt by the SVM correspond to α and β. Finally, the pa-

rameter δ in Equation 2 is set using grid search on the VAL

set to maximize the average precision (AP) of predicting a

tuple as being plausible (positive) or not.

5. Experimental Setup

We first describe the features we extract from the abstract

scenes. We then list the baselines we compare to.

5.1. Visual Features

As explained in Section 3.1, we have annotations indicat-

ing which pairs of objects (cP , cS) in an abstract scene par-

ticipated in the corresponding annotated tuple. Using these

objects and the remaining scene, we extract three kinds of

features to describe the pair of objects (cP , cS): 1) Object

Features 2) Interaction Features 3) Scene Features. These

three together form our visual feature set. Object Features

consist of the type (category, instance) of the object (Sec-

tion 3.1), flip (left facing or right) of the object, absolute lo-

cation, attributes (for humans), and poses (for humans and

animals). The absolute location feature is modeled using a

Gaussian Mixture Model (GMM) with 9 components, learnt

separately across five discrete depth levels, similar to [38].

The GMM components are common across all objects, and

are learnt using all objects present in all abstract scenes.

Human attributes are age (5 discrete values), skin color (3

discrete values) and gender (2 discrete values). Animals

have 5 discrete poses. Human pose features are constructed

using keypoint locations. These include global, contact, and

orientation features [2]. Global features measure the posi-

tion of joints with respect to three gaussians placed on the

head, torso, and feet respectively. Contact features place

smaller gaussians at each joint and measure the positions of

other joints with respect to each joint. Orientation features

measure the joint angles between connected keypoints. In-

teraction Features encode the relative locations of the two

objects participating in the relation, normalized for the flip

and depth of the first object. This results in the relative lo-

cation features being asymmetric. We compute the relative

location of the primary object relative to the secondary ob-

ject and vice versa. Relative locations are encoded using a

24 component GMM (similar to [38]). Scene Features indi-

cate which types (category, instance) of objects (other than

cP and cS) are present in the scene. Overall, there are 493

object features each for the primary and secondary objects,

48 interaction features, and 188 global features, resulting in

a visual feature vector of dimension 1222.

5.2. Baselines

We experiment with a variety of strong baselines that use

text information alone. They help evaluate how much com-

plementary information vision adds, and if this additional

information can be obtained simply from additional or dif-

ferent kinds of text (e.g., generic vs. visual text).
• WikiEmbedding: Our first baseline uses the ftext part of

our model (Equation 1) alone. It uses word2vec trained

on generic Wikipedia text.

• COCOEmbedding: Our next baseline also uses the

ftext part of our model (Equation 1) alone, but uses

word2vec trained on visual text (>400k captions in the

MS COCO training dataset).

• ValText: Recall that both our TEST and VAL tuples were

extracted from captions describing COCO images. Our

next baseline computes the plausibility of a test tuple

by counting how often that tuple occurred in VAL. This

helps assess the overlap between our TEST and VAL tu-

ples (recall: no images are shared between TEST and

VAL). Note that the above two baselines, WikiEmbed-

ding and COCOEmbedding, can be thought of as ValText

but by using soft similarities (in word2vec space) rather

than using counts based on exact matches.

• LargeVisualText: Our next baseline is a stronger version

of ValText. Instead of using just our VAL tuples to eval-

uate the plausibility of a test tuple, it extracts tuples from

a large corpus of text describing images (>400k captions

in the MS COCO training dataset which are not in our test

set (Section 3.2)). This gives us a set of 91K assertions.

At test time, we check how many times the test assertion

occurred in this set, and use that count as the plausibility

score of the test tuple.

• BigGenericText (Bing): In this baseline, we evaluate

the performance of assessing the plausibility of tuple

t′ = (t′
P
, t′

R
, t′

S
) in the test set using all the text on the

web. We query the Bing4 search API and compute the

4http://www.bing.com/
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Approach Test Performance

AP Rank Correlation × 100

WikiEmbedding 68.4 41.7

COCOEmbedding 72.2 49.0

ValText 53.0 31.0

LargeVisualText 58.0 37.6

BigGenericText (Bing) 44.6 20.3

Table 1: Performance of different text based methods

Approach Test Performance

AP Rank Correlation × 100

Text (COCOEmbedding) + Vision 73.6 50.0

Vision Only 68.7 45.3

Text (COCOEmbedding) Only 72.2 49.0

Table 2: Text+ vision outperforms text alone.

log-frequencies of t′
P

, t′
R

, t′
S

as well as t′. We train an

SVM on these four features to separate plausible tuples in

our VAL set from implausible tuples, and use this SVM at

test time to compute the plausibility score of a test tuple.

5.3. Evaluation

Recall that we collected 10 human judgements for the

plausibility of each test tuple (Section 3.2). We count

the number of subjects who thought the tuple was plausi-

ble (count+). We also count the number of subjects who

thought the tuple was not plausible (count−). count+ +

count− need not be 10 because subjects were allowed to

marked tuples as “does not make sense”. These scores are

then combined into a single score = count+ − count−.

We threshold these scores at 0 to get our set of positive and

negative human (ground truth) labels. That is, a tuple is

considered to be plausible if more people thought it is plau-

sible than not. Our method as well as the baselines produce

a score for the plausibility of each tuple in the TEST set.

These scores are thresholded and compared to the human la-

bels to compute average precision (AP). We also rank tuples

based on their predicted plausibility scores and human plau-

sibility scores (score = count+−count−). These rankings

are compared using a rank correlation, which forms our sec-

ond evaluation metric.

6. Results

We begin by comparing our text-based baseline models.

We then demonstrate the advantage of using vision and text

jointly, over using text alone or vision alone. We then show

qualitative results. We finally comment on the potential our

approach has to enrich existing knowledge bases.

6.1. Different Text Models

Of all the text-alone baselines (Table. 1), we find that

BigGenericText (Bing) does the worst, likely because it

suffers heavily from the reporting bias on the web. The

LargeVisualText baseline does better than Bing, presum-

ably because the captions in MS COCO describe what is

seen in the images which may often be mundane details de-

picted in the image, and aligns well with the source of our

tuples (visual text). ValText performs worse than LargeVi-

sualText because ValText uses less data. But adding soft

similarities using word2vec embeddings (WikiEmbedding

and COCOEmbedding) significantly improves performance

(15.4 and 19.2 in absolute AP). COCOEmbedding performs

the best among all text-alone baselines, and is what we will

use as our “text only” model moving forward.

6.2. Joint Text + Vision Model

We compare the performance of text + vision, vision

alone, and text alone in Table. 2. We observe that text + vi-

sion performs better than text alone and vision alone by

1.4% and 4.9% AP respectively. In terms of rank corre-

lation, text + vision provides an improvement of 1.0 over

text alone. Overall, vision and text provide complementary

sources of common sense.

6.3. Qualitative Results

We first visualize relation similarity matrices for text and

vision alone (Figure 4). Each entry in the text matrix is the

word2vec similarity between the relations specified in the

corresponding row and columns. Each row is normalized to

sum to 1. For vision, each entry in the matrix in the propor-

tion of images depicting a relation (row) whose embeddings

– after being transformed by AR – are most similar to the

word2vec representation of another relation (column). This

illustrates what our visual alignment function has learnt. We

randomly sample a subset of 20 relations for visualization

purposes. We can clearly see that the two matrices are qual-

itatively different and complementary. For instance, visual

cues tell us that the relations like “sleep next to” and “sur-

rounded by” are similar.

In Figure 5 we show you several scenes created by AMT

workers. Note that for clarity we only show the primary

and secondary objects as identified by workers, but our

approach uses all objects present in the scene. For each

scene, we show the “GT” tuple provided by workers, as

well as the “Vision only” tuple. This is computed by em-

bedding the scene using our learnt AP , AR, and AS into

the word2vec space and identifying the nouns and relations

that are most similar. The left most column shows scenes

where the visual prediction matches the GT. The next col-

umn shows scenes where the visual prediction is incorrect,

but reasonable (even desirable) and would not be captured

by text. Consider (boy, hold onto, pizza) and (boy, take,

pizza) whose similarity would be difficult to capture via

text. The next column shows examples where the tuples are

visually as well as textually similar. The last column shows

2548



(a) Textual similarity between relations (b) Visual similarity between relations

Figure 4: Visual and textual similarities are qualitatively different, and capture complimentary signals.

GT: dogs gather around table

Vision: dogs gather around table

GT: kitten lay down in pet bed

Vision: kitten lay down in bed

GT: tea served on table

Vision: tea served on table

GT: woman pick up dog

Vision: woman walk dog

GT: baby pose in front of toy house

Vision: baby play toy

GT: boy place bottle

Vision: boy open bottle

GT: boy throw toy

Vision: boy hold onto toy

GT: boy hold onto pizza

Vision: boy take pizza

GT: cat curl up on lap

Vision: cat next to girl

GT: woman prepare to cut food

Vision: woman eat food

GT: dog chase cat

Vision: dog catch cat

GT: boy rest on stool

Vision: boy on chair

GT: salad covered in dressing

Vision: french fries made soup

GT: cat whip yarn ball around

Vision: cat is ball

GT: kitten catch mouse

Vision: mouse are mouse

Vision Correct Vision Incorrect But Reasonable
Vision and Text Both 

Reasonable
Vision Incorrect

Figure 5: Qualitative examples demonstrating visual similarity between tuples.

failure cases where the visual prediction is unreasonable.

6.4. Enriching Knowledge Bases

ConceptNet [34] contains commonsense knowledge

contributed by volunteers. It represents concepts with nodes

and relations as edges between them. Out of our 213 VAL

relations, only one relation (“made of”) currently exists in

ConceptNet. Thus, our approach can add many visual com-

monsense relations to ConceptNet, and boost its recall.

7. Conclusion

In this paper we considered the task of classifying com-

monsense assertions as being plausible or not based on how

similar they are to assertions that are known to be plausible.

We argued that vision provides a complementary source of

commonsense knowledge to text. Hence, in addition to rea-

soning about the similarity between tuples based on text,

we propose to ground commonsense assertions in the visual

world and evaluate similarity between assertions using vi-

sual features. We demonstrate the effectiveness of abstract

scenes in providing this grounding. We show that assertions

can be classified as being plausible or not more accurately

using vision + text, than by using text alone. All our datasets

and code are publicly available.
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