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Abstract

Good tracking performance is in general attributed to

accurate representation over previously obtained targets

or reliable discrimination between the target and the sur-

rounding background. In this work, we exploit the advan-

tages of the both approaches to achieve a robust track-

er. We construct a subspace to represent the target and

the neighboring background, and simultaneously propagate

their class labels via the learned subspace. Moreover, we

propose a novel criterion to identify the target from numer-

ous target candidates on each frame, which takes into ac-

count both discrimination reliability and representation ac-

curacy. In addition, with the proposed criterion, the ambi-

guity in the class labels of the neighboring background sam-

ples, which often influences the reliability of discriminative

tracking model, is effectively alleviated, while the training

set is still kept small. Extensive experiments demonstrate

that our tracker performs favourably against many other

state-of-the-art trackers.

1. Introduction

Visual tracking plays an important role in computer vi-

sion for its various practical applications, e.g., video surveil-

lance, human-machine interface and robotics. The funda-

mental task of visual tracking is to estimate the motion s-

tates of the target on each frame, given an initial state. In

general, tracking models can be viewed as either genera-

tive or discriminative. Generative model focuses on finding

a region of interest (ROI) in the frame image as the tar-

get, which best matches a learned target appearance mod-

el, while discriminative model trains a binary classifier to

distinguish the target from background. Current studies

have shown that discriminative model achieves better per-

formance if the size of training set is sufficiently large [15],

and that generative model can obtain higher generalization

when only a limited number of training samples are avail-

able [22]. In the pursuit of precise tracking results, we may

prefer discriminative model if we can acquire a sufficiently

large number of training samples. However, it is unpracti-

(a) (b) (c)

Figure 1. Illustration of the discriminative low-rank learning. (a) A

number of original samples belonging to two classes in the three-

dimensional observation space. (b) The samples projected into the

learned two-dimensional subspace. (c) The samples reconstructed

over the learned subspace, which are also successfully separated

between the two classes by the learned classifier.

cal to obtain so many training samples. Even we can acquire

these samples, considering the time-sensitive nature of vi-

sual tracking, the training cost over these samples is also

unacceptably expensive.

In this work, we aim to utilize the good generalization

capability of generative model, and augment it with dis-

criminative capability, in order to achieve improved track-

ing performance. Thus, our tracking model is both genera-

tive and discriminative. We choose two simple but very ef-

fective methods for our model: subspace learning and linear

classification. Joint learning [26, 25, 19] is used to construc-

t this model, i.e., we construct a subspace to represent the

target and background, and simultaneously propagate their

class labels by a linear classifier. This assigns both repre-

sentation and discrimination capabilities to the learned sub-

space: the target and background can be accurately repre-

sented (reconstructed) by the learned subspace, and simul-

taneously their reconstructions over this subspace can also

be reliably distinguished by the linear classifier. In brief,

we intend to construct such a subspace, the discriminative

subspace, over which the reconstructed samples are linearly

separable. The basic idea of our method, called the discrim-

inative low-rank learning, is illustrated in Fig. 1. With the

choices for our tracking model, we are still facing several

problems addressed as follows.
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1.1. Representation

Subspace learning is a classical but powerful method in

visual tracking [27]. In this paradigm, the targets on succes-

sive frames are considered to reside in a low-dimensional

subspace. The principal component analysis (PCA) ap-

proach is used to learn the basis vectors, and the target is

located in terms of representation accuracy (reconstruction

errors over the learned basis vectors). The underlying as-

sumption of this method is that the target can be well rep-

resented (reconstructed) by the learned subspace, leading

to small and dense reconstruction errors. From stochastic

point of view, the reconstruction errors are assumed to obey

a Gaussian distribution with zero mean and small variances.

Subspace learning has been demonstrated to be effective

in some challenging situations, e.g., illumination variation-

s and pose changes [12, 6]. However, it is unstable in the

case of occlusions, because the reconstruction errors that

may be large and sparse cannot be explained by Gaussian

distribution. Motivated by the latest study, robust PCA [3],

we decompose the reconstruction error as two additive er-

rors: one that is small and dense, and the other that is large

and sparse. The former is used to maintain the assumption

of low-dimensional subspace, and the latter is used to com-

pensate the outliers, e.g., occlusions. Similar solutions are

also used in the recent tracking studies [33, 37, 34], achiev-

ing impressive tracking results.

Previous work [27, 13, 33, 34, 37] constructs a subspace

where only the previously obtained targets (i.e., the targets

located on historical frames) reside. In our tracking mod-

el, because of the discriminative augmentation, we need

to consider both the target and background. For this rea-

son, we construct a subspace where the previously obtained

targets and the background patches reside. This is also

one of the major differences between our work and previ-

ous subspace-based methods. We densely sample the im-

age patches around the latest obtained target and use them

as background samples. It indicates that the background

patches are still very similar to the recently obtained target-

s. Thus, we assume that the recently obtained targets and

the neighboring background patches reside in the same low-

dimensional subspace. Note that because the background

patches are involved, to maintain the assumption of low-

dimensional subspace, we only represent the recently ob-

tained targets. Such temporal locality is also a difference

from previous subspace-based methods that represent all the

obtained targets. Fig. 2 illustrates the relationship between

classical and our subspace models. We also note that the

dimension of our subspace is higher than that of the clas-

sical subspace, but still much lower than that of the entire

observation space.

In addition, it is very critical to determine an appropri-

ate dimension for the learned subspace. Too low dimen-

sion may lead to weak representation capability, whereas

Figure 2. Illustration of the relationship between classical and our

subspace models.

too high dimension may result in weak generalization ca-

pability. Most of previous work uses an empirically fixed

dimension, or imposes a hard threshold on the principal

components of training samples. In this work, under the

assumption of low-dimensional subspace, the sample ma-

trix, of which each column denotes a sample used to learn

the subspace, is considered to be low-rank. Thus, we re-

fer to rank-minimization to construct our subspace with an

adaptive dimension. Instead of directly evaluating the ba-

sis vectors, we minimize the rank of the sample matrix. The

rank value is used as the dimension of our subspace, leading

to a trade-off between representation and generalization.

1.2. When Representation Meets Discrimination

For either representation or discrimination, the final goal

is to locate the target accurately and robustly on each frame,

according to representation accuracy or discrimination reli-

ability. In this work, we propose a novel criterion of tar-

get location, which takes into account both the represen-

tation and discrimination information. It is grounded on

the fact that our training samples consist of the recently

obtained targets and the neighboring background patches.

On one hand, our classifier can effectively distinguish the

target from the neighboring background patches. Howev-

er, it is unreliable to the patches far away from the target

due to the lack of training over those samples, i.e., it may

recognize those distant background patches as the target.

On the other hand, our subspace can successfully exclude

the background patches far away from the target according

to their large and dense reconstruction errors. However, it

cannot separate the target from the neighboring background

patches because all of those patches are well-represented

by our subspace (have small and sparse reconstruction er-

rors). In brief, the reconstruction errors can successfully

recognize whether a testing patch belongs to our subspace

or not, and the linear classifier can effectively recognize a

testing patch in our subspace as either the target or the back-

ground. As a result, we propose the novel criterion of target

location, which considers that the patches with both higher

discrimination reliability and higher representation accura-

cy are more likely to be the target.
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More importantly, we should note that our strategy of tar-

get location effectively avoids the dilemma of sample label

ambiguity in discriminative model-based tracking methods,

which is addressed in [2]. A robust discriminative track-

ing model needs to be trained over the samples from entire

observation space. However, there are ambiguities in the la-

bels of the background patches close to the target because

those patches are very similar to the target. In [2], Babenko

et al. use the multiple instances learning method to alleviate

the ambiguity. In this work, with our subspace and target

location strategy, such a dilemma is not involved. Our clas-

sifier is trained over only a small number of training sam-

ples, which consist of the recently obtained targets and the

neighboring background patches, leading to good discrim-

inative performance over the neighboring region, while the

background patches far away from the target are dealt with

in terms of the generative information (i.e., the reconstruc-

tion errors).

1.3. Our Contributions

We propose a novel tracking algorithm via a discrimina-

tive low-rank learning method, which utilizes two very sim-

ple approaches but achieves state-of-the-art performance.

• We propose a discriminative subspace to represen-

t both the recently obtained targets and the neighboring

background patches, and simultaneously augment its

discriminative performance by training a linear clas-

sifier within the joint learning approach. The outliers

(e.g., occlusions in tracking) are dealt with by using s-

parse learning during the subspace construction. The

dimension of the subspace is adaptively determined via

rank-minimization.

• We propose a novel criterion of target location, which

takes into account both the discrimination reliability

and representation accuracy. Further, with our sub-

space and target location strategy, the dilemma of sam-

ple label ambiguity in discriminative tracking model is

effectively alleviated.

2. Related Work

Subspace-based tracking methods have been extensive-

ly studied in recent years. Ross et al. [27] introduce in-

cremental subspace learning to visual tracking, where the

temporally obtained targets are assumed to reside in a low-

dimensional subspace. Kwon and Lee [13] apply sparse

PCA to formulate tracking. Wang and Lu [32] formulate

visual tracking as a subspace learning problem with a pos-

sibility continuous outlier model and solve it by using max-

flow/min-cut method. Under the subspace assumption, Sui

and Zhang [29] propose a locally structured Gaussian Pro-

cess and cast tracking as a regression problem. As we ad-

dressed above, subspace learning is essentially sensitive to

occlusions. For this reason, some ad hoc strategies for oc-

clusion handling need to be used with subspace learning to-

gether. One popular approach is sparse representation [35].

Mei and Ling [21] introduce sparse representation to vi-

sual tracking. In their method, the current target is repre-

sented as a linear combination of a few previously obtained

targets, and the occlusions are absorbed by ad hoc designed

trivial templates. This paradigm has shown its strength to

deal with partial occlusions. However, its major problem is

the expensive computational cost. Inspired by [21], exten-

sive studies exploiting the subspace model by using a sparse

additive error are proposed, in order to improve the robust-

ness. Wang et al. [34] use the subspace model to represent

the target and impose sparsity on the residual errors to deal

with occlusions. Zhang et al. [38] exploit both the subspace

and sparse structures by a low-rank and sparse representa-

tion, and model occlusions by a sparse additive error term.

Recently, the trackers based on discriminative model

achieve many impressive tracking results. Kalal et al. [11]

propose a detection-based paradigm for visual tracking,

which trains a binary classifier from labeled and unlabeled

examples. Babenko et al. [2] apply multiple instances learn-

ing method to alleviate the ambiguity among the sample

labels. Hare et al. [7] propose a structured output SVM

method for visual tracking. Also, Oron et al. [23] lever-

age discriminative generative framework [16, 20, 5] to solve

tracking task, achieving impressive tracking performance.

3. Our Approach

Our tracking algorithm is conducted within particle fil-

tering framework [9, 1]. Each particle corresponds to a ROI

in a frame image. The ROI is defined by a motion state

variable

s = {x, y, σ} (1)

where x and y denote its 2D position in the frame image,

and σ denotes its scaling coefficient. During tracking, nu-

merous motion state variables are predicted on each frame

according to the previously obtained targets. The corre-

sponding ROIs are cropped out from the frame image in

terms of their motion state variables, and used as the target

candidates on this frame. We normalize these ROIs to the

same size and stack them into column vectors, respectively.

We call such a column vector the candidate. The candi-

date evaluated to be the best according to our criterion of

target location is determined as the target, and marked by

a bounding box in the frame image according to its motion

state variable.

3.1. Discriminative LowRank Learning

On the t-th frame, let the matrix Y = [yt−n, . . . ,yt−1]
denote the n recently obtained targets, of which each col-

umn yi corresponds to the target located on the i-the frame.
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We densely sample a number of background patches around

the latest target yt−1 by shifting the 2D position of yt−1

with small distances along different directions. Then, we

normalize these background patches to the same size as the

target and stack them into column vectors, respectively. We

call these column vectors the background samples, and de-

note them by the matrix B, of which each column denotes

a background sample.

Due to the dense sampling, the background samples are

very similar to the recently obtained targets. Thus, we as-

sume that the recently obtained targets Y and the back-

ground samples B reside in a low-dimensional subspace.

It indicates that the sample matrix X = [Y,B] has small

rank value (i.e., low-rank). To ensure the robustness of this

subspace, we further assume that there exist some outliers

in the samples X. Thus, we compensate these outliers by a

sparse additive residual error term. As a result, the subspace

can accurately represent both the target and background.

Meanwhile, the subspace is also expected to discrimina-

tively represent the target and the background. Thus, we

simultaneously train a linear classifier to separate them dur-

ing the subspace construction. To this end, the subspace

can represent the target and background accurately and dis-

tinguish them reliably. We cast our goals discussed above

into the following joint learning problem:

min
A,E,w,b

rank (A) + λ ‖E‖0 + µ ‖w‖22

s.t.

{

X = A+E

z = wTA+ b1

(2)

where the low-rank matrix A denotes the reconstructions

of the samples X over the learned subspace, the sparse ma-

trix E denotes the reconstruction errors, {w, b} denotes the

linear classifier, the vector z denotes the sample labels for

zi ∈ {+1,−1}, 1 denotes the column vector of which each

entry is 1, rank (A) calculates the rank value of A, ‖E‖0
counts the non-zeros of E, and λ > 0, µ > 0 are the weight

parameters. We set λ to the value recommended by [17] and

µ = 1 by referring to [21]. Note that Eq. (2) is a NP-hard

problem because it simultaneously involves rank- and ℓ0-

minimizations. We relax them to their convex conjugates,

trace- and ℓ1-minimizations. It also should be note that al-

though the convex relaxations are leveraged, the obtained

problem is still non-convex due to the relationship between

A and w. Fortunately, this problem is convex if we fix ei-

ther of the two variables. Thus, we can develop an iterative

algorithm to solve the problem. To this end, we refer to in-

exact augmented Lagrange multiplier (IALM) method [17]

to develop the iterative algorithm. Due to text length lim-

it, we address this iterative algorithm in the supplementary

document along with this submission.

Note that the subspace can be seen as a latent variable in

Eq. (2), which is indirectly characterized by the reconstruct-

ed samples A. To explicitly obtain the learned subspace, we

need to simply apply singular value decomposition (SVD)

to A:
[

U,S,VT
]

= svd (A) (3)

where the orthogonal matrix U is used as the basis matrix of

the learned subspace, and SVT is used as the correspond-

ing subspace representation. Further, to reduce the learned

subspace to an appropriate dimension, we use the first r

columns of U as the basis vectors of our subspace, denoted

by the matrix P, where r = rank (A):

P = U1:rank(A) (4)

Given a candidate, we reconstruct it over the learned sub-

space P, and its reconstruction (i.e., the noise-free counter-

part) can be successfully classified as either the target or the

background by the linear classifier {w, b}. In this work, our

linear classifier outputs the classification reliability, instead

of classification labels, as the metric for the likelihood of a

candidate to be the target or the background.

For a candidate c, the classification reliability is defined

as

g (c;P,w, b) = wTPq+ b (5)

where q denotes the representation of c over the subspace

P, which is found by

min
q,e

‖e‖0

s.t. c = Pq+ e
(6)

where the sparse vector e denotes the reconstruction errors.

Note that Eq. (6) presents an ℓ0-minimization problem and

many algorithms can be used to solve it, e.g., IALM [17]

(our choice), OMP [24] and LASSO [30].

3.2. Target Location

On the t-the frame, given all the previously obtained tar-

gets from the first to (t− 1)-th frame, denoted by y1:t−1,

the motion state of a candidate on the t-th frame, denoted

by st, is predicted by maximizing the posterior density

p (st|y1:t−1) =

∫

p (st|st−1) p (st−1|y1:t−1) dst−1 (7)

where p (st|st−1) denotes the motion model. Then, the can-

didate c is obtained according to the predicted motion state

st and the posterior density is updated by

p (st|c,y1:t−1) =
p (c|st) p (st|y1:t−1)

p (c|y1:t−1)
(8)

where p (c|st) denotes the observation model. Thus, giv-

en the set of the candidates C, the target on the t-th frame,

denoted by yt, is found by

yt = argmax
c∈C

p (st|c,y1:t−1) (9)
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(a) six target candidates

(b) classification reliability g (c;P,w, b)

(c) reconstruction errors

(d) magnitude of reconstruction errors ‖e‖
1

Figure 3. Six target candidates are shown in (a) and their classifica-

tion reliability values are shown in (b). The reconstruction errors

of the six target candidates are shown in (c), where the darker pixel

indicates the smaller value. The corresponding magnitudes of the

reconstruction errors are shown in (d).

In this work, the motion model is defined as a Gaussian

distribution,

p (st|st−1) ∼ N (st|st−1,Σ) (10)

where the covariance Σ is a diagonal matrix, of which the

diagonal entries denote the variances of x, y and σ in Eq.

(1), respectively. The observation model p (c|st) measures

the likelihood to be the target of the candidate c with the

motion state st.

On one hand, a good candidate is expected to have the

classification reliability as close as possible to +1 (label of

the target) from the discriminative perspective. It indicates

that this candidate is more likely to be a target. Fig. 3(b)

shows an illustration of the classification reliability values

of the six candidates shown in Fig. 3(a).

On the other hand, a good candidate is also expected to

be with the reconstruction error as small as possible from

the generative viewpoint. It indicates that the candidate is

represented more accurately by the learned subspace. Fig.

3(c) and 3(d) show the reconstruction errors of the six can-

didates qualitatively and quantitatively, respectively.

To this end, given the learned subspace P and the lin-

ear classifier {w, b}, we define the observation model of a

candidate c with the motion state st as

p (c|st) ∝ exp

{

−
1

l
(|1− g (c;P,w, b)|+ ρδ (c;P))

}

(11)

where δ (c;P) = ‖e‖1 and the reconstruction error e is

obtained from Eq. (6), ρ > 0 balances the importance be-

tween classification reliability and representation accuracy,

and l > 0 is the scale parameter. Note that ρ is highly de-

pendent on c and required to be tuned carefully. To avoid to

tune it, we reformulate the observation model as

p (c|st) ∝ exp

{

−
1

l
(gc + δc)

}

(12)

where gc and δc denote the normalized classification relia-

bility and reconstruction error of the candidate c ∈ C, re-

spectively, and are found by

gc =
|1− g (c;P,w, b)|

∥

∥ [|1− g (ci;P,w, b)|]ci∈C

∥

∥

2

δc =
δ (c;P)

∥

∥ [δ (ci;P)]ci∈C

∥

∥

2

(13)

3.3. Update Scheme

During tracking, as the appearance of the target varies,

we need to dynamically update the learned subspace P and

the linear classifier {w, b} to capture the latest appearance

changes. To maintain the requirement of low dimension, the

subspace is required to be learned over the recently obtained

targets Y and the neighboring background samples B. For

this reason, we maintain the fifty most recently obtained tar-

gets in Y and update them every frame by replacing the

oldest obtained target with the latest obtained target. Thus,

Y works like a first-in-first-out (FIFO) buffer. Meanwhile,

because the initially obtained target is the most informative

sample, we always keep it in Y. The background samples B

are replaced completely every frame by the samples dense-

ly sampled around the latest obtained target. Moreover, as

a trade-off between accuracy and efficiency, we re-train the

subspace and the linear classifier every ten frames over the

training samples X = [Y,B].

3.4. Discussion

Note that the observation model in Eq. (12) defines a cri-

terion of target location by integrating both generative and

discriminative information. To make this point more clear,

we take an example to explain our target location method.

As shown in Fig. 4, we analyze the likelihood to be the

target of the ROIs centered at every pixel within the search

region in a frame image. The maximum likelihood is ex-

pected to appear at the search region center.

Because the subspace and the linear classifier are trained

over the recently obtained targets and the neighboring back-

ground samples, the linear classifier can output accurate
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(a) frame image (b) classification reliability (c) reconstruction error (d) our criterion

Figure 4. Illustration of our criterion of target location. A frame image is shown in (a), where the target is marked by the red (solid) box,

and the search region is marked by the green (dashed) box. The likelihood values to be the target of the ROIs centered at every pixel within

the search region in terms of classification reliability, reconstruction error and our criterion are plotted in (b), (c) and (d), respectively. The

maximum likelihood is expected to appear at the center of each plot. The colder color indicates the smaller value in (b), (c) and (d).

classification reliability for the candidates that can be well

represented by the learned subspace. However, it is unstable

to the candidates that are poorly represented by the learned

subspace. It can be clearly seen from Fig. 4(b) that the

ROIs close to the search region center have accurate clas-

sification reliability, and that in contrast the ROIs far away

from the search region center obtain unstable classification

reliability.

Also, the well-represented candidates have smaller and

sparser reconstruction errors than the poorly-represented

candidates. Thus, the reconstruction errors can be used

to exclude the poorly-represented candidates. However, it

cannot reliably distinguish the target from the neighboring

background among the well-represented candidates. From

Fig. 4(c), it can be seen that the ROIs close to the search

region center have large likelihood to be the target (smal-

l and sparse reconstruction errors) and the ROIs far away

from the search region center have small likelihood (large

and dense reconstruction errors). Note that the likelihood

exhibits some directionality in Fig. 4(c). This is because

we sample the background patches along several specific

directions.

As a result, we propose the criterion of target location ac-

cording to the above analysis. The reconstruction errors can

be used to choose the well-represented candidates in terms

of the magnitude and sparsity. Meanwhile, the classifier can

reliably distinguish the target from the background among

these well-represented candidates in terms of the classifi-

cation reliability. Clearly, it can be seen from Fig. 4(d)

that: 1) although some poorly-represented candidates have

large classification reliability, they are punished by the re-

construction errors, leading to small likelihood to be the

target; and 2) the likelihood of the well-represented can-

didates is dominated by the classification reliability, lead-

ing to an reliable discrimination between the target and the

background.

More importantly, to ensure the low-dimensional sub-

space assumption, we note that two rules for samples gener-

ation need to be maintained: 1) temporal locality of positive

samples, i.e., only select the recently obtained targets, and

2) spatial locality of negative samples, i.e., only select the

neighboring background patches.

4. Experiments

Our tracker is implemented in MATLAB on a PC with an

Intel Core 2.8GHz processor. The average running speed

is 3 frames per second. Solving Eq. (2) needs 0.5 sec-

ond. On each frame, it costs 0.2 second to solve Eq. (6)

for all the candidates. The colorful pixels on each frame

are converted to gray scale values and normalized to [0, 1].
400 candidates are generated on each frame and their cor-

responding ROIs are normalized to 20 × 20 pixels. The

covariance parameter of the motion model in Eq. (10) is

set to Σ = diag {3, 3, 0.01}. The background sample

matrix B consists of 48 columns that respectively corre-

spond to the 48 background patches with translations of

{7, 9, 11, 13, 15, 17} pixels from the latest target along eight

directions that uniformly distributed within [0◦, 360◦). In

Eq. (12), l is set to 10−4.

4.1. Competing Trackers

Our tracker is compared to the other sixteen state-of-the-

art methods, involving subspace learning, sparse represen-

tation and/or discriminative learning. Because there are no

available source codes of LRST, we implement it by our-

selves in terms of the corresponding paper [38]. The other

fifteen competing trackers are publicly provided by the au-

thors. The parameters of the competing trackers are tuned

carefully to obtain their best performance.

4.2. Data Description and Evaluation Criteria

Our tracker is evaluated on a popular benchmark

database, Wu et al. [36]’s benchmark, which includes fifty

challenging video sequences. These video sequences in-

clude various complicated factors, e.g., illumination vari-

ation, occlusion, non-rigid deformation, cluttered back-

ground, and in-plane/out-of-plane rotation. On each frame
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Figure 5. Performance of our tracker and the top ten trackers in

[36] on all the 50 video sequences of Wu et al.’s benchmark.

of the fifty video sequences, the target is labelled manually

and used as ground truth for quantitative evaluations.

Two criteria are used in this work to quantitatively eval-

uate the performance of our tracker:

• Precision. The percentage of frames where location

errors are less than a threshold. The location error is

defined as the distance (in pixel) between the centers

of tracking and ground truth bounding boxes.

• Success Rate. The percentage of frames where overlap

rates are greater than a threshold. The overlap rate on a

frame is defined as AT∩AG

AT∪AG
, where AT and AG denote

the areas of tracking and ground truth bounding boxes,

respectively.

4.3. Comparison against StateoftheArt Trackers

We report the precisions and success rates of our tracker

and the top ten trackers in [36] on the fifty video sequences

of Wu et al.’s benchmark, including Struck [7], SCM [39],

TLD [11], ASLA [10], CXT [4], VTD [13], VTS [14], CSK

[8], LSK [18], DFT [28], as shown in Fig. 5. The quantita-

tive results are also shown in the legend of each sub-figure.

It can be seen that our tracker performs favourably against

the ten state-of-the-art trackers on Wu et al.’s benchmark.

Also, we compare our tracker against other six subspace-

based trackers on the fifty video sequences of Wu et al.’s

benchmark, including IVT [27], 2DPCA [31], LRST [38],

LSST [33], PCOM [32], LSGPR [29]. The results are re-

ported in Fig. 6. It can be seen that our tracker outperforms

the six subspace-based trackers on Wu et al.’s benchmark.

For more thorough evaluation of our tracker, we also an-

alyze the performance of our tracker in different challenging

situations, e.g., illumination variation and occlusion, and

the results are shown in Fig. 7.

Occlusion. In the case of occlusion, the target is occlud-

ed by some similar and/or dissimilar objects. Occlusion

may easily lead to tracking failure because the target dis-

appears partially or entirely for a period. From the results

shown in Fig. 7(a), it can be seen that our tracker is robust a-

gainst to occlusion and obtains good tracking results. It ben-

efits from the facts that 1) the sparse reconstruction errors

can absorb the occlusion during our subspace learning, such

that the learned subspace only acquires the non-occluded

Figure 6. Performance of our and other six subspace-based track-

ers on all the 50 video sequences of Wu et al.’s benchmark.

information of the target; and 2) the good discriminative

capability of the learned subspace can accurately separate

the target from the background. The competing trackers

using sparse reconstruction errors for occlusion handling,

e.g., SCM and LSK, and the competing trackers using dis-

criminative tracking model, e.g., Struck, also achieve good

tracking results on some video sequences in this case.

Non-Rigid Deformation. The motion of the target may

cause non-rigid deformations in the appearance. From the

results shown in Fig. 7(b), it can be seen that our tracker ob-

tains good performance in this case. This is attributed to the

facts that 1) the small deformation, which causes small re-

construction errors, is effectively dealt with by the subspace

learning; and 2) the large deformation, which causes large

reconstruction errors, is compensated by using the sparsity

constraint on the reconstruction errors.

Illumination Variation. In this case, the illumination of

the scene changes drastically, leading to significant changes

in the appearance of the target. From the results shown in

Fig. 7(c), it can be seen that our tracker obtains good results

in this case. This is attributed to that the subspace learning

is effective to deal with illumination change. Note that the

adaptive dimension reduction of our subspace learning also

makes our tracker more stable in this case. It can also be

seen that some subspace learning based trackers, e.g., VTD

and VTS, also obtain good tracking performance.

Background Clutter. In this situation, the tracker is

distracted by the cluttered background. Thus, the track-

er that considers the difference between the target and the

background information may be more effective in this case.

From the results shown in Fig. 7(d), it can be seen that our

tracker performs well in this case. This is attributed to that

our tracker has good discriminative capability, which can

reliably distinguish the target from the background. As we

analyzed above, the competing trackers that considers the

background, e.g., Struck, CSK and SCM, also obtain good

tracking results in this case.

Out-of-Plane Rotation. The motion of either the target

or the camera may cause out-of-plane rotations in the ap-

pearance of the target. From the results shown in Fig. 7(e),

it can be seen that our tracker performs well in this case. On

one hand, the temporal locality of our subspace (only using

the recently obtained targets) is effective to describe the ap-
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(a) occlusion (31) (b) non-rigid deformation (19) (c) illumination variation (25)

(d) background clutter (22) (e) out-of-plane rotation (39) (f) scale variation (28)

Figure 7. Performance of our tracker and the top ten ranking trackers in [36] in different challenging cases. In the caption of each sub-figure,

the number in parentheses denotes the number of the video sequences in the corresponding case.

pearance changes caused by out-of-plane rotations. On the

other hand, the linear classifier can successfully separate the

target with out-of-plane rotations from the background.

Scale Variation. In this case, the scale of the appear-

ance of the target on successive frames varies over time,

such that the tracker may result in inaccurate tracking re-

sults. Because we take into account the scale change of the

target in the motion state, as shown in Eq. (1), it can be

seen from the results shown in Fig. 7(f) that our tracker is

insensitive to scale change and obtains good performance.

Overall, from the above results, it can be seen that our

tracker performs favourably against the sixteen competing

trackers on Wu et al.’s benchmark.

4.4. Effectiveness of Discrimination

One contribution of our work is to include neighboring

background patches to augment the discriminative capabili-

ty of the learned subspace. Thus, we demonstrate the effec-

tiveness of the discrimination. As shown in Fig. 8, although

the dimension of the learned subspace is reduced to be very

low (only three-dimensional), the samples are almost lin-

early separatable. It indicates that the learned subspace has

good discriminative capability for visual tracking.

5. Limitations

Within particle filtering framework, the variances of

translations are responsible to the searching range for can-

didates. In this work, the variances of translations in both

x and y directions are set to 3 pixels. It indicates that if the

target moves very fast between two consecutive frames, our

tracker may lose the target with a high possibility. In fact,

we are facing the dilemma of the trade-off between accuracy

and efficiency. On one hand, a large number of candidates

are expected to densely generate around possible target lo-

cations in a wide range regions, in order to locate the target

as accurately as possible. On the other hand, the number

Figure 8. Effectiveness of discriminative low-rank learning. The

positive (first fifty) and negative (the rest) samples are shown in the

left. The reconstructed positive (red) and negative (blue) samples

over the first three basis vectors are shown in the right.

of candidates is required as small as possible, because the

computational cost is linearly proportional to the number of

candidates. Thus, considering the balance between accu-

racy and efficiency, we have to shrink the searching range

(i.e., use small variances of translations, e.g., 3 pixels) to

ensure that adequate candidates are generated in the regions

where the next target will appear with higher possibilities.

6. Conclusion

We have proposed a novel tracking algorithm that simul-

taneously exploits the advantages of both subspace learning

and discriminative learning, aiming to alleviate the track-

ing drift problem in various challenging situations. A large

number of experiments have been conducted and the result-

s have shown that 1) the proposed discriminative low-rank

learning leads to an effective and robust tracker; and 2) the

criterion of target location facilitates to alleviate the track-

ing drift problem. Both the qualitative and quantitative e-

valuations on numerous challenging video sequences have

demonstrated that our tracker performs favourably against

many other state-of-the-art trackers.
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