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Abstract

This paper proposes a temporal tracking algorithm

based on Random Forest that uses depth images to estimate

and track the 3D pose of a rigid object in real-time. Com-

pared to the state of the art aimed at the same goal, our

algorithm holds important attributes such as high robust-

ness against holes and occlusion, low computational cost

of both learning and tracking stages, and low memory con-

sumption. These are obtained (a) by a novel formulation of

the learning strategy, based on a dense sampling of the cam-

era viewpoints and learning independent trees from a single

image for each camera view; as well as, (b) by an insightful

occlusion handling strategy that enforces the forest to rec-

ognize the object’s local and global structures. Due to these

attributes, we report state-of-the-art tracking accuracy on

benchmark datasets, and accomplish remarkable scalabil-

ity with the number of targets, being able to simultaneously

track the pose of over a hundred objects at 30 fps with an

off-the-shelf CPU. In addition, the fast learning time en-

ables us to extend our algorithm as a robust online tracker

for model-free 3D objects under different viewpoints and

appearance changes as demonstrated by the experiments.

1. Introduction

This paper focuses on 3D object temporal tracking to

find the pose of a rigid object, with three degrees of free-

dom for rotation and three for translation, across a series

of depth frames in a video sequence. Contrary to tracking-

by-detection, which assumes the frames independent from

each other such that it detects the object and estimate its

pose in each frame, object temporal tracking relies on the

transformation parameters at the previous frame to estimate

the pose at the current frame. Theoretically, by tempo-

rally relaying the transformation parameters, it localizes the

object within the frame instead of re-detecting the object,

and it only requires to estimate the changes in the trans-

formation parameters from one frame to the next instead

(c) 3D Online Tracking(b) Occlusion Handling(a) Multiple Object Tracking

OnlineRobustScalable

Figure 1. Qualitative evaluations for (a) multiple object tracking,

(b) occlusion handling and (c) 3D online tracking for head pose

estimation. More evaluations are in the Supplementary Materials.

of searching in the entire pose space. As a result, most

object temporal tracking algorithms are significantly faster

than tracking-by-detection. Real-time 3D tracking is now

the enabling technology for a range of applications in the

field of augmented reality, robotic perception as well as

human-machine interaction. In these cases, tracking mul-

tiple objects at real-time becomes an inherent requirement.

Moreover, when using 3D sensors on mobile devices, low

computational cost and memory consumption are required.

In this paper, we propose a general 3D real-time object

temporal tracking algorithm from depth images that is in-

herently scalable, being able to track more than a hundred

3D objects at 30 fps (Fig. 1(a)), and robust to high levels of

occlusions (Fig. 1(b)). Our approach is versatile to be used

for both model-based as well as online model-free tracking,

where the tracker initializes the geometry of the target from

a single depth frame and adapts it to changing geometry and

unseen camera viewpoints while tracking (Fig. 1(c)).

More specifically, to achieve generalization, our tracker

requires the following attributes in order to satisfy the di-

verse requirements of most 3D tracking applications:

(1) Robustness. To avoid tracking failures, the tracker must

be robust against sensor noise such as holes and arti-

facts, commonly present in depth data, as well as robust

against partial occlusion from the environment.

(2) Tracking time and computational cost. Due to the the-

oretical efficiency, the tracker must be faster than any

tracking-by-detection method. Moreover, it must spec-

693



ify the computational cost to attain this speed.

(3) Memory consumption. The amount of memory the

tracker consumes from RAM for a single target should

be small enough to allow simultaneous tracking of mul-

tiple targets along the same sequence.

(4) Scalability to multiple objects. An increase in the num-

ber of simultaneously tracked objects causes an in-

crease in (2) tracking time and computational cost, and

(3) memory consumption in comparison to tracking a

single object. Moreover, it emphasizes how additional

objects affect the (1) robustness of the algorithm.

In addition, for all learning-based methods, it is also essen-

tial to consider the:

(5) Learning time. This includes the creation of the learning

dataset from loading or rendering images to extracting

the input (samples) and output (labels) parameters, and

the construction of the machine learning data structure.

It is particularly important for online tracking, where the

object has to be incrementally learned in the successive

frames at real-time.

Therefore, the novelty of the work is that it satisfies all of

the aforementioned attributes simultaneously, while achiev-

ing better results against the other methods individually.

Notably, we evaluate our tracker in Sec. 3 based on them,

achieving state of the art results.

Our method is inspired by the learning-based approach

of [23] that uses depth images only. It is a temporal track-

ing algorithm based on Random Forest [4] that runs at

2 ms per frame with a single CPU core. At the moment,

this is the only method that has achieved this efficiency in

3D tracking with an extremely low computational require-

ment compared to the literature concerning 3D tracking-by-

detection [2, 7, 11] and 3D temporal tracking [3, 5]. How-

ever, it poses problems in the robustness against large oc-

clusions and large holes that results in tracking errors and

failures, memory consumption that limits tracking to a max-

imum of 9 objects and long learning time that limits its ap-

plicability to model-based tracking.

Hence, in contrast to [23], our proposed tracker over-

comes these problems through an algorithm that (1) is more

robust to holes and partial occlusions, (3) has a very low

memory footprint, (4) is scalable to track a hundred objects

in real-time and (5) has a fast learning time, while keeping

the existing attributes regarding (2) low tracking time with

a low computational expense.

Our main theoretical contribution is two-fold. On one

hand, we propose a novel occlusion handling strategy that

adapts the choice of the input samples being learned. In ef-

fect, this notably increases the overall robustness, as proven

through the state-of-the-art results reported by our method

on benchmark datasets (see Sec. 3). On the other hand, in

lieu of the learning strategy employed by [23], we propose

to use only one depth image to create the entire learning

dataset, or the entire set of samples and labels for each cam-

era view. This leads to a novel formulation of the learning

strategy, which allows a much denser sampling of the cam-

era viewpoints with respect to [23]. As a consequence, we

achieve not only a high scalability, but also a remarkably

low memory footprint and fast learning time, that allows

our proposal to be deployed in an online 3D tracking con-

text, which initializes the geometry of the target from a sin-

gle depth frame, and adapts it to changing geometry and

unseen camera viewpoints while tracking.

Related works. If we limit our scope to temporal track-

ers that estimate the object’s pose using solely depth im-

ages, there are only two existing methods — the energy-

minimization such as Iterative Closest Point (ICP) algo-

rithms [3, 5] and a learning-based algorithm [23]. Most

works [2, 11, 12, 15] have applied ICP as an integral com-

ponent of their algorithms; while, others [9, 16, 19, 22] have

developed it to different extensions. Nonetheless, to the

best of our knowledge, there have been only one learning-

based object temporal tracking algorithm that relies solely

on depth images [23].

Furthermore, there are several works that have utilized

the RGB-D data. This includes the hand-held object track-

ing [10] that uses RGB to remove the hand before running

ICP. Moreover, the particle filter approaches [6, 13] extends

existing RGB trackers to include the depth data. Another

work [17] uses level-set optimization with appearance and

physical constraints to handle occlusions from interacting

objects; but, they only conduct their experiments on texture-

less objects with simple geometric structure such as prisms

or spheres. Among the RGB-D methods [6, 10, 13, 17], it

is common to implement them in GPU for real-time track-

ing. In effect, their runtime depends on the type of GPU

that they use, which creates a problem to track more objects

while still keeping the real-time performance.

2. Object temporal tracking

Tracking aims at solving the registration problem be-

tween the 3D points on the object and the 3D points from

the depth image representing the current frame. To register

these two sets of points, the error function is defined as the

signed displacement of a point correspondence:

ǫvj (T;D) = Nv ·
(

T
−1D(xj)−Xj

)

(1)

where Xj is a point on the object in the object coordinate

system, Nv is a unit vector that defines the direction of the

displacement (see Eq. 3), T is the object transformation

from the camera (see Eq. 2), xj is the projection of TXj ,

and D is the depth image with D(x) as the back-projection

function of the pixel x. As notations, we include a tilde as

x̃ to denote inhomogeneous coordinates while x as homo-

geneous.
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(a) 42 (b) 162 (c) 642 (d) 2562

Figure 2. The geodesic grids, which locate the camera around the

target object, are derived from recursively dividing an icosahedron

with 12 vertices to (a) 42, (b) 162, (c) 642 and (d) 2562 vertices.

The objective of tracking is to locate the object in the

image by finding the transformation that registers the points

on the object to the points from the depth image. Specif-

ically, object temporal trackers seek the transformation Tt

from the frames at time t − 1 to t and transform Xj by

T̂t =
∏t

i=0
Ti. In the current frame Dt, it utilizes the

displacement of the points ǫvj (T̂t−1;Dt) to determine the

relative transformation Tt that minimizes ǫvj (T̂t;Dt).

Instead of aggregating the errors as
∑

j |ǫ
v
j |

2 in energy

minimizers, we take the individual values of the signed

displacements ǫvj (T̂t−1;Dt) from nj points on the object

{Xj}
nj

j=1
as the input to the Random Forest [4] and pre-

dict the transformation parameters of Tt. However, similar

to energy minimizers, the tracker runs several iterations on

each frame to refine the predicted pose.

Parametrization. The rigid transfomation T is con-

structed with the Euler angles α, β and γ, and the translation

vector t̃ = (tx, ty, tz)
⊤ such that:

T = R(α, β, γ) ·

[

I3×3 t̃

0
⊤ 1

]

(2)

with the parameter vector τ = [α, β, γ, t̃⊤]⊤.

Dense camera. When the object moves during tracking,

its viewpoint changes and the visible points on the object

also vary accordingly. Thus, to ensure the capacity to track

the object from different viewpoints, the algorithm learns

the relation between the error function and the transforma-

tion parameters from different viewpoints or camera views.

It follows that, in tracking, the closest camera views have

the highest similarity to the current frame and only the trees

from these views are evaluated to predict the relative trans-

formation.

For instance, in model-based tracking, nv views of the

object’s model are synthetically rendered by positioning

the camera on the vertices of a densely-sampled geodesic

grid [21] around the object. This is created by recursively

dividing an icosahedron into equally spaced nv vertices, as

shown in Fig. 2. By increasing nv , the distance between

neighboring cameras is decreased. In effect, the trees from

multiple neighboring camera views predict the output pa-

rameters, instead of evaluating a number of trees from one

view in [23]. Consequently, we can significantly decrease

the number of trees per view in comparison to [23]. Thus,

each view independently learns one tree per parameter us-

ing the corresponding rendered image. This produces a total

6nv trees in the forest from all views.

Although one can argue to increase the number of cam-

era views for [23], this is impractical because of the time

required to generate the increased number of rendered im-

ages. As an example, when using 642 views in Fig. 2(c),

they need a total of 32.1M images for the learning dataset

from all camera views, while our method needs 642 images,

i.e. one for each camera view.

Whether using synthetic or real depth images, the input

to learning from one view is a depth image Dv and its corre-

sponding object transformation Tv . In the object coordinate

system, the location of the camera X̃v is:

X̃v = −R̃
⊤
v t̃v ⇒ Nv =

(

X̃
⊤
v

‖X̃v‖2
, 0

)⊤

(3)

where R̃v is the 3×3 rotation matrix and t̃v is the trans-

lation vector of Tv . From this, we define the unit vector

Nv from Eq. 1 as the vector that points towards the cam-

era center. Instead of the normal to the object’s surface, the

advantage of using Eq. 3 is evident with real depth images,

where the normal to the object’s surface becomes expensive

to compute and prone to large errors due to sensor noise.

2.1. Learning from one viewpoint

While looking at the object from a given viewpoint v, the

depth image Dv and the corresponding object transforma-

tion Tv are taken as the input to learning. Using Dv and Tv

from only one view of the object, the visible points on the

object are extracted to create the learning dataset and, even-

tually, learn the trees. Among the pixels {xi}
ni

i=1
from Dv

that are on the object, nj points are selected, back-projected

and transformed to the object coordinate system. These are

the set of points on the object χv = {Xj}
nj

j=1
that are used

to compute the displacements in Eq. 1. As a consequence,

we are tracking the location of χv across time by transform-

ing them with T̂t.

Occlusion handling. Even though randomly selecting a

subset of points on the object endows the tracker with ro-

bustness against small holes on the depth image [23], oc-

clusions still affect its performance. By observation, we de-

scribe an occlusion on an image as a 2D obstruction that

covers a portion of an object starting from an edge of the

object’s silhouette, while the other regions are visible to the

camera, as demonstrated in Fig. 3. Using this observation,

the object on the image are divided into two regions using

a line with a unit normal vector nl, where the pixels from

one region is selected for χv and nl is a random unit vector

within the 2π unit circle. Thereupon, the pixels are sorted

based on di = nl ·xi such that the pixels with a lower value
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are located on one edge of the object while the pixels with a

higher value are on the opposite edge. Hence, only the first

10% to 70% of the sorted pixels are included for the selec-

tion of χv , where we randomly choose the percentage of

pixels. In effect, occlusion is handled by discarding a sub-

region of the object and selecting the set of points χv from

the remaining subregion as illustrated in Fig. 3.

Dataset. To build the learning dataset from Dv , Tv and

χv , the rotation angles and translation vector in τ r of Eq. 2

are randomly parametrized to compose Tr and formulate

T̂r = TvT
−1

r . By transforming Xj by T̂r, it emulates

the location of the points from the previous frame such that

the current frame needs a transformation of Tr to correctly

track the object. Consequently, T̂r is used to compute the

displacement vector ǫvr = [ǫvj (T̂r;Dv)]
nj

j=1
. After impos-

ing nr random parameters, the accumulation of ǫvr and τ r

builds the learning dataset S = {(ǫvr , τ r)}
nr

r=1
. In this way,

the forest aims at learning the relation between ǫ and τ ; so

that, when ǫ is given in tracking, the forest can predict τ .

Learning. Given the dataset S , learning aims at splitting

S into two smaller subsets to be passed down to its children.

The tree grows by iteratively splitting the inherited subset

of the learning dataset SN and passing down the resulting

Sl and Sr to its left and right child. The objective is to

split using ǫ while optimizing a parameter in τ to make the

values more coherent which is measured by the standard

deviation σ(S) of the parameter from all τ in S .

To split SN into Sl and Sr, an element of the vector ǫ

across all SN is thresholded such that all values that are

less than the threshold goes to Sl while the others go to

Sr. All of the nj elements of ǫ and several thresholds that

are linearly space between the minimum and maximum val-

ues of the each element across SN are tested to split the

dataset. These tests are evaluated based on the information

gain computed as:

G = σ(SN )−
∑

i∈{l,r}

|Si|

|SN |
σ(Si) (4)

where the test with highest information gain gives the best

split. As a result, the index of the element in the vector and

the threshold that gives the best split are stored in the node.

The tree stops growing if the size of the inherited learn-

ing dataset is too small or the standard deviation of the pa-

rameter is less than a threshold. Then, this node is a leaf and

stores the mean and standard deviation of the parameter.

Consequently, the same learning process is applied for

each of the parameters in τ to grow one tree per parameter.

It is also applied to all of the nv views of the object.

2.2. Tracking an object

When tracking an object at time t, the given input is the

current frame Dt, the object transformation from the previ-

Learned Images from Different Viewpoints

Input Image in Tracking

(a) (b) (c) (d)

Figure 3. First row: occluded object when tracking. Second row:

learned views where the occluded region is in blue and the points

on the object, which are projected in the first row, are in yellow.

Note that (a-b) are not affect by occlusion while (c-d) are affected.

ous frame T̂t−1 and the learned forest with 6nv trees. Ulti-

mately, the forest predicts the parameters of Tt and updates

the object transformation from T̂t−1 to T̂t.

From the nv views of the object, a subset of the trees are

selected such that the object’s viewpoint shows the high-

est similarity with the current frame. Using Eq. 3, T̂t−1

generates the unit vector Nt−1 that points to the camera in

the object coordinate system. Then, the relation between

the current view of the object from the learned views is

measured through the angle between Nt−1 and Nv for all

views. Thus, the subset of trees chosen for evaluation is

composed of the trees with the camera view that are within

the neighborhood of Nt−1, where the angle is less than θ.

To evaluate on the v-th view, ǫvt−1
= [ǫvj (T̂t−1;Dt)]

nj

j=1

is constructed as the input to the trees. The threshold for

ǫ
v
t−1

at each node guides the prediction to the left or right

child until a leaf is reached. Each leaf stores the predicted

mean and standard deviation of a parameter. After evaluat-

ing the trees from all neighboring views, the final prediction

of a parameter is the average of the 20% predicted means

with the least standard deviation. As a result, the average

parameters are used to assemble the relative transformation

Tt and we execute nk iterations.

It is noteworthy to mention that, by taking the trees from

a neighborhood of camera views and by aggregating only

the best predictions, our algorithm can effectively handle

large holes and occlusions. Indeed, as demonstrated in

Fig. 3, some trees are affected by occlusion, the others can

efficiently predict the correct parameters.

2.3. Online learning

When tracking an object in real scenes, there are situa-

tions when its 3D model is not at hand, which makes model-

based tracking impossible. To track in these scenarios, we

propose to deploy 3D online tracking, where, starting from

a single 3D pose on an initial depth image, the target object

is adaptively learned through the successive frames while

being tracked, under unseen camera viewpoints and appear-

ance changes. In contrast to learning a model-based tracker,
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Figure 4. (a) Success rate and (b) convergence rate of our pro-

posal with varying sizes of the learning dataset compared against

CT [23].

only the depth image Dv is given while the corresponding

ground truth object transformation Tv is unknown.

For this approach, it is necessary to attain not only track-

ing efficiency but also learning efficiency. Our proposed

tracking algorithm, through its attributes in terms of effi-

ciency and memory footprint, suits nicely to this applica-

tion. In particular, from one frame to the next, we propose

to incrementally add new trees to the forest from different

object viewpoint. To achieve this goal, the online learning

is initialized by defining the object to learn in the first frame

and a 3D bounding box that encloses the object. It follows

that the centroid of the box is the origin of the object and the

object transformation of the initial frame T0 is the transla-

tion from the camera center to the centroid. The bounding

box defines the constraints of the object in 3D space and

segments the object for learning. Thereafter, Sec. 2.1 is used

to learn with the segmented image from Dt and the object

transform T̂t as input. The initial frame needs to learn nt

trees per parameter to stabilize the forest for tracking the ob-

ject in the next frames; while, the succeeding frames learn

one tree per parameter. In this case, the geodesic grid from

Fig. 2 is used to avoid re-learning trees from similar view-

points. Thus, we find the closest vertex of the grid from the

camera location in the object coordinate system and impose

to have only one set of trees in each vertex.

3. Evaluation

This section evaluates the proposed tracking algorithm

by taking into consideration, one at a time, the five essen-

tial attributes already discussed in Sec. 1 — (1) robustness,

(2) tracking time and computational cost, (3) memory con-

sumption, (4) scalability to multiple objects and (5) learning

time. In addition to the results in this section, the qualita-

tive evaluations from Fig. 1 are also reported in the form of

videos in the Supplementary Materials.

3.1. Robustness

To evaluate the robustness of our algorithm, we use three

benchmark datasets [6, 11, 23]. The evaluation of the first

dataset [11] determines the optimum parameters utilized

throughout Sec. 3 and compares against the Chameleon
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Ours (2,562)

CT (42)

Figure 5. (a) Success rate and (b) convergence rate of our pro-

posal with different number of camera views in the geodesic grid

compared against CT [23].

Tracker (CT) [23]; the second [6] compares the accuracy

of the transformation parameters against the RGB-D parti-

cle filter approaches [6, 13, 20]; finally, the third [23] com-

pares the robustness of our approach against other track-

ers [1, 23] based on depth images only. Notably, across all

the datasets, our work only uses the depth images of the

RGB-D sequences.

Optimum Parameters. The driller dataset from [11] is

composed of its model and 1,188 real RGB-D images with

the ground truth pose of the object in each image. This eval-

uation focuses on the robustness of the algorithm to track

an object in the current frame given its pose in the previous

frame. To mimic the transformation of the previous frame,

the ground truth pose is randomly translated and rotated us-

ing the Rodrigues’ rotation formula [8, 18]. Thereafter, the

tracker estimates the object’s pose and the error of the esti-

mated pose is computed based on the average distance be-

tween the corresponding vertices from the ground truth pose

and the estimated pose.

From this error, the effects of different parameters on the

tracker are observed through the success rate and the con-

vergence rate. According to [11], a successfully estimated

pose has the error value below 0.1 of the object’s diame-

ter. Moreover, the convergence rate takes the average error

across the entire dataset for each of the iterations. These

evaluations aim at finding the optimum parameters that pro-

duce the best results and to compare with CT [23].

In learning, there are two main aspects that affect the

performance of the trees. These are the size of the learn-

ing dataset nr and the number of camera views from the
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Figure 6. (a) Success rate, and (b) tracking time and number

of trees with respect to the angular distance threshold within the

neighborhood of the camera location that is used in tracking.
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Errors PCL C&C Krull Ours Online

(a
)

K
in

ec
t

B
o

x

tx 43.99 1.84 0.83 1.54 2.25

ty 42.51 2.23 1.67 1.90 3.92

tz 55.89 1.36 0.79 0.34 1.82

Roll 7.62 6.41 1.11 0.42 3.40

Pitch 1.87 0.76 0.55 0.22 1.00

Yaw 8.31 6.32 1.04 0.68 2.23

Time 4539 166 143 1.5 1.1

(b
)

M
il

k

tx 13.38 0.93 0.51 1.23 0.86

ty 31.45 1.94 1.27 0.74 1.02

tz 26.09 1.09 0.62 0.24 0.42

Roll 59.37 3.83 2.19 0.50 1.66

Pitch 19.58 1.41 1.44 0.28 1.14

Yaw 75.03 3.26 1.90 0.46 1.29

Time 2205 134 135 1.5 1.3

(c
)

O
ra

n
g
e

Ju
ic

e

tx 2.53 0.96 0.52 1.10 1.55

ty 2.20 1.44 0.74 0.94 1.64

tz 1.91 1.17 0.63 0.18 1.55

Roll 85.81 1.32 1.28 0.35 2.94

Pitch 42.12 0.75 1.08 0.24 2.37

Yaw 46.37 1.39 1.20 0.37 4.71

Time 1637 117 129 1.5 1.2

(d
)

T
id

e

tx 1.46 0.83 0.69 0.73 0.88

ty 2.25 1.37 0.81 0.56 0.81

tz 0.92 1.20 0.81 0.24 0.36

Roll 5.15 1.78 2.10 0.31 0.86

Pitch 2.13 1.09 1.38 0.25 1.03

Yaw 2.98 1.13 1.27 0.34 2.51

Time 2762 111 116 1.5 1.2

M
ea

n Transl. 18.72 1.36 0.82 0.81 1.42

Rot. 29.70 2.45 1.38 0.37 2.10

Time 2786 132 131 1.5 1.2

Table 1. Errors in translation (mm) and rotation (degrees), and the

runtime (ms) of the tracking results, evaluating with the synthetic

dataset [6], of PCL [20], Choi and Christensen (C&C) [6], Krull et

al. [13], and our approach with the model-based offline learning

(Ours) as well as the image-based online learning (Online).

geodesic grid nv . With regards to the size of the learn-

ing dataset, Fig. 4 illustrates that there is no significant dif-

ference in both success rate and convergence rate between

2500, 5000 and 10000; while, with the number of camera

views, Fig. 5 shows that increasing from 642 to 2562 does

not change the performance of the tracker. Thus, the opti-

mum parameters for learning is 2,500 pairs of samples and

labels with 642 camera views. Furthermore, based on the

convergence rate in Fig. 4(b) and Fig. 5(b), 10 iterations en-

sures that the tracker converges to a low error value. We also

look into the angular distance threshold θ of the neighbor-

ing trees when tracking. In Fig. 6(a), the success rate starts

to converges with a threshold of 35◦. On average, this cor-

responds to evaluate 58 trees from Fig. 6(b). For the rest of

the evaluation, we use the parametric values of nr = 2500,

nv = 642, nj = 20 and θ = 35◦.

Compared to CT [23], we have a higher success rate

when the relative motion is below 40◦, while their success

rate is higher above 40◦ in Fig. 4. Considering that an object

temporal tracker estimates the transformation of the object

between two consecutive frames, the success rates below

40◦ are, in terms of application, more relevant than the ones

above. Furthermore, the error in their convergence rate ini-

tially drops faster than ours but we converge to a lower error

value after as few as 4 iterations.

Synthetic Dataset. We evaluate our tracker on the pub-

licly available synthetic dataset of [6]. It consists of four

objects: each object has its model and 1,000 RGB-D im-

ages with the ground truth pose of the object. This evalu-

ation aims at comparing the accuracy between the RGB-D

particle filter approaches [6, 13, 20] and our method in es-

timating the rigid transformation parameters, i.e. the trans-

lation in the x-, y- and z-axis, and the roll, pitch and yaw

angles.

Table 1 shows that we remarkably outperform PCL [20],

and Choi and Christensen [6] over all sequences. With re-

spect to [13], there is no significant difference in the error

values: on average, we are 0.01 mm better in translation and

1.01◦ better in rotation. However, the difference between

the two algorithms lies in the input data and the learning

dataset. On one hand, they use RGB-D images while we

only use the depth; on the other, their learning dataset in-

cludes the object’s model on different backgrounds while

we only learn using the object’s model. The latter implies

that they predefine their background in learning and limit

their application to tracking objects in known (or similarly

structured) environments. Due to this, their robustness in

Table 1 depends on the learned background and, to achieve

these error values, they need to know the object’s environ-

ment beforehand. This is different from our work because

we only use the object’s model without any prior knowledge

of the environment.

Real Dataset. This evaluation aims at comparing the ro-

bustness of the trackers that use depth images only, so to

analyze in details the consequences in terms of tracking ac-

curacy arising from the typical nuisances present in the 3D

data acquired from consumer depth cameras.

To achieve our goal, we use the four real video sequences

from [23] (see Fig. 7(a-d)) as well as an additional se-

quence with higher amount of occlusions and motion blur

(see Fig. 7(e)). Each sequence is composed of 400 RGB-

D images and the ground truth pose of the marker board.

Across the frames of the sequence, we compute the average

displacement of the model’s vertices from the ground truth

to the estimated pose. Moreover, we compare the robust-

ness of ICP [1], CT [23] and our approach in the presence
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of large holes from the sensor, close-range occlusions from

the surrounding objects and motion blur from the camera

movement. We also compare our approach using sample

points with random selection and with the selection to han-

dle occlusions.

The first sequence in Fig. 7(a) is a simple sequence with

small holes and small occlusions, where all trackers per-

form well. Next, the driller sequence illustrates the effects

of large holes due to the reflectance of its metallic parts. It

generates instability on CT [23] that is highlighted by the

peak in Fig. 7(b). Even if it did not completely lose track

of the object, this instability affects the robustness of the

tracker in estimating the object’s pose. On the contrary,

ICP [1] and both versions of our method track the driller

without any instability.

As reported in [23], the toy cat sequence in Fig. 7(c)

causes ICP [1] to get trapped in a local minimum. When

the cat continuously rotate until its tail is no longer visible

due to holes and self-occlusion, the relatively large spheri-

cal shape of its head influences the error in the pose estima-

tion and stays in that position for the succeeding frames. In

contrast, CT [23] and our method track the toy cat without

getting trapped in a local minimum.

The last two sequences in Fig. 7(d-e) present two im-

portant challenges. First, they exhibit close-range occlu-

sions where the surrounding objects are right next to the

object of interest. This introduces the problem in determin-

ing whether nearby objects are part of the object of interest

or not. The second is the constant motion of both the cam-

era and the object. This induces motion blur on the depth

image which, in turn, distorts the 3D shape of the object.

Since the surrounding objects are close to the object of

interest, ICP [1] fails in both sequences. When occlusions

occur, it starts merging the point clouds from the nearby ob-

jects into the object of interest and completely fails tracking.

For CT [23], it becomes unstable when occluded but com-

pletely recovers in Fig. 7(d). But, when larger occlusions

are present such as Fig. 7(e), tracking fails. In compari-

son, our method with the random sample point arrangement

has a similar robustness as [23]. However, our method, by

modeling the sample points to handle occlusions smoothly,

is able to track the object without any instability or failures.

Among the competing methods, it is the only one that is

able to successfully track the bunny in the last sequence.

3.2. Tracking time and computational cost

As witnessed in Fig. 6(b), the tracking time increases

with respect to the number of trees evaluated or the number

of camera views included. Using the optimum parameters

from Sec. 3.1, the algorithm runs at 1.5 ms per frame on

an Intel(R) Core(TM) i7 CPU, where only one core is used.

This is comparable to the time reported by CT in [23]. With

regards to the competing approaches [6, 13, 20] in Table 1,
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Figure 7. Tracking comparison on the dataset of [23] among

ICP [1], CT [23], and our approach with and without the occlu-

sion handling sample points selection.

their work takes about 100 times longer than ours while pro-

ducing slightly higher error values. Among them, [6, 13]

optimize their runtime through GPU.

3.3. Memory consumption

Our memory consumption increases linearly with the

number of camera views and the size of the learning dataset

for each view, as shown in Fig. 8(a) and (b), respec-

tively. With the parameters from Sec. 3.1, our forests needs

7.4 MB. Compared to [23] which uses 821.3 MB, our mem-

ory requirement is two orders of magnitude less. Most of

the related works do not mention or disregard this measure-

ment from their papers, but we argue that it is an important

aspect especially with regards to scalability towards track-

ing multiple objects.

3.4. Scalability to multiple objects

When tracking multiple objects, we utilize independent

trackers for each object. It follows that the tracking time and
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Figure 8. Learning time and memory usage with respect to (a) the

number of camera views and (b) the size of the learning dataset.

the memory usage increase linearly with respect to the num-

ber of objects, where an increased computational expense,

i.e. additional CPU cores, divides the resulting tracking time

by the number of cores. Furthermore, the independence of

the trackers for different objects keeps the robustness of the

algorithm unaffected and the same as Sec. 3.1.

Considering a typical computer with 8 GB RAM and

8 CPU cores, a memory consumption of 7.4 MB for each

object allows us to include more than 1,000 objects into

RAM. In contrast to CT [23] where they use 821.3 MB for

each object and reached a maximum limit of 9 objects, our

tracker can include at least two orders of magnitude more

objects in memory than [23].

To demonstrate the remarkable scalability of our ap-

proach, we synthetically rendered 108 moving objects

with random initial rotations in a 3D video sequence

as shown in Fig. 1(a); apply one tracker for each ob-

ject, requiring a total memory footprint of, approximately,

108 × 7.4 MB = 799.2 MB; and, track them independently.

By using 8 CPU cores, our work tracks all 108 objects at

33.7 ms per frame, i.e. yielding a frame rate of 30 fps. In-

terestingly, our memory requirement for 108 objects is less

than that required for just one object by CT; while, our

tracking time for 108 objects is less than the GPU imple-

mentations of [6, 13] that track one object at 130 ms per

frame. It is important to mention that we had to resort to

a rendered input video given the difficulty of recreating a

similar scenario with so many moving objects under real

conditions. Nevertheless, since we only aim at evaluating

the scalability of our approach, we can expect an identical

performance under real conditions.

Therefore, although scalability is linear with respect to

the number of objects, we highlight the extremely low mag-

nitude of all the important components — (2) tracking time

and computational cost, and (3) memory consumption —

that makes tracking a hundred objects at real-time possible.

3.5. Learning time

The learning time has a linear relation with respect to the

number of camera views and the size of the learning dataset

as shown in Fig. 8. Thus, with the optimum parameters

from Sec. 3.1 and 8 CPU cores, it requires 31.8 seconds to

learn the trees from all of the 642 camera views using 2,500

pairs of sample and label. This is significantly lower than

the 12.3 hours of CT [23]. Even with an increased number

of camera views or a larger learning dataset in Fig. 8, our

learning time remains below 140 seconds.

Online learning. One of the most interesting outcomes of

the fast learning time is the online learning where the tracker

does not require the object’s 3D model as input to learning.

We use the dataset of [6] to evaluate our online learn-

ing strategy. In the first frame, we use the ground truth

transformation to locate the object and start learning with

50 trees per parameter, which takes 1.3 seconds. The suc-

ceeding frames continues to learn one tree per parameter,

which takes 25.6 ms per frame. In Table 1, the average

tracking error of the online learning is comparable to the re-

sults of Choi and Christensen [6]. It performs worse than

the model-based trackers with offline learning of Krull et

al. [13] and ours, but performs better than PCL [20]. Fur-

thermore, the combined learning and tracking time, which

is approximately 26.8 ms per frame using 8 CPU cores, is

still faster than the competing approaches [6, 13, 20] that

only execute tracking. Notably, a simple practical applica-

tion of the online learning, where the object’s model is not

at hand, is the head pose estimation in Fig. 1(c).

3.6. Failure cases

Since we are tracking the geometric structure of the ob-

jects through depth images, the limitation of the tracker is

highly related to its structure. Similar to ICP [3, 5], highly

symmetric objects loses some degrees of freedom in rela-

tion to its axis of symmetry. For instance, a bowl that has

a hemispherical structure loses one degree of freedom be-

cause a rotation around its axis of symmetry is ambiguous

when viewed from the depth image. Therefore, although

our algorithm can still track the bowl, it fails to estimate the

full 3D pose with six degrees of freedom.

Specific to online learning, large holes or occlusions in

the initial frames create problems where the forest has not

learned enough trees to describe the object’s structure. Due

to this, drifts occur and tracking failures are more probable.

4. Conclusions and future work

We propose a real-time, scalable and robust 3D track-

ing algorithm, that can be employed both in model-based

as well as in online 3D tracking. Throughout the experi-

mental evaluation, our approach demonstrated to be flexible

and versatile so to adapt to a variety of 3D tracking appli-

cations, contrary to most 3D temporal tracking approaches

that are designed for a fixed application. Analogously to

what was done in [14] between 2D tracking and Structure-

from-Motion, an interesting future direction is to deploy the

versatility of our approach for “bridging the gap” between

3D tracking, 3D SLAM and 3D reconstruction.
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