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Abstract

The log-likelihood energy term in popular model-fitting

segmentation methods, e.g. [39, 8, 28, 10], is presented as a

generalized “probabilistic” K-means energy [16] for color

space clustering. This interpretation reveals some limita-

tions, e.g. over-fitting. We propose an alternative approach

to color clustering using kernel K-means energy with well-

known properties such as non-linear separation and scal-

ability to higher-dimensional feature spaces. Our bound

formulation for kernel K-means allows to combine general

pair-wise feature clustering methods with image grid reg-

ularization using graph cuts, similarly to standard color

model fitting techniques for segmentation. Unlike histogram

or GMM fitting [39, 28], our approach is closely related to

average association and normalized cut. But, in contrast

to previous pairwise clustering algorithms, our approach

can incorporate any standard geometric regularization in

the image domain. We analyze extreme cases for kernel

bandwidth (e.g. Gini bias) and demonstrate effectiveness

of KNN-based adaptive bandwidth strategies. Our kernel

K-means approach to segmentation benefits from higher-

dimensional features where standard model-fitting fails.

1. Introduction and Motivation

Many standard segmentation methods combine regular-

ization in the image domain with a likelihood term integrat-

ing color appearance models [2, 39, 8, 4, 28]. These ap-

pearance models are often treated as variables and estimated

jointly with segmentation by minimizing energies like

−
K
∑

i=1

∑

p∈Si

logP i(Ip) + λ||∂S|| (1)

where segmentation {Si} is defined by integer variables Sp

such that Si = {p : Sp = i}, models P = {P i} are prob-

ability distributions of a given class, and ||∂S|| is the seg-

mentation boundary length in Euclidean or some contrast

sensitive image-weighted metric. This popular approach to

Figure 1: GrabCut vs. kernel K-means for color clustering

(no smoothness or hard constraints). In contrast to kernel

K-means, descriptive GMMs overfit the data even in R3.

unsupervised [39, 8] or supervised [28] segmentation com-

bines smoothness or edge detection in the image domain

with the color space clustering by probabilistic K-means

[16], as explained later. The goal of this paper is to replace

standard likelihoods in regularization energies like (1) with

a new general term for clustering data points {Ip} in the

color (or other feature) space based on kernel K-means.

Our methodology is general and applies to multi-label

segmentation problems. For simplicity, our presentation is

limited to a binary case K = 2 where Sp ∈ {0, 1}. We use

S = S1 and S̄ = S0 to denote two segments.
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A. basic K-means1 (e.g. Chan-Vese [8])

∑

p∈S
∥Ip − µs∥

2 +
∑

p∈S
∥Ip − µs̄∥

2 Variance criterion

=
∑

pq∈S
∥Ip−Iq∥

2

2|S| +
∑

pq∈S
∥Ip−Iq∥

2

2|S̄|
= |S| · var(S) + |S̄| · var(S̄)

c
= −

∑

p∈S
lnN (Ip|µs)−

∑

p∈S̄
lnN (Ip|µs̄)

B. probabilistic K-means (e.g. [39, 31, 29, 28, 10]) C. kernel K-means (ours)

(i) equivalent energy formulations: (i) equivalent energy formulations:
∑

p∈S
∥Ip − θs∥d +

∑

p∈S
∥Ip − θs̄∥d

∑

p∈S
∥φ(Ip)− µs∥

2 +
∑

p∈S̄
∥φ(Ip)− µs̄∥

2

= −
∑

p∈S
lnP(Ip|θs)−

∑

p∈S̄
lnP(Ip|θs̄)

=
∑

pq∈S
||Ip−Iq||

2

k

2|S| +
∑

pq∈S̄
||Ip−Iq||

2

k

2|S̄|

c
= −

∑
pq∈S

k(Ip,Iq)

|S| −
∑

pq∈S̄
k(Ip,Iq)

|S̄|

(ii) example: descriptive models (histograms or GMM) (ii) example: normalized kernels (Gaussians)

yield high-order log-likelihood energy yield high-order Parzen density energy

−
∑

p∈S
lnPh(Ip|S)−

∑

p∈S̄
lnPh(Ip|S̄) −

∑

p∈S
Pk(Ip|S)−

∑

p∈S̄
Pk(Ip|S̄)

≈ |S| ·H(S) + |S̄| ·H(S̄) Entropy criterion
c
≈ |S| ·G(S) + |S̄| ·G(S̄) Gini criterion

this approximation is valid only for highly descriptive models this approximation is valid only for small-width normalized kernels2

Ph(S) ≡ Ph(·|S) - histogram (or GMM) for intensities in S Pk(S) ≡ Pk(·|S) - kernel (Parzen) density for intensities in S

H(S) - entropy for intensities in S G(S) - Gini impurity for intensities in S

(iii) bound optimization: auxiliary function at St (iii) bound optimization: auxiliary function at St

At(S) = −
∑

p∈S
lnPh(Ip|S

t)−
∑

p∈S̄
lnPh(Ip|S̄

t) At(S) ≈ −2
∑

p∈S
Pk(Ip|S

t)− 2
∑

p∈S̄
Pk(Ip|S̄

t)

= |S| ·H(S|St) + |S̄| ·H(S̄|S̄t) + |S| ·
[

G(S̄t)−G(St)
]

Table 1: K-means terms for color clustering combined with (MRF) regularization in segmentation. Basic K-means (A)

or Gaussian model fitting minimizes cluster variances. More complex model fitting (elliptic Gaussian, GMM, histograms)

corresponds to probabilistic K-means (B) [16]. We propose kernel K-means (C) using more complex data representation.

1.1. Probabilistic Kmeans (pKM)

The connection of the likelihood term in (1) to K-means

clustering is obvious in the context of Chan-Vese approach

[8] where probability models P are Gaussian with fixed

variances. In this case, the likelihoods in (1) reduce to

∑

p∈S

∥Ip − µs∥
2 +

∑

p∈S̄

∥Ip − µs̄∥
2 (2)

the sum of squared errors from each cluster mean. This is

the standard K-means objective also known as variance cri-

terion for clustering, Tab.1A. If both means and covariances

for Gaussians are treated as variables, then (1) corresponds

to the standard elliptic K-means energy [31, 29, 10].

1We use
c
= and

c

≈ for “up to additive constant” relations.
2Optimal bandwidth for accurate Parzen density estimation is near data

resolution [37]. Such kernel width is too small for good clustering, Sec.3.1.

Zhu-Yuille [39] and GrabCut [28] popularized even more

complex probability models (GMM or histograms) for seg-

mentation energies like (1). In this case the likelihood

term corresponds to a more general probabilistic K-means

(pKM) energy [16] for color clustering, see Table 1B

−
∑

p∈S

logP(Ip|θS)−
∑

p∈S̄

logP(Ip|θS̄) (3)

where variables θ are ML model parameters for each seg-

ment. Assuming P(·|θ) is a continuous density of a suffi-

ciently descriptive class (e.g. GMM), information theoretic

analysis in [16] shows that probabilistic K-means energy

reduces to the standard entropy criterion for clustering

≈ |S| ·H(S) + |S̄| ·H(S̄). (4)

Indeed, for any function f(x) Monte-Carlo estimation gives
∑

p∈S
f(Ip) ≈ |S| ·

∫

d(x)f(x)dx where d is a “true” den-

sity for points in S. For f(x) = − logP(x|θS) and d(x) ≈

1556



Figure 2: Histograms in color spaces. Entropy criterion (4)

with histograms can not tell a difference between A and B:

bin permutations do not change the histogram’s entropy.

P(x|θS) we get the clustering criterion above for the dif-

ferential entropy H(S) := H(P(·|θS)). For histograms

Ph(·|S) the entropy-based interpretation above is exact for

discrete entropy H(S) := −
∑

x Ph(x|S) · logPh(x|S).

Intuitively, minimization of the entropy criterion (4) fa-

vors clusters with tight or “peaked” distributions. This cri-

terion is widely used in categorical clustering [21] or de-

cision trees [7, 22] where the entropy evaluates histograms

over “naturally” discrete features. We show that the entropy

criterion with either histograms or GMM densities has lim-

itations in the context of continuous color spaces.

In case of histograms, the key problem for color space

clustering is illustrated in Fig.2. Once continuous color

space is broken into bins, the notion of proximity between

the colors in the nearby bins is lost. Since bin permutations

do not change the histogram entropy, criterion (4) can not

distinguish the quality of clusterings A and B in Fig.2; some

permutation of bins can make B very similar to A.

In case of continuous density models, the problem of en-

tropy criterion (4) is quite different since continuous (GMM

or Parzen) densities preserve the notion of continuity in the

color space. For example, optimal GMMs for clusterings

A and B in Figure 2 will have sufficiently different (dif-

ferential) entropy values. The main issue for pKM energy

(3,4) with GMM densities is optimization. In this case high-

order energy (3) requires joint optimization of variables Sp

and many additional GMM parameters θS yielding complex

objective function with many local minima. Typical block

coordinate descent methods [39, 28] iterating optimization

of S and θ are very sensitive to initialization and easily over-

fit the data, see Figs.1 and 3(d). Better solutions exist, see

Fig.3(e), but can not be found without good initialization.

These problems of probabilistic K-means with his-

tograms or GMM in color spaces may explain why descrip-

tive model fitting via pKM energy (3) is not a common clus-

tering method in the learning community. Instead of prob-

abilistic K-means they often use a different extension of K-

means, that is kernel K-means in Table 1C.

(a) initialization (b) histogram fitting

(c) elliptic K-means (d) GMM: local min

(e) GMM: from gr. truth (f) kernel k-means

Figure 3: Model fitting (3) vs kernel K-means (10): His-

togram fitting always converges in one step assigning ini-

tially dominant bin label (a) to all points in the bin (b): en-

ergy (3) is minimal at any volume balanced solution with

one label inside each bin [16]. Basic or elliptic K-means

(one mode GMM) under-fit the data (c). Six mode GMMs

over-fit (d) similarly to (b), but the problem is local minima

since ground-truth initialization (e) yields lower energy (3).

Kernel K-means energy (10) gives (f) even from (a).

1.2. Towards Kernel Kmeans (kKM)

We propose kernel K-means energy to replace the stan-

dard likelihood term (3) in common regularization func-

tionals for segmentation (1). In machine learning, kernel

K-means (kKM) is a well established data clustering tech-

nique [34, 25, 13, 11, 9, 15], which can identify complex

structures that are non-linearly separable in input space.

In contrast to probabilistic K-means using complex mod-

els, see Tab.1, this approach maps the data into a higher-

dimensional Hilbert space using a nonlinear mapping φ.

Then, the original non-linear problem often can be solved

by simple linear separators in the new space.

Given a set of data points {Ip|p ∈ Ω} kernel K-means

corresponds to the basic K-means in the embedding space.

In case of two clusters (segments) S and S this gives energy

Ek(S) :=
∑

p∈S

∥φ(Ip)− µs∥
2 +

∑

p∈S̄

∥φ(Ip)− µs̄∥
2. (5)

where ∥.∥ denotes the Euclidean norm, µs is the mean of
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segment S in the new space

µs =

∑

q∈S
φ(Iq)

|S|
(6)

and |S| denotes the cardinality of segment S. Plugging µs

and µs̄ into (5) gives equivalent formulations of this cri-

terion using solely pairwise distances ∥φ(Ip) − φ(Iq)∥ or

dot products ⟨φ(Ip), φ(Iq)⟩ in the embedding space. Such

equivalent pairwise energies are now discussed in detail.

It is a common practice to use kernel function k(x, y)
directly defining the dot product

⟨φ(x), φ(y)⟩ := k(x, y) (7)

and distance

∥φ(x)− φ(y)∥2 ≡ k(x, x) + k(y, y)− 2k(x, y)

≡ ∥x− y∥2k. (8)

in the embedding space. Mercer’s theorem [25] states that

any continuous positive semi-definite (p.s.d.) kernel k(x, y)
corresponds to a dot product in some high-dimensional

Hilbert space. The use of such kernels (a.k.a. kernel trick)

helps to avoid explicit high-dimensional embedding φ(x).
For example, rewriting K-means energy (5) with pair-

wise distances ∥φ(Ip)−φ(Iq)∥
2 in the embedding space im-

plies one of the equivalent kKM formulations in Tab.1C(i)

Ek(S) ≡

∑

pq∈S
∥Ip − Iq∥

2
k

2|S|
+

∑

pq∈S̄
∥Ip − Iq∥

2
k

2|S̄|
(9)

with isometric kernel distance ∥∥2k as in (8). This Hilber-

tian metric3 replaces Euclidean metric inside the basic K-

means formula in the middle of Tab.1A. Plugging (8) into

(9) yields another equivalent (up to a constant) energy for-

mulation for kKM directly using kernel k without any ex-

plicit reference to embedding φ(x)

Ek(S)
c
= −

∑

pq∈S
k(Ip, Iq)

|S|
−

∑

pq∈S̄
k(Ip, Iq)

|S̄|
. (10)

Kernel K-means energy (9) can explain the positive re-

sult for the standard Gaussian kernel k = exp
−(Ip−Iq)

2

2σ2 in

Fig.3(f). Gaussian kernel distance (red plot below)

∥Ip − Iq∥
2
k ∝ 1− k(Ip, Iq) = 1− exp

−(Ip − Iq)
2

2σ2
(11)

is a “robust” version of Euclidean

metric in basic K-means (green).

Thus, Gaussian kernel K-means

finds clusters with small local vari-

ances, Fig.3(f). In contrast, basic

3Such metrics can be isometrically embedded into a Hilbert space [14].

K-means (c) tries to find good clusters with small global

variances, which is impossible for non-compact clusters.

Link to pair-wise clustering: Dhillion et al. [11, 17]

first observed the equivalence between kernel k-means and

popular spectral clustering criteria. For example, (10) is ex-

actly the negative average association cost [11, 30] and (9)

is closely related to average distortion [27]. Furthermore,

[11] showed that weighted versions of energy (5) is equiva-

lent to the popular normalized cuts cost [30].

1.3. Summary of contributions

We propose kernel K-means as feature/color clustering

criteria in combination with standard regularizers in the

image domain. This combination is possible due to our

bound formulation for kKM allowing to incorporate stan-

dard regularization algorithms such as max-flow. Our gen-

eral framework applies to multi-label segmentation (super-

vised or non-supervised). Our approach is a new extension

of K-means for color-based segmentation [8] different from

probabilistic K-means [39, 28]. As special cases, our kKM

color clustering term includes normalized cuts and other

pairwise clustering criteria (see detailed discussion in [33]).

Our kKM approach to color clustering has several advan-

tages over standard probabilistic K-means methods [39, 28]

based on histograms or GMM. In contrast to histograms,

kernels preserve color space continuity without breaking it

into unrelated bins, see Fig.2. Unlike GMM, our use of non-

parametric kernel densities avoids mixed optimization over

a large number of additional model-fitting variables. This

reduces sensitivity to local minima, see Fig.3(d,f).

For high-dimensional data, kernel methods are a preva-

lent choice in the learning community as EM becomes in-

tractable. Unlike GrabCut, our method extends to higher

dimensional feature spaces, see Figure 9.

We analyze the extreme bandwidth cases (Sec.3). It is

known that for wide kernels (approaching data range) kKM

converges to basic K-means, which has bias to equal size

clusters [16, 3]. It has been observed empirically that small-

width kernels (approaching data resolution) show bias to

compact dense clusters [30]. We provide a theoretical ex-

planation for this bias by connecting kKM energy for small

bandwidth with the Gini criterion for clustering (19). We

analytically prove the bias to compact dense clusters for the

continuous case of Gini, see Theorem 2, extending the pre-

vious result for histograms by Breiman [7].

We focus on the standard Gaussian and 0-1 kernels

and evaluate locally adaptive bandwidth selection strate-

gies avoiding problems reveled by our analysis above. Our

tests show that fixed kernels are significantly outperformed

by the standard clustering practice [36, 38] choosing lo-

cal bandwidth from the distance to the K-th nearest neigh-

bor (KNN). Efficient parallel implementation for our frame-

work for general (e.g. adaptive) kernels is detailed in [33].
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2. Bound Optimization

In general, bound optimizers are iterative algorithms that

optimize auxiliary functions (upper bounds) for a given en-

ergy E(S) assuming that these auxiliary functions are more

tractable than the original difficult optimization problem

[18, 32]. At(S) is an auxiliary function of E(S) at current

solution St (t is the iteration number) if:

E(S) ≤ At(S) ∀S (12a)

E(St) = At(St) (12b)

To minimize E(S), we iteratively minimize an auxiliary

function at each iteration t: St+1 = argminS At(S). It

is easy to show that such an iterative procedure decreases

original function E(S) at each step:

E(St+1) ≤ At(St+1) ≤ At(St) = E(St).

For example, iterative optimization in standard GrabCut

algorithm [28] was shown to be an optimizer of a cross-

entropy bound [32], see Table 1B(iii).

Theorem 1. The following is an auxiliary function for the

kKM energy in (10)

Ek(S) = −

∑

pq∈S
kpq

|S|
−

∑

pq∈S̄
kpq

|S̄|
≤ At(S) where

At(S) = −2
∑

p∈S

∑

q∈St
kpq

|St|
− 2

∑

p∈S̄

∑

q∈S̄t
kpq

|S̄t|

+ |S|

∑

pq∈St
kpq

|St|
2 + |S̄|

∑

pq∈S̄t
kpq

|S̄t|2
. (13)

Proof. See Appendix A in [33].

Our technical report [33] shows that the standard itera-

tive kernel K-means algorithm [12] is implicitly a bound op-

timizer with our auxiliary function (13). However, without

explicit use of our bound it is not clear how to combine kKM

with MRF image-domain regularization. For example, to

combine kKM with the Potts model [17] normalizes the cor-

responding pairwise constraints by cluster sizes. This al-

ters the Potts model to a form accommodating trace-based

formulation. In contrast, our bound-optimization interpre-

tation allows to combine kKM energy and equivalent pair-

wise clustering energies [33] with any standard (e.g. MRF)

or geometric regularization in XY domain.

Image segmentation functional: We propose to mini-

mize the following high-order functional for image segmen-

tation, which combines image-plane regularization with the

pairwise clustering energy Ek(S) in (10):

E(S) = Ek(S) + λR(S) (14)

where λ is a (positive) scalar and R(S) is any functional

with an efficient optimizer, e.g. a submodular boundary reg-

ularization term optimizable by max-flow methods

R(S) =
∑

{p,q}∈N

wpq[sp ̸= sq] ∼ ||∂S|| (15)

where [·] are Iverson brackets and N is the set of neighbor-

ing pixels. Pairwise weights wpq are evaluated by the spatial

distance and color contrast between pixels p and q as in [4].

Theorem 1 implies that At(S) + λR(S) is an auxil-

iary function of high-order segmentation functional E(S)
in (14). Furthermore, this auxiliary function is a combi-

nation of unary (modular) term At(S) and a sub-modular

term R(S). Therefore, at each iteration of our bound opti-

mization algorithm, the global optimum of the bound can be

efficiently obtained by max-flow algorithms [6]. Note that

estimation of the unary part (13) of the auxiliary function

At(S)+λR(S) has quadratic complexity O(N2). Efficient

implementation of this step is discussed in [33].

3. Parzen Analysis and Bandwidth Selection

This section discusses connections of kKM energy (10)

to Parzen densities providing probabilistic interpretations

for our pairwise clustering approach. In particular, this sec-

tion gives insights on bandwidth selection. We discuss ex-

treme cases and analyze adaptive strategies. For simplicity,

we mainly focus on Gaussian kernels, even though the anal-

ysis applies to other types of positive normalized kernels.

Note that standard Parzen density estimate for the dis-

tribution of data points within segment S can be expressed

using normalized Gaussian kernels [1, 13]

Pk(Ip|S) =

∑

q∈S
k(Ip, Iq)

|S|
. (16)

It is easy to see that kKM energy (10) is exactly the follow-

ing high-order Parzen density energy

Ek(S)
c
= −

∑

p∈S

Pk(Ip|S)−
∑

p∈S̄

Pk(Ip|S̄). (17)

3.1. Extreme bandwidth cases

Parzen energy (17) is also useful for analyzing two ex-

treme cases of kernel bandwidth: large kernels approaching

the data range and small kernels approaching the data reso-

lution. This section analyses these two extreme cases.

Large bandwidth and basic K-means: Consider Gaus-

sian kernels of large bandwidth σ approaching the data

range. In this case Gaussian kernels k in (16) can be approx-

imated (up to a scalar) by Taylor expansion 1 − ∥Ip−Iq∥
2

2σ2 .

Then, Parzen density energy (17) becomes (up to a constant)
∑

pq∈S
∥Ip − Iq∥

2

2|S|σ2
+

∑

pq∈S̄
∥Ip − Iq∥

2

2|S̄|σ2
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which is proportional to the pairwise formulation for the ba-

sic K-means or variance criteria in Tab.1A with Euclidean

metric ∥∥. That is, kKM for large bandwidth Gaussian ker-

nels reduces to the basic K-means in the original data space

instead of the high-dimensional embedding space.

In particular, this proves that as the bandwidth gets too

large kKM looses its ability to find non-linear separation of

the clusters. This also emphasizes the well-known bias of

basic K-means to equal size clusters [16, 3].

Small bandwidth and Gini criterion: Very different

properties could be shown for the opposite extreme case of

small bandwidth approaching data resolution. It is easy to

approximate Parzen formulation of kKM energy (17) as

Ek(S)
c
≈ − |S| · ⟨Pk(S), ds⟩ − |S̄| · ⟨Pk(S̄), ds̄⟩ (18)

where Pk(S) is kernel-based density (16) and ds is a “true”

density for intensities in S. Approximation (18) follows

directly from the same Monte-Carlo estimation argument

given earlier below Eq. (4) with the only difference being

f = −Pk(S) instead of − logP(θS).
If kernels have small bandwidth optimal for accurate

Parzen density estimation4 we get Pk(S) ≈ ds further re-

ducing (18) to approximation

c
≈ − |S| · ⟨ds, ds⟩ − |S̄| · ⟨ds̄, ds̄⟩

that proves the following property.

Property 1. Assume small bandwidth Gaussian kernels op-

timal for accurate Parzen density estimation. Then kernel

K-means energy (17) can be approximated by the standard

Gini criterion for clustering [7]:

EG(S) := |S| ·G(S) + |S̄| ·G(S̄) (19)

where G(S) is the Gini impurity for the data points in S

G(S) := 1− ⟨ds, ds⟩ ≡ 1−

∫

x

ds
2(x)dx. (20)

Similarly to entropy, Gini impurity G(S) can be viewed

as a measure of sparsity or “peakedness” for continuous

or discrete distributions. Both Gini and entropy cluster-

ing criteria are widely used for decision trees [7, 22].

In this discrete context Breiman [7] analyzed theoretical

properties of Gini criterion (19)

for the case of histograms Ph

where G(S) = 1 −
∑

x Ph(x|S)
2.

He proved that the minimum of

the Gini criterion is achieved by

sending all data points within the

highest-probability bin to one clus-

ter and the remaining data points to the other cluster, see

the color encoded illustration above. We extend Brieman’s

result to the continuous Gini criterion (19)-(20).

4Bandwidth near inter-point distances avoids density oversmoothing.

Theorem 2. (Gini Bias) Let dΩ be a continuous probability

density function over domain Ω ⊆ Rn defining conditional

density ds(x) := dΩ(x|x ∈ S) for any non-empty subset

S ⊂ Ω. Then, continuous version of Gini clustering crite-

rion (19) achieves its optimal value at the partitioning of Ω
into regions S and S̄ = Ω \ S such that

S = argmax
x

dΩ(x).

Proof. See Appendix B in [33].

The bias to small dense clusters is practically noticeable

for small bandwidth kernels, see Fig.4(d). Similar empiri-

cal bias to tight clusters was also observed in the context of

average association in [30]. As kernel gets wider the con-

tinuous Parzen density (16) no longer approximates the true

distribution ds and Gini criterion (19) is no longer valid as

an approximation for kKM energy (17). In pratice, Gini

bias gradually disappears as bandwidth gets wider. This

also agrees with the observations for wider kernel in aver-

age association [30]. As discussed earlier, in the opposite

extreme case when bandwidth get very large (approaching

data range) kKM converges to basic K-means or variance

criterion, which has very different properties. Thus, kernel

K-means properties strongly depend on the bandwidth.

3.2. Adaptive kernels and KNN

The extreme cases for kernel K-means, i.e. Gini and vari-

ance criteria, are useful to know when selecting kernels.

Variance criteria for clustering has bias to equal cardinal-

ity segments [16, 3]. In contrast, Gini criteria has bias to

small dense clusters (Theorem 2). To avoid these biases

kernel K-means should use kernels of width that is neither

too small nor too large. Our experiments in Sec.4 compare

different strategies with fixed and adaptive-width kernels.

Equivalence of kernel-K-means to many standard cluster-

ing criteria such as average distortion, average association,

normalized cuts (see Sec.1 and [33]) also suggest kernel se-

lection strategies based on practices in prior art.

Section 4.2 in our technical report [33] shows that Nash

embedding theorem implicitly connects adaptive bandwidth

selection strategies with data space transformations chang-

ing local density of data points. In particular, we show that

Gaussian kernel bandwidth can be selected based on any de-

sired transformation of density d′(d) according to formula

σp ∼ n

√

d′(dp)/dp (21)

where dp := d(Ip) is an observed local density for data

points (in color space) near given point Ip. This formula

computes adaptive bandwidth for any desired density trans-

formation d′(d). However, density equalizing transforma-

tion d′(d) = const produces adaptive bandwidth

σ ∼ n

√

1/dp ∼ ∆KNN (22)
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Figure 4: (a)-(d): Gini bias for fixed (small) kernel. (e) Em-

pirical density transform (see [33]) for KNN kernels (22)

corresponding to data density equalization. (f) Segmenta-

tion for such adaptive KNN kernels.

that worked better than other options we tested. Perhaps,

density equalization addresses the Gini bias, see Fig.4(e,f).

Interestingly, expression (22) is approximated by distance

∆KNN to the K-th nearest neighbor, which is commonly

used as adaptive bandwidth [36, 38]. Experiments in Sec.4

use KNN graph for adaptive kernel K-means (aKKM).

4. Experiments

We test our kernel-based segmentation (14) with fixed

Gaussian kernel (KKM), its weighted version (wKKM) cor-

responding to basic Normalized Cuts, see [11], and adaptive

bandwidth version (aKKM), see Sec.3.2, which closely re-

lates to Normalized Cuts with adaptive kernels [36]. We use

interactive segmentation as a simple generic application and

compare to GrabCut [28] and Boykov-Jolly (BJ) [4] algo-

rithms. We test (i) contrast-sensitive smoothness, (ii) Eu-

clidean smoothness, and (iii) no smoothness to assess rela-

tive contributions of image domain regularization and color

clustering to segmentation quality. We report the results on

GrabCut and Berkeley datasets (50 and 100 images).

Implementation details: All algorithms use LAB color

space. For GrabCut we use histograms as probability mod-

els [35, 19]. In boundary smoothness (15) we use standard

contrast-based penalty wpq = 1
dpq

e−0.5||Ip−Iq||
2

2
/β [4, 5]

where β is the average of ||Ip − Iq||
2 over 8-neighbors

and dpq is the distance between pixels p and q in the im-

age plane. We use wpq = 1
dpq

for tests with Euclidean

length smoothness [5]. For fixed width Gaussian kernel, the

bound in (13) is efficiently estimated using fast Bilateral

filtering [26] with sampling rate half of the kernel width.

Fixed Gaussian and KNN versions of our segmentation al-

gorithm takes a few seconds per image on an average PC,

but further speedups are possible with GPU.

(a)

(b)

Figure 5: Illustration of robustness to smoothness weight.

4.1. Robustness to regularization weight

We first run all algorithms without smoothness. Then,

we experiment with several values of λ for the contrast-

sensitive edge term. In the experiments of Fig. 5 (a) and (b),

we used the yellow boxes as initialization. For a clear inter-

pretation of the results, we did not use any additional hard

constraint. Without smoothness, our kernel-based method

yielded much better results than model fitting. Regulariza-

tion significantly benefited the latter, as the decreasing blue

curve in (a) indicates. For instance, in the case of the zebra

image, model fitting yielded a plausible segmentation when

assisted with a strong regularization. However, in the pres-

ence of noisy edges and clutter, as is the case of the chair

image in (b), regularization did not help as much. Notice

that, for small regularization weights, our method is sub-

stantially better than model fitting. Also, notice the perfor-

mance of our method is less dependent on regularization

weight; therefore, it does not require fine tuning of λ.

4.2. Segmentation on GrabCut & Berkeley datasets.

First, we report results on the GrabCut database (50 im-

ages) using the bounding boxes provided in [20]. For each

image the error is the percentage of mis-labeled pixels. We

compute the average error over the dataset.

We test different smoothness weights and plot the error
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Figure 6: Average error vs. regularization weights for dif-

ferent algorithms on the GrabCut dataset.

boundary color clustering term

smoothness GrabCut KKM wKKM aKKM

none 27.2 20.4 17.6 12.2

Euclidean length 13.6 15.1 16.0 10.2

contrast-sensitive 8.2 9.7 13.8 7.1

Table 2: Box-based interactive segmentation (Fig.7). Error

rates (%) are averaged over 50 images in GrabCut dataset.

Figure 7: Sample results for GrabCut and our kernel meth-

ods with fixed & adaptive widths (KKM, aKKM), see Tab.2.

curves5 in Fig.6. Table 2 reports the best error for each

method. For contrast-sensitive regularization GrabCut gets

good results (8.2%). However, without edges (Euclidean

or no regularization) GrabCut gives much higher errors

(13.6% and 27.2%). In contrast, aKKM gets only 12.2%
doing a better job in color clustering without any help from

the edges. In case of contrast-sensitive regularization, our

method outperformed GrabCut (7.1% vs. 8.2%) but both

methods benefit from strong edges in the GrabCut dataset.

Figure 7 shows some results. The top row shows a fail-

ure case for GrabCut where the solution aligns with strong

edges. The second row show a challenging image where

our adaptive kernel method (aKKM) works well. The third

and fourth rows shows failure cases for fixed-width kernel

(KKM) due to Brieman’s bias where image segments of uni-

5The smoothness weights for different energies are not directly compa-

rable; Fig. 6 shows all the curves for better visualization.

boundary smoothness
color clustering term

BJ GrabCut aKKM

none 12.4 12.4 7.6

contrast-sensitive 3.2 3.7 2.8

Table 3: Interactive segmentation with seeds, Fig.8. Meth-

ods get the same seeds entered by 4 users. Error rates (%)

are averaged over 82 images from Berkeley: 100 in [23] mi-

nus 18 images with multiple “identical” objects. (GrabCut

and aKKM give 3.8 and 3.0 errors on the whole database.)

Figure 8: Sample results for BJ [4], GrabCut [28], and our

adaptive kernel segmentation (aKKM), see Tab.3.

Figure 9: Scalability to high-dimensional features (3x3

patches). We augment color Ip ∈ R3 with weighted colors

of pixel’s 8 neighbors defining feature [Ip, wINp
] ∈ R27.

The plot shows errors w.r.t. relative effect of extra dimen-

sions w compared to standard R3 color space (w = 0).

form color are separated; see green bush and black suit.

Our adaptive approach (aKKM) addresses this bias. We

also tested seeds-based segmentation on a different database

with ground truth, see Tab.3 and Figs.8.

Figure 9 shows that aKKM benefits from extra informa-

tion (e.g. texture) contained in higher-dimensional features

(3x3 patches). In contrast, GrabCut fails due to severe over-

fitting. To handle features in R27 we used sparse histograms

for GrabCut and approximate nearest neighbors [24] for

aKKM. Thus, performance at w = 0 corresponding to stan-

dard color space R3 is slightly different from Tab.2.
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