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Abstract

Symmetry, as one of the key components of Gestalt the-

ory, provides an important mid-level cue that serves as in-

put to higher visual processes such as segmentation. In this

work, we propose a complete approach that links the detec-

tion of curved reflection symmetries to produce symmetry-

constrained segments of structures/regions in real images

with clutter. For curved reflection symmetry detection,

we leverage on patch-based symmetric features to train

a Structured Random Forest classifier that detects mul-

tiscaled curved symmetries in 2D images. Next, using

these curved symmetries, we modulate a novel symmetry-

constrained foreground-background segmentation by their

symmetry scores so that we enforce global symmetrical con-

sistency in the final segmentation. This is achieved by im-

posing a pairwise symmetry prior that encourages symmet-

ric pixels to have the same labels over a MRF-based repre-

sentation of the input image edges, and the final segmenta-

tion is obtained via graph-cuts. Experimental results over

four publicly available datasets containing annotated sym-

metric structures: 1) SYMMAX-300 [38], 2) BSD-Parts, 3)

Weizmann Horse (both from [18]) and 4) NY-roads [35]

demonstrate the approach’s applicability to different envi-

ronments with state-of-the-art performance.

1. Introduction

The world that we see abounds in several different kinds

of regularities and invariants that computer vision have long

attempted to capture. These invariants include: geome-

try [29], shape [5], scale [24] and motion [12]. The goal

of capturing such invariants from low-level visual signals

is to ultimately simplify the representations that feed into

higher-level visual tasks: e.g. segmentation, recognition,

tracking etc. In this work, we focus on extracting symme-

try, a ubiquitous and very common shape-based regularity,

from real images containing clutter (Fig. 1 (left)) and use

the detected symmetries to extract symmetry-constrained

segments/regions that support the symmetry axes (Fig. 1

Figure 1. (Left) Detected curved reflection symmetries with red

denoting stronger symmetries. (Right) Selected symmetry axes (I)

and their corresponding symmetry-constrained segmentations (II).

(right)). Such a view is shared by Gestalt psychology, which

considers symmetry as one of the key grouping or mid-level

cues for explaining human visual perception. From a bi-

ological viewpoint, it is well-known that humans are ex-

tremely sensitive to reflection symmetry [39], and its detec-

tion facilitates early visual processes such as figure-ground

segmentation [7]. Specifically, we detect curved reflection

symmetries [17]. The concept is known in the literature

as ridges, ribbons or centerlines [21, 35], and is related to

the classical Medial Axis Transform of Blum [2]. Such ap-

proximate symmetries are much more prevalent in nature

than rigid reflection symmetry, which many previous works

[31, 25, 28] have addressed on simpler images with less

clutter. Detecting and segmenting such structures is also im-

portant in the related domain of biomedical imaging, where

most works have focused on the detection and segmentation

of tubular structures [16, 9, 35], such as blood vessels, ax-
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ons and dendrites. Detecting curved symmetries under real

conditions, however, remains extremely challenging due to

ambiguities of scale, noise and occlusions that limit the ap-

plicability of parametric or model-based techniques. These

challenges extend to the reliable segmentation of symmetric

structures as well. A few studies have previously addressed

the problem of symmetry-guided segmentation [32, 36, 8],

and they are mostly limited to segmenting regions exhibit-

ing (rigid) reflection symmetries.

In contrast to previous works where either symmetry de-

tection or segmentation are addressed separately, we de-

scribe in this paper a complete approach that tackles these

two related problems in a holistic framework that consists

of two main steps: 1) robust curved symmetry detection and

2) curved symmetry-constrained segmentation of such re-

gions. For symmetry detection, we use a set of multiscale

features to train a Structured Random Forest (SRF) [14] that

enforces symmetry in the final predicted structure. The key

advantage is that we let the SRF determine from training ex-

emplars the optimum feature combination that predicts the

best symmetry axes (location, orientation and scale) without

a need to predefine a symmetry or noise model, enabling our

approach to work in different environments and conditions.

In the second step, we enforce global symmetrical con-

sistency through a foreground-background segmentation of

structures/regions supporting these predicted curved sym-

metries via the addition of a novel pairwise symmetry prior

in a Markov Random Field (MRF) representation of the in-

put image edges. Since the symmetry prior is defined lo-

cally in the MRF clique, the optimal segmentation can be

solved using graph-cuts [3], while handling even convoluted

symmetry axes with multiple branches. As the predicted

curved symmetries provide an initial measure of how sym-

metric the region should be, we modulate this prior so that

the appropriate amount of symmetry is enforced in the final

segmentation, a crucial requirement for natural images that

mostly exhibit approximate symmetries. Additionally, be-

cause inference using SRFs and graph-cuts optimization are

extremely efficient, our approach is fast: 0.1s for detection

(after feature extraction which takes ≈1min) and 1s for seg-

mentation per 320 × 240 image. Finally, we achieve state-

of-the-art accuracies in both steps over four public datasets

of real images containing annotated symmetric structures.

2. Related Works

We briefly review several works in two specific areas of

computer vision: 1) symmetry detection and 2) segmenta-

tion of symmetrical regions that closely relate to the pro-

posed approach.

Symmetry detection. The detection of various types of

symmetry (bilateral/reflection, rotational and translation)

from 2D images has a long history in computer vision.

See [23] for an up-to-date survey of past and current tech-

niques. The classic voting approach of “Generalized Sym-

metry Transform” of Reisfeld et al. [31] is now largely sur-

passed by the feature-based method of Loy and Eklundh

[25] that used symmetrical SIFT keypoint descriptors [24]

for more robust detection of bilateral and rotational sym-

metries. A recent extension by Lee and Liu [17] matched

these descriptors within a 3D axis parameter space to detect

curved reflection symmetries from keypoints. Instead of us-

ing keypoints, Zhu [42] proposed a jump-diffusion process

for detecting medial axes and junctions over a MRF repre-

sentation of 2D shapes. More recently, Tsogkas and Kokki-

nos [38] used Multiple Instance Learning to train a curved

symmetry detector, that combines multiscale patch-based

feature histograms of intensity, color, texture and spectral

cues to obtain state-of-the-art detection performance on a

large dataset of real images with clutter. In the domain of

biomedical imaging, most works had focused on detecting

centerlines of 3D tubular/cylindrical structures: blood ves-

sels, axons, dendrites and spinal columns [16, 9, 41], and

in cartography symmetry was used for detecting road net-

works [11]. Although these works produce very good cen-

terline predictions, their applicability is often limited to the

specific imaging modality (e.g. CT, MRI or brightfield) and

the expected size (scale) of the target tubular structures. Re-

cently, Sironi et al. [35] proposed a novel regression-based

technique using Regression-Trees (as opposed to classifi-

cation) that showed state-of-the-art centerline detections in

different applications (medical and roads). Their method,

however, requires training a large number of regressors to

predict the expected scale and location of the tubular struc-

tures from the input.

Segmenting symmetrical regions. Most previous ap-

proaches [15, 20] considered segmentation [27, 30] as a sep-

arate, independent step from symmetry detection. Riklin-

Raviv et al. [32] embed symmetry cues dynamically into a

level-set functional so that each evolution of the functional

improves the symmetric properties of the current segmenta-

tion. Sun and Bhanu [36] used a region merging approach

where homogeneous regions, measured in terms of color

and texture, are merged while preserving reflection sym-

metry. The merging process, however, is sensitive to large

variations of color and textures, producing oversegmented

(small) regions in these areas. Along similar lines, Levin-

shtein et al. [19] built an adjacency graph that encodes how

superpixels are grouped into symmetrical parts. Lee et al.

[18] extended this approach by imposing a more general de-

formable disc (ellipse) model that encodes affinity of super-

pixels in curvilinear structures better. Affinity is computed

from shape similarity and differences in local color and in-

tensity. Since superpixels are grouped in a pairwise man-

ner via dynamic programming, this approach is limited to

grouping homogeneous regions that contain a single curved

symmetry (no branches). Fu et al. [8] focused on extract-
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Figure 2. Training a SRF for curved symmetry detection. (A) Multiscale intensity, color, texture, spectral and oriented Gabors are used

to compute a set of local symmetry responses, Xf , by comparing histograms of patches. (B) By pairing patch-based features xf ∈ Xf

with their symmetry groundtruth annotations Y , we determine the optimal split parameters θ associated with the split functions h(xf , θ)
that send features xf either to the left or right child. The leaf nodes store a distribution of structured labels of symmetry axes. (C) During

inference, a test patch is assigned to a leaf node within a tree that contains a prediction of the location and scale of the symmetry axis.

Averaging the prediction over all K trees yields the final symmetry axes and their corresponding strengths (degree of symmetry).

ing foreground salient objects exhibiting reflective symme-

try by first computing a symmetry foreground segmentation

map from color-contrast cues and feature-based symmetry-

induced homography, which are then set into unary and

pairwise terms in a MRF-based segmentation. In the med-

ical imaging literature, most works consider segmentation

as an integral part of centerline detection, where the center-

lines and their corresponding radii are solved by the same

detector [16, 9, 35]. The final segmentations are therefore

a combination of circles or balls located along the center-

lines, with no enforcement of global curved symmetry con-

sistency.

Our approach, described next, considers these two issues

together so that we produce accurate segmentations of ap-

proximate symmetrical structures from robust curved sym-

metry detections in clutter. Unlike works that are limited to

detecting and segmenting structures with bilateral (reflec-

tion) symmetries [20, 15, 32, 36, 8], our approach detects

the more general class of curved reflective symmetry, which

is more prevalent in nature. Compared to works that apply

grouping and merging of superpixels or regions [19, 18] or

those that iteratively improve the final symmetry segmenta-

tion [32, 36], our segmentation approach is not only faster

but in addition is able to handle symmetry axes with multi-

ple branches. Finally, our complete approach is also modal-

ity agnostic unlike [9, 41], and we show improved segmen-

tation results when we enforce global symmetrical consis-

tency over centerlines predicted using [35] in a dataset of

road networks.

3. Approach

Our full approach for detecting and segmenting curved

reflection symmetric structures consists of two steps: 1) a

SRF-based curved symmetry detector which provides input

to 2) a MRF-based symmetry-constrained segmentation ap-

proach. We describe these steps in the sections that follow.

3.1. Fast curved symmetry detection via SRF

Patch-based symmetry features. In order to detect curved

symmetries/centerlines in real images with clutter, a key re-

quirement is the ability to efficiently extract robust features

from the input image that are suggestive of symmetry. Our

feature selection approach is motivated by two issues well-

known in visual symmetry. First, similar to textures (which

is a kind of translation symmetry), curved reflection sym-

metry is a function of image scale. Second, and related to

the first is what features can one use to define symmetry

in the image? In this work, we extract multiscale features

based on intensity, color (from L∗, a∗ and b∗ channels), ori-

ented Gabor edges and texture features [26] by comparing

N×N patches with different orientations (we use 8 discrete

orientations) densely in the image (Fig. 2 (A)). The reason

is that such features capture different forms of symmetry

information that are complementary, e.g. edge based fea-

tures can suggest symmetry at textureless regions. For effi-

ciency, we adopt the integral image implementation of [38].

For each patch, we compare the empirical distribution of

feature histograms using the robust EMD-L1 distance [22]

where a small value suggests a region with strong symme-

try. In addition to these local features, we compute sym-

metric spectral features proposed by [38]. These are simi-

lar to the intervening contour cue of [26] except that curved

symmetry responses from histogram comparisons above are

used to construct the affinity matrix prior to extracting the

eigenvectors using normalized-cuts [34]. The output Xf is

a set local symmetry responses over multiple scales (we use
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Figure 3. Curved symmetry-constrained segmentation. (Top) Constructing the 5-way MRF over Ie with cross-symmetry terms, Spp′ given

a curved symmetry axis, A. Every node in the MRF consists of N (4-way, green box) and Nsym (cross-symmetry, blue box) neighbors.

We detail two symmetric neighbors {p1, p
′

1} and {p2, p
′

2} with their corresponding cross-symmetry terms as red links. Note that not all

Spp′ are shown for clarity. (Below) Computing the symmetry prior: (a) Given A, we compute its distance transform. (b) We then link the

closest pixels along the same iso-contours on opposite sides of A to form symmetric pairs. (c) Visualization of the symmetry strength used

in espp′ , with red denoting stronger symmetries.

4 scales here) for each of the 6 feature channels considered.

Symmetry detection via SRF. We use a variant of the

Random Forest (RF) [10] classifier that predicts structured

outputs, known as the Structured Random Forest (SRF), for

predicting curved symmetries given a novel input image. A

SRF, similar to a RF, is an ensemble learning technique that

combines K decision trees, (T1, · · · , TK), trained over ran-

dom permutations of the data to prevent overfitting. A SRF,

however, is able to learn mappings between inputs and out-

puts of arbitrary complexity such as segmentations [14] or

boundary relationships [6] while retaining the fast inference

inherent in RF. In this work, we train a SRF using patch-

based (of size N × N ) symmetry responses, xf ∈ Xf as

features, and binary structured labels of groundtruth curved

symmetries Y = 1
N×N . The goal of training the SRF is

to learn, for the ith internal (split) node, the optimal split-

ting parameters θi for each binary split function h(xf , θi) ∈
{0, 1}. If h(·) = 1 we send xf to the left child and to the

right child otherwise (Fig. 2 (B)). h(xf , θi) is an indicator

function with θi = (d, ρ) and h(xf , θi) = 1[xf (d) < ρ],
where d is the feature dimension of one of the input fea-

tures described above. ρ is based on maximizing a standard

information gain criterion Mi:

Mi = H(Di)−
∑

o∈{L,R}

|Do
i |

|Di|
H(Do

i ) (1)

that splits the input data Di ⊂ Xf × Y at node i into DL
i

(left child) and DR
i (right child) respectively. H(Di) =

∑

y cy(1− cy) is the Gini impurity measure with cy denot-

ing the proportion of symmetry features in Di with labels

y ∈ Y . As noted in [6], computing eq. (1) using struc-

tured Y is more feasible if one imposes an intermediate

mapping function Π : Y 7→ B of structured labels onto

the discrete labels b ∈ B. The number and type of discrete

labels, |B|, is an empirical measure of the diversity of struc-

tured curved symmetries that we expect to encounter. To

determine Π, we first apply an Expectation-Maximization

(EM)-based clustering over DAISY [37] descriptors from

randomly sampled symmetry patches from Y . The final

clusters obtained are then used to define B. The process

is repeated with the remaining data Do, o ∈ {L,R} at both

child nodes until Mi is below a fixed threshold or a desired

tree depth hd is reached. The leaf nodes at each Tk store

a distribution of curved symmetry labels encountered dur-

ing training. Inference using SRF is straightforward (Fig. 2

(C)). We sample test patches densely over the image to ob-

tain test features, Xtest, and pass them into the SRF to pro-

duce a structured prediction of the symmetry axes per de-

cision tree Tk. Averaging these responses over all K trees

produces the final curved symmetry predictions. We then

convert these predictions (a continuous value) into a set of

curved symmetry axes: A={A1, A2, · · · , An}, where each

A ∈A is defined as a contiguous single-pixel wide segment.

Notably, these responses can be seen as an estimate on the

symmetry strength of the test patch, denoted as A(r) for a

pixel r ∈ A, and we use it to modulate the amount of sym-

metry to enforce in the segmentation step, described next.

1647



3.2. Curved symmetry-constrained segmentation

We embed curved symmetry constraints via a modified

Markov Random Field (MRF) representation over the bi-

nary image edge map (Fig. 3 (top)), Ie (here we use SE [6]

and retain responses >0.03). Using Ie is important here

as it ensures that the segmentation results obtained are not

influenced by color or intensity similarity but only by the

detected symmetry axes, which is our goal.

Each node in the MRF is a pixel in Ie, with links (graph-

edges) between nodes denoting the local relationship be-

tween connected pixels. Pixels that are directly connected

with one another form a local neighborhood or clique. In

addition to the unary and pairwise terms over links in a stan-

dard 4-way neighborhood clique system, we add in a link at

each node that connects, based on the detected set of curved

symmetry axes, A, their closest symmetrical neighbor. To

do this, we first compute its distance transform, DA. Next,

pixels that lie on the same iso-contours on opposite sides

of each A ∈ A are linked (Fig. 3 (below)). This addi-

tional link, called the cross-symmetry term, creates a new

5-way neighborhood clique system that enforces both local

(4-way) and global curved symmetry constraints within a

single MRF model. This ensures both global symmetrical

consistency while allowing for small local deformations in

the final segmentation. In addition, since this term is com-

puted locally with respect to A, our model handles multiple

axes and branching symmetries with no additional modi-

fications. Finally, as the 5-way MRF model retains a lo-

cal clique neighborhood system, the optimal labeling can

be efficiently obtained using standard graph-cuts. We use

the popular max-flow/min-cut toolbox of Kolmogorov and

Zabih [13] in our implementation.

We detail the binary energy function E used here. Let

L = {0, 1} be the labels of the background and the symmet-

rical region respectively. P is the set of all pixels in Ie, with

{N ,Nsym} denoting the 5-way neighborhood clique sys-

tem consisting of the 4-way pairwise neighbors (p, q) and

cross-symmetry neighbors (p, p′) respectively. The energy

function is thus defined as:

E(f) =
∑

p∈P

Up(fp) +
∑

(p,q)∈N

Vpq(fp, fq)

+
∑

(p,p′)∈Nsym

Spp′(fp, fp′) +
∑

(p,q)∈N

Bpq(fp, fq)
(2)

where fp ∈ L is the label assigned to pixel p ∈ P and

f = {fp|p ∈ P} is the labeling of all the pixels in the

image. The first two terms, {Up, Vpq} of eq. (2) are the

standard unary and pairwise terms that encode the fore-

ground prior and boundary information used in the majority

of MRF-based segmentation approaches [33, 4]. For the

unary term, instead of a foreground model derived from

color or intensity information (which we do not have), we

Figure 4. Example symmetry-constrained segmentations. Notice

that we are able handle symmetry axes with multiple branches and

produce more accurate segments with the symmetry prior term.

set pixels that overlap with any axis A, pA, as foreground

(UpA
(0) = ∞) and pixels along the image boundary, pB ,

are set as background (UpB
(1) =∞). Similarly for Vpq , we

replace image intensities used in [4] with their edge labels:

Vpq(fp, fq) =

{

exp(− (Ie(p)−Ie(q))
2

2σ2 ), if fp 6= fq

0, otherwise
(3)

so that the final segmentation aligns with Ie.

The third term is the symmetry prior term. This term

sums up the cost for assigning different labels to symmetric

neighbors (p, p′):

Spp′(fp, fp′) =

{

espp′ , if fp 6= fp′

β, otherwise
(4)

where β < 1 is a small positive value that provides a penalty

when symmetrical neighbors are assigned similar labels.

espp′ is a measure of symmetry strength defined as:

espp′ = 1 + β

−
1

Z
log(1 + ‖DA(p)−DA(p

′)‖+ νpp′)
(5)

where DA(p) , min(pa∈A) ‖p − pa‖ is the distance be-

tween pixel p and pa ∈ A, its closest pixel along the sym-

metry axis obtained from the distance transform. νpp′ =
1− (A(pa) +A(p′a))/2 is the symmetry score predicted by

the SRF, where we take the mean value of the two corre-

sponding symmetry scores along A. Combining these two

estimates of symmetry within espp′ tend to ameliorate the

inherent noisy symmetric pixel correspondences caused by

internal edges or textures in Ie. Z = max(p,p′)∈P (log(1 +
‖DA(p)−DA(p

′)‖+ νpp′)) normalizes the second term in

eq. (5) to [0, 1] and as a result espp′ is in the range [β, 1+β].
Since eq. (5) sets a large espp′ for pixels with different la-

bels exhibiting strong symmetries, this encourages symmet-

rical pixels to have the same labels, and as a consequence,
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Figure 5. Effect of the ballooning term, Bpq . (L-R) Without Bpq ,

the final segmentation tends to be small. When ρb ≪ 0, over-

expansion occurs, resulting in a degenerate segmentation. Using

an appropriate value for ρb produces an optimal segmentation.

enforces symmetry in the final segmentation. Notably, as

espp′ is derived from DA and the SRF predicted symme-

try scores, we are able to modulate the effect of this term,

allowing for symmetrical and asymmetrical configurations

to occur at appropriate locations. We show some example

segmentation results in Fig. 4 comparing it to the case when

no symmetry prior is used (a standard 4-way MRF).

The final term Bpq is a “ballooning” term, introduced by

Veksler [40] that encourages the final segmentation to ex-

pand, in opposite directions along both sides of A so that a

reasonably-sized symmetric segment is obtained. Without

this term, the final segmentation tends to be small, as sym-

metry strengths are usually the largest between the closest

(p, p′). Assuming that pixel p is further away from pixel q
with respect to A, we have:

Bpq(fp, fq) =











0, if fp = fq

∞, if fp = 1 and fq = 0

ρb, if fp = 0 and fq = 1

(6)

where ρb is a ballooning cost that we set to control the ex-

pansion of the final segmentation. Following [40], the value

of ρb is usually set to a small negative value. However, when

ρb ≪ 0, over-expansion occurs resulting in a degenerate

(and undesirable) symmetrical segmentation (Fig. 5). We

use ρb = −0.03 in all experiments.

A note on the submodularity of all the pairwise terms in

eq. (2). Clearly, Vpq and Bpq are submodular by construc-

tion. The symmetry prior term, Spp′ , is also submodular

since by eq. (5), espp′ ≥ β for all values of β. From [13],

E can be minimized exactly via graph-cuts.

4. Experiments

4.1. Datasets, baselines and evaluation procedures

We evaluate the performance of our approach in terms

of: 1) curved symmetry prediction accuracy and 2) segmen-

tation accuracy. We detail the datasets, baselines and eval-

uation procedures for these two performance criteria in the

following paragraphs. The supplementary material contains

full details of all parameters used.

Curved symmetry prediction. We use the SYMMAX-

300 dataset (200 train/ 87 test) introduced by [38], that

contains curved symmetry annotations from the BSDS-300

dataset [26]. Specifically, automatically generated medial

axes are presented to human annotators who select which

axes best supports the groundtruth segments. We follow the

same evaluation procedure as [26], where instead of bound-

aries, the groundtruths are human annotated curved symme-

tries and we report the Precision-Recall (P-R) curves and

the ODS, OIS and AP metrics of [1] using the same evalu-

ation parameters suggested by [38] where symmetry pixels

close enough to the groundtruth (<0.01% of the image di-

agonal) are considered correctly matched. As baselines, we

compare our SRF-based approach (SRFSym) with two state-

of-the-art curved symmetry detectors: 1) global-symmetry

(gSym) of Tsogkas and Kokkinos [38] and 2) symmetric

deformable-discs (DefDiscs) of Lee et al. [18]. We also

compared our approach to the recent regression-tree based

(RTree) centerline prediction method of Sironi et al. [35]

over published results in their “Aerial” dataset of 14 satel-

lite images (7 train/ 7 test) of road networks from New York

state (NY-roads). Following [35], we consider symmetry

pixels within 2 pixels of the groundtruth axes as correct to

obtain the P-R, ODS, OIS and AP metrics.

Segmentation of symmetric structures. We use three

datasets (train/test splits) for our main evaluation: 1)

SYMSEG-300 (200/87), 2) BSD-Parts (0/36) and 3) Weiz-

mann Horses, WHD (20/61) (both from [18]). SYMSEG-

300 is an extension of SYMMAX-300 where we ex-

tract symmetric segments based on the original BSDS-300

groundtruth segments. BSD-Parts and WHD were intro-

duced by [18] as one dataset for evaluating the DefDiscs

superpixel grouping approach. For comparisons, we ap-

plied our symmetry-constrained segmentation approach

(SymSegGC) using symmetry axes predictions from: 1)

SRFSym (our approach), 2) gSym and 3) DefDiscs. As

an additional demonstration of the contribution of the sym-

metry priors, {Spp′ , Bpq}, we evaluated SRFSym and gSym

without these two priors, effectively reducing the segmen-

tation to a standard MRF-based approach (GC). We also

compared the grouped superpixels segments obtained from

DefDiscs (DefDiscs-SP) as an additional baseline. Fol-

lowing [18], we consider a segment as correct when its stan-

dard Intersect-over-Union (IoU) score with respect to the

groundtruth exceeds 0.4 over all three datasets and report

the resulting P-R curves and Average Precision (AP) met-

rics for each method. We also compared SymSegGCwith the

estimated centerline scales predicted by RTree (RTree-ES)

over the NY-roads dataset where we used symmetry axes
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Method SYMMAX-300 NY-roads

Our approach, SRFSym 0.38,0.42,0.27 0.70,0.70,0.63

gSym [38] 0.36,0.40,0.22 -

DefDiscs [18] 0.37,0.41,0.23 -

RTree [35] - 0.85,0.85,0.83

Figure 6. Symmetry prediction accuracy. (Top) Precision-recall

curves: SYMMAX-300 (left) and NY-roads (right). (Below)

[ODS, OIS, AP] scores [1] in each cell. Best viewed in color.

predictions from SRFSym with/without symmetry priors and

similarly for RTree. The same evaluation procedure of [35]

that applies an exclusion zone of 0.4% of the groundtruth

radius was used to generate comparable results.

4.2. Results

Figs. 6 and 7 summarize the the evaluations performed

as described in the previous section. We also show example

results of curved symmetry detection and segmentation of

corresponding symmetric regions using our approach com-

pared to DefDiscs-SP [18] in Fig. 8. We briefly discuss

these results and their implications.

Curved symmetry accuracy over SYMMAX-300. Our

method, SRFSym, returns the most accurate curved symme-

try predictions compared to gSym and DefDiscs in all ac-

curacy metrics [ODS,OIS,AP] (Fig. 6 (top-left)). Notably,

we see that beyond a recall value of 0.2, SRFSym outper-

forms gSym consistently at higher recalls. This shows that

SRFSym’s curved symmetry predictions are more accurate

across a larger range of symmetry scores. This is likely due

to: 1) our complementary set of features (gSym does not use

edges) which works better at non-textured regions and 2)

the structured predictions over multiple scales smooth out

wrong predictions across multiple decision trees.

Curved symmetry accuracy over NY-roads. In this

dataset, SRFSym is unable to match the (almost) perfect

curved symmetry predictions of RTree (Fig. 6 (top-right)),

even with reasonably high precision (>0.8) for most re-

calls. The reason for the drop in precision at high recalls is

that SRFSym responds to other symmetric regions (besides

roads) that are not in the groundtruth. This shows that for

this particular task and modality, the regression formulation

proposed in [35] makes sense compared to our approach

� �

��� ���
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Methods Datasets

Sym Detector Segmentation SYMSEG-300 BSD-Parts WHD NY-roads

SRFSym
SymSegGC 0.13 0.27 0.15 0.86

GC 0.04 0.05 0.04 0.28

gSym [38]
SymSegGC 0.11 0.18 0.06 -

GC 0.03 0.05 0.01 -

DefDiscs [18]
-SP [18] 0.09 0.17 0.14 -

SymSegGC 0.10 0.16 0.13 -

RTree [35]

-ES [35] - - - 0.90

SymSegGC - - - 0.97

GC - - - 0.19

Figure 7. Symmetry-constrained segmentation accuracy. (Top)

Precision-recall curves: (a) SYMSEG-300, (b) BSD-Parts, (c)

WHD and (d) NY-roads. (Below) Corresponding Average preci-

sion (AP) scores per cell. Best viewed in color.

which uses more general features for detecting symmetry.

Modifying our approach to take advantage of features de-

rived from the sparse convolutional filters of RTree may

also improve our performance further. Finally, it is also im-

portant to note that although SRFSym is comparatively less

precise, its inference is extremely fast compared to RTree:

seconds compared to the minutes/hours reported in [35].

Symmetric segmentation accuracy over SYMSEG-300,

BSD-Parts and WHD. The general observation is that our

full approach (SRFSym+SymSegGC) reports the best overall

AP compared to other approaches as shown in Fig. 7 (a-c).

Removing the symmetry prior in all approaches decreases

accuracy by a significant amount, highlighting its impor-

tance. The dataset that challenges SRFSym+SymSegGC the

most is WHD, where the textureless and small regions of

horses (e.g. legs, tails) are better captured by the superpixels
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Figure 8. Example curved symmetry detection and symmetrical segmentation results, 7 results per panel: (L-R): Groundtruth symmetry

axes (white) and regions, curved symmetry detections using SRFSym, extracted symmetry axes, curved symmetry-constrained segments

using SymSegGC, segmentation using DefDiscs-SP [18]. More results are in the supplementary material. Best viewed in color.

computed in DefDiscs-SP. Nonetheless, our full approach

is able to extract symmetric parts with better accuracy from

WHD until 0.46 recall. An interesting observation is when

we pair up symmetry axes predicted by DefDiscs with

SymSegGC, the performance is at least on-par (or slightly

better in SYMSEG-300) with DefDiscs-SP. These results

highlight the complementary nature of both approaches:

while [18] is a local (and slower) approach that groups su-

perpixels, our proposed approach presents a faster alterna-

tive that captures longer range branched symmetries.

Symmetric segmentation accuracy over NY-roads. Al-

though our full approach (SRFSym+SymSegGC) does not

outperform RTree-ES in terms of overall AP, our precision

is still higher than RTree-ES up to a reasonably high re-

call of 0.7 (Fig. 7 (d)). The rapid drop in precision after

this recall is once again due to SRFSym responding to other

symmetric regions in the image. Another interesting obser-

vation is the improved performance over RTree when we

pair the centerlines of RTree with SymSegGC. This high-

lights the key advantage of enforcing a global symmetrical

consistency which greatly improves the accuracy of the fi-

nal segmentation.

5. Conclusions

We have presented a complete approach for detect-

ing and segmenting curved reflection symmetric structures

from real images. This is achieved by combining detections

using a fast SRF-based curved symmetry detector with a

novel MRF-based curved symmetry-constrained segmenta-

tion approach. Key to the approach is the use of a robust

set of multiscale patch-based symmetry features that de-

tects local symmetry for training a SRF classifier to predict

curved symmetries in real images. By modulating the cross-

symmetry terms in the MRF via these predicted symmetries,

we are able to produce accurate segmentations of approxi-

mate symmetrical structures, common in real images. Ex-

perimental evaluations confirm that our approach is not only

more accurate than existing state-of-the-art, but is also flex-

ible enough to improve existing segmentation approaches

when paired with their curved symmetry detections.

As shown by the superior “human” performance in Fig. 7

(a-c), there is still a lot of room for improvement. We in-

tend to investigate better local and global cues, possibly

derived from superpixels to handle textureless regions or

from sparse convolutional filters that have shown good per-

formance in NY-roads. We also plan to extend this work

for detecting and segmenting regions with other forms of

symmetry (e.g. rotational and translational) in real images.

By making our detection and segmentation code available1,

we also provide a tool to the community so that others can

exploit for higher-level tasks such as recognition or scene

understanding.
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