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Abstract

We propose a novel Multi-Task Learning with Low Rank

Attribute Embedding (MTL-LORAE) framework for person

re-identification. Re-identifications from multiple cameras

are regarded as related tasks to exploit shared information

to improve re-identification accuracy. Both low level fea-

tures and semantic/data-driven attributes are utilized. Since

attributes are generally correlated, we introduce a low rank

attribute embedding into the MTL formulation to embed

original binary attributes to a continuous attribute space,

where incorrect and incomplete attributes are rectified and

recovered to better describe people. The learning objective

function consists of a quadratic loss regarding class labels

and an attribute embedding error, which is solved by an al-

ternating optimization procedure. Experiments on four per-

son re-identification datasets have demonstrated that MTL-

LORAE outperforms existing approaches by a large margin

and produces promising results.

1. Introduction

The aim of person re-identification is to identify a person

in a probe image/video by searching for the most similar in-

stances from a gallery set. Although one can take advantage

of increasing amounts of surveillance data to obtain more

information to improve re-identification accuracy, it is non-

trivial to design an effective re-identification algorithm due

to large appearance, pose and illumination changes across

images. Additionally, images are usually from multiple

cameras with different parameters and viewpoints, making

accurate and efficient person re-identification even harder.

Nevertheless, even though the appearance of a person

greatly changes, high-level semantic concepts with respect

to the person are relatively stable and consistent across dif-

ferent cameras. Such semantic concepts, referred to as at-

tributes, have been widely applied to various vision appli-

cations, such as image classification and object detection,

and shown promising results. When we describe an image

or object by attributes, we obtain a vector in which each

* indicates equal contribution.

dimension indicates whether the corresponding attribute is

present or not (or, more generally, its likelihood). In addi-

tion, it is intuitive that some attributes frequently co-occur,

leading to a few subsets which contain related attributes

while are mutually independent. For example, the attribute

female is likely to be highly related to the attribute long hair

rather than short hair. We show that by utilizing correla-

tions of attributes, attributes of the same person from differ-

ent cameras can be embedded into a low rank space, where

embedded attributes are more accurate and informative for

matching. Through the low rank attribute space, we can

better match samples of the same person from one camera

to another. Additionally, using this low rank embedding,

we can prune noisy attributes and recover missing attributes

that are introduced by inaccurate human annotation.

Nevertheless, it is computationally expensive to infer at-

tribute correlations using pairs of cameras, which also ig-

nores the relationship of more than two cameras. To utilize

relationships of features and attributes more efficiently for

matching instances across cameras, we employ the Multi-

Task Learning (MTL) [5] algorithm, where one jointly

learns solutions to multiple related tasks which benefit each

other. MTL has been shown successful in discovering latent

relationships among tasks, which cannot be found by learn-

ing each task independently. It has been widely applied to

machine learning [2, 44] and computer vision [45, 24]. In

addition, MTL is particularly suitable for the situation in

which only a limited amount of training data is available

for each task. By considering re-identifications from multi-

ple cameras as tasks, the MTL framework can be naturally

adapted to exploit features and attributes shared across cam-

eras by learning from multiple cameras simultaneously.

In the remainder of the paper we will present a

Multi-Task Learning algorithm with LOw Rank Attribute

Embedding (MTL-LORAE) for person re-identification.

We aim to discover shared information amongst cameras

that are treated as related tasks. Given images of people

from multiple cameras, we learn a discriminative model us-

ing MTL, so that the relationships among images from these

cameras can be utilized to improve the quality of the learned

model. Both low level features and attributes are used in our
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MTL objective function. Our low rank attribute embedding

is included into the objective function as well to discover

relationships of attributes from multiple cameras jointly. In

the embedded space, attributes of the same person from dif-

ferent cameras become closer, while attributes of different

people become more distinct. Inaccurate and incomplete

attributes can be rectified and recovered as well. The low

rank structure of the embedding ensures that only a small

number of “latent” attributes contribute to the classification.

We present an efficient alternating optimization method to

solve the MTL-LORAE objective function. We evaluate

MTL-LORAE on four person re-identification datasets and

demonstrate that MTL-LORAE produces promising results.

Our contributions are four-fold. First, we propose a

multi-task learning framework which utilizes standard MTL

for person re-identification. Second, we incorporate at-

tributes, which are complementary to low level features,

into the re-identification framework by introducing a low

rank embedding into the MTL framework to increase the

discriminative ability of the learned classifiers. Third, we

present a novel objective function including both low level

features and attributes, where the task-specific classifiers

and low rank attribute embedding are jointly learned by

an alternating optimization. Finally, our MTL-LORAE ap-

proach outperforms existing approaches by a large margin.

2. Background and Related Work

Person re-identification is an important research topic

for video surveillance. Feature design and distance mea-

sure are two key components in solving this problem. As

for feature design, different kinds of features have been tai-

lored and employed in previous work, including histogram

features from various color and textture channels [15, 49],

symmetry-driven accumulation of local features [12], fea-

tures from body parts with pictorial structures [9] to esti-

mate human body configuration, and space-time features

from person tracklets [41], etc. To use multiple features,

Gray et al. [15] select a subset of features by boosting

for matching pedestrian images, while Liu et al. [34] learn

person-specific weights to fuse multiple features to improve

the description power of multiple features.

Considering distance measures, some works focus on

learning an optimal distance metric to measure the sim-

ilarity between images from two cameras. Pairwise

Constrained Component Analysis [11] and Relaxed Pair-

wise Metric Learning [17] learn a projection from high-

dimensional input space to a low-dimensional space, where

the distance between pairs of data points satisfies pre-

defined constraints. The Locally-Adaptive Decision Func-

tion in [31] jointly learns a distance metric and a locally

adaptive thresholding rule. A Probabilistic Relative Dis-

tance Comparison model [50] attempts to maximize the

likelihood of a true match which has a relatively smaller

distance than a false match. A statistical inference perspec-

tive is applied in [21] to address the metric learning prob-

lem. Kernel-based distance learning has also been used [42]

to handle linearly non-separable data. More recently, Zhao

et al. [48] propose learning mid-level filters, which mainly

focuses on cross-view invariance and considers geometric

configurations of body parts through patch matching. A

deep learning framework to learn filter pairs that encode

photometric transforms is presented in [30].

Attributes are semantic concepts of objects, which are

manually defined or directly learned from low level fea-

tures. For person re-identification, attributes are powerful

in preserving consistent representations of the same person

and capturing differences among different people [29, 26,

27, 28]. However, attributes are mostly used as additional

information in conjunction with low level features without

considering their correlations. Although a few approaches

to object classification have modeled attribute correlations

[18, 37, 46], to the best of our knowledge, no work has

utilized both low level features and attribute correlations

across cameras for re-identification in a principled way.

Multi-Task Learning has been extensively studied.

Representative work includes clustered MTL [51], Robust

MTL [13] and trace norm regularization [20]. To model the

shared information across tasks, a shared low rank struc-

ture is widely assumed [7, 6]. Chen et al. [8] apply MTL

to jointly learn attribute correlations and ranking functions

for image ranking. Hwang et al. [19] consider attribute

classifiers as auxiliary tasks to object classifiers and adopt

MTL to learn a shared structure for better classification and

attribute prediction. Both [8] and [19] assume attributes

are related tasks while we regard cameras as tasks and in-

fer attribute correlations by low rank embedding. For per-

son re-identification, the multi-task support vector ranking

adopted in [35] ranks individuals by transferring informa-

tion of matched/unmatched image pairs from source do-

main to target domain. Ma et al. [36] also apply multi-

task learning to replace the universal distance metric for all

cameras by multiple Mahalanobis distance metrics, which

are different, but related, for camera pairs. We note that

our approach is fundamentally different from [35] in that

we explicitly model attribute correlations shared by multi-

ple cameras, as well as low level features, without using im-

age pairs. In addition, we seek a shared structure in terms of

both low level features and attributes across multiple cam-

eras rather than learning a metric for each pair of cameras,

which can be computationally expensive.

3. Methodology

3.1. Problem Formulation

We formulate re-identification as a classification prob-

lem by learning a set of classifiers using images from mul-

tiple cameras, where a classifier corresponds to a specific
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person. Each gallery and probe image is then represented

by a vector composed of outputs of these classifiers. By

computing distance between vectors of probe and gallery

images, we find and rank gallery images to complete re-

identification. For simplicity, we do not distinguish between

cameras and tasks, and use them interchangeably.

We are given L learning tasks {T 1, T 2, ..., T L} sharing

the same feature space. Our goal is to learn multi-class clas-

sifiers on a specific task using information from all tasks.

In a typical multi-class setting, all tasks have the same set

of C classes (persons). In a supervised one-vs-all manner,

for the l-th task T l, we start from binary classification by

considering images belonging to the c-th class as positive

samples and images from all the other classes in this task as

negative samples, where there are totally nl labeled train-

ing samples. By simultaneously learning multiple tasks, our

method is able to effectively transfer information from one

task to another task, which is particularly desirable when

training data from a task is limited. In the following, we

omit the class index c from all notation for clarity. For each

training sample from the l-th task T l, we have a low level

feature vector xl
i ∈ R

d and a label yli ∈ {−1, 1}, where

1 indicates this sample is from the c-th class and -1 other-

wise. In addition, each sample has a binary attribute vector

ali ∈ {0, 1}
k, which may be semantic and labeled by hu-

mans or correspond to learned binary codes such as [22].

For each dimension of ali, 1 denotes that the correspond-

ing attribute is present and 0 otherwise. A predictor fl with

respect to the task T l will then be learned.

We can improve the discriminative and generalization

ability of predictors by exploiting the relationship amongst

tasks. In this way, information from task T i is transferred

to some other task T j , where training samples may be lim-

ited, so that learning the predictor fj will benefit from learn-

ing on both T i and T j simultaneously. This motivates us

to adopt MTL to address the problem of matching images

from different cameras. In the subsequent sections, we will

first introduce the low rank attribute embedding (LORAE),

followed by the complete MTL formulation, the optimiza-

tion algorithm and re-identification process.

3.2. Low Rank Attribute Embedding

A simple approach to combine low level features and at-

tributes is to concatenate the feature vectors and original

attribute vectors. However, attributes are usually inaccurate

or incomplete due to the difficulty of obtaining exhaustive

semantic concepts and possible inconsistency between hu-

man annotators. The absence of an attribute for an instance

does not necessarily indicate that the instance does not have

that attribute, which could be incorrectly interpreted by the

learning algorithm. Similarly, the presence of an attribute

may be noise due to incorrect annotation. Therefore, the

learned model based on the original attributes may not de-

Figure 1. Illustration of low rank attribute embedding with three

attribute vectors from task T1 as examples. With the learned trans-

formation matrix, the original binary attributes are converted to

continuous attributes. Semantically related attributes are recov-

ered even though they are absent in the original attribute vectors,

i.e., the attribute female is non-zero in the embedded attribute vec-

tor due to the presence of both skirt and handbag, even though its

value is 0 in the original attribute vector a1

3.

scribe the instance accurately. Since there are a large num-

ber of attributes, they are typically related, which means

some attributes often co-occur across different tasks. In this

way, the presence of an attribute implies the presence of

other attributes that are closely related, which helps to re-

cover missing attributes. On the other hand, some attributes

are highly independent, so that they do not occur simulta-

neously, which helps to remove noisy attributes.

Following [43], we learn a low rank attribute space to

embed the original binary attributes into continuous at-

tributes using attribute dependencies. In particular, there

exists a transformation matrix Z in the low rank space con-

verting an original attribute vector into a new vector with

continuous values. The transformation matrix should cap-

ture correlations between all attributes pairs since an at-

tribute can be affected by multiple pairs of other attributes

globally. Moreover, groups of attributes can be independent

from each other, suggesting the low rank property of the

transformation matrix.

Formally, given an attribute vector ali from task T l, the

linear embedding is parameterized as

φZ(a
l
i) = Z⊤ali s.t. rank(Z) ≤ r, (1)

where Z ∈ R
k×k is the transformation matrix, and rank(Z)

is the rank of Z. We use linear embeddings although kernel

methods can also be applied. The rank constraint imposed

on Z ensures that Z is low rank, which means there exists

a row Zi,: (or a column Z:,i) that is a linear combination of

other rows (or columns). Therefore, the parameters required

for a good embedding are fewer than k × k, which reduces

the computational complexity. In this way, we obtain a re-

fined attribute vector with continuous values, which better

describes attribute correlations with missing values recov-

ered and noise reduced. An intuitive illustration of the low

rank embedding is presented in Figure 1, where missing val-

ues are successfully recovered in the embedded continuous

attributes.
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3.3. Multi­Task Learning with Low Rank Attribute
Embedding

The goal of MTL is to learn task-specific predictors si-

multaneously using the correlations among tasks, so that the

shared information can be transferred among tasks. To ob-

tain an accurate transformation matrix Z for attribute em-

bedding, we propose a unified MTL framework that utilizes

attribute correlations across multiple tasks, as well as train-

ing task-specific predictors at the same time. For simplicity,

we assume a linear classifier for each learning task T l rep-

resented by a weight vector wl. For notational convenience,

we concatenate the embedded attribute vector φZ(a
l
i) with

xl
i to form a new vector x̃l

i = [xl
i;φZ(a

l
i)] ∈ R

d+k. There-

fore, we have wl ∈ R
d+k. We define the loss function as

ℓ(yli,a
l
i, x̃

l
i,Z) which can be any smooth and convex func-

tion measuring the discrepancy between groundtruth and

predictions from learning. Specifically, we define the loss

function as

ℓ(yli,a
l
i, x̃

l
i,Z) =

1

2
(||yli −wl⊤x̃l

i||
2 + γ||ali − Z⊤ali||

2).

(2)

The first term ||yli − wl⊤x̃l
i||

2 is the quadratic loss from

applying the learned weight vector wl to the newly con-

structed sample x̃l
i. The second term ||ali − Z⊤ali||

2 is the

attribute embedding error, which regularizes the difference

between original attributes and refined attributes obtained

from the linear embedding through Z. The results from the

embedding should not deviate from the original attributes

too much. γ controls the contributions of the two terms.

We denote all the task-specific wl as a single weight ma-

trix W = [w1,w2, ...,wL] ∈ R
(d+k)×L. Since tasks have

shared information and each task also has specific structure,

similar to [6], we assume W is composed of a low rank

matrix shared by all tasks and a task-specific sparse compo-

nent representing the incoherence introduced by individual

tasks. Formally, W can be decomposed into a low rank ma-

trix R ∈ R
(d+k)×L and a sparse component S ∈ R

(d+k)×L.

Therefore, we have W = R+ S. Intuitively, non-zeros en-

tries in S indicate the task-specific incoherence between the

task and the shared low rank structure. The formulation of

MTL-LORAE is then given by

min
R,S,Z

∑L
l=1

∑nl

i=1 ℓ(y
l
i,a

l
i, x̃

l
i,Z) + λ||S||0

s.t. W = R+ S, rank(R) ≤ r1, rank(Z) ≤ r2,
(3)

where λ is a trade-off parameter controlling the importance

of the regularization. r1 and r2 constrain the matrices R

and Z to be low rank. ||S||0 is the ℓ0-norm of S, which

counts the number of non-zero entries of S.

Solving Problem (3) is NP-hard since it is non-convex

and non-smooth due to the sparse regularization and low

rank constraints. It can be converted into a computationally

tractable one by convex relaxation. First, since the ℓ1-norm

is a convex envelop of ℓ0-norm, ||S||0 is replaced by ||S||1,

which is the sum of all non-zero values. Second, the stan-

dard convex relaxation for the matrix rank is to use the nu-

clear norm (trace norm) || · ||∗ =
∑

i σi, which is the sum

of the singular values of a matrix. We then obtain

min
R,S,Z

∑L
l=1

∑nl

i=1 ℓ(y
l
i,a

l
i, x̃

l
i,Z) + λ||S||1

s.t. W = R+ S, ||R||∗ ≤ r1, ||Z||∗ ≤ r2,
(4)

which is our complete MTL-LORAE formulation. For no-

tational convenience, we denote the value of the objective

function as F . By minimizing (4), we obtain the desired

weight matrix W and transformation matrix Z.

3.4. Optimization

The optimization of Problem (4) is difficult because W

(i.e., R and S) and Z are coupled together by x̃l
i. How-

ever, by alternating between optimizing the objective func-

tion with respect to one variable and fixing the other one,

the problem is solvable. When fixing Z, ||ali − Z⊤ali||
2 be-

comes a constant so it can be omitted. x̃l
i is also constant

with respect to wl, so that it can be regarded as an ordinary

training sample. By removing the nuclear norm constraint

on Z, Problem (4) reduces to the standard MTL formula-

tion under the assumption of shared low rank structure plus

incoherent sparse values

min
W

∑L
l=1

∑nl

i=1 ℓ
′(yli, x̃

l
i) + λ||S||1

s.t. W = R+ S, ||R||∗ ≤ r1
, (5)

where ℓ′(yli, x̃
l
i) = 1

2 ||y
l
i − wl⊤x̃l

i||
2. Problem (5) can be

solved by the MixedNorm approach from [6]. Details can

be found in [6].

When fixing W, both R and S become constant, so we

can remove the constraints related to them. Therefore, we

obtain the objective function

min
Z

∑L
l=1

∑nl

i=1 ℓ(y
l
i,a

l
i, x̃

l
i,Z)

s.t. ||Z||∗ ≤ r2
. (6)

Relaxing the constraint as a regularization term, we obtain

min
Z

∑L
l=1

∑nl

i=1 ℓ(y
l
i,a

l
i, x̃

l
i,Z) + β||Z||∗ . (7)

With the nuclear norm regularization, the optimal transfor-

mation matrix Z will not degenerate to a trivial solution, i.e.,

an identity matrix I. However, due to the non-smooth nu-

clear constraint on Z, it is not easy to optimize (7). For clar-

ity of notation, we denote the loss function with respect to Z

as ℓZ, and the regularization term as hZ = ||Z||∗. Problem

(7) is then rewritten as

min
Z

ℓZ + βhZ . (8)
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ℓZ is convex, differentiable and Lipschitz continuous. hZ is

convex but non-differentiable. Thus, (8) can be solved by

the proximal gradient method iteratively.

First, we represent the gradient of ℓZ with respect to Z

as ∂Zℓ. According to the proximal gradient algorithm, at

each iteration step j, we then have Zj = proxtj
(Zj−1 −

tj∂Zj−1
ℓ), where tj > 0 is the step size and j is the iteration

index. proxtj
is a proximal operator, defined as

argmin
Z

ℓZj−1
+ 〈∂Zj−1

ℓ,Z− Zj−1〉

+ 1
2tj
||Z− Zj−1||

2
F + βhZ

, (9)

where 〈·, ·〉 is the inner product. (9) finds the Z that min-

imizes the surrogate of the loss function ℓ at point Zj−1

plus a quadratic proximal regularization term and the non-

smooth regularization term. (9) can be simplified to

argmin
Z

1
2tj
||Z− (Zj−1 − tjℓZj−1

)||2F + βhZ . (10)

It is clear that (10) can be effectively solved by perform-

ing SVD on Zj−1 − tjℓZj−1
and then soft-thresholding the

singular values.

In practice, we adopt the Accelerated Gradient Method

(AGM) [20] to accelerate the optimization. AGM adap-

tively estimates the step size and introduces the search point

Z̃j that is a linear combination of the latest two approxi-

mations Zj−1 and Zj−2, Z̃j = Zj−1 + (
αj−1−1

αj
)(Zj−1 −

Zj−2). Here, αj−1 and αj control the combination weights

of the previous two approximations, which are also updated

iteratively. The gradient in the j-th iteration is then per-

formed on Z̃j instead of Zj , where Z̃1 = Z0.

The gradient ∂Zℓ is explicitly computed as

∂Zℓ = (yli −wl⊤x̃l
i)

∂wl⊤
x̃
l
i

∂Z
+ γ

∂Z⊤
a
l
i

∂Z
(ali − Z⊤ali)

⊤

= (yli −wl⊤x̃l
i)

∂wl⊤
φ Z

⊤
a
l
i

∂Z
+ γ

∂Z⊤
a
l
i

∂Z
(ali − Z⊤ali)

⊤

= ali[w
l⊤
φ (yli −wl⊤x̃l

i) + γ(ali − Z⊤ali)
⊤],

(11)

where wl
φ ∈ R

k is part of the weight vector wl correspond-

ing to the embedded attribute φZ(a
l
i). When the optimiza-

tion for Z converges, we update Z, fix it and minimize the

objective function for W. The optimization will stop af-

ter a pre-defined iteration number P or when the difference

∆F = Fj−1 − Fj > 0 between consecutive values of the

objective function is below a threshold. The entire opti-

mization process is summarized in Algorithm 1.

3.5. Re­identification Process

With C training classes (persons), we obtain C class-

specific weight matrices and transformation matrices, each

of which is denoted as W(c) = [w1
(c),w

2
(c), · · ·,w

L
(c)] and

Z(c), respectively, by performing the optimization with re-

spect to each class. Given an image taken by the l′-th cam-

era, l′ = 1, 2, · · ·, L, which is either from the gallery or the

Algorithm 1 Multi-Task Learning with Low Rank At-

tribute Embedding (MTL-LORAE)

Input: training data samples {xl
i,a

l
i, y

l
i} for all L tasks,

initial Z0 and W0, iteration number P and threshold

th > 0 to control iteration step.

Output: Learned Z and W.

Z← Z0, W←W0;

Evaluate objective function F0 using Z and W;

for j = 1 to P do

Optimize (5) when fixing Z by MixedNorm;

Update W←Wj ;

Optimize (6) when fixing W by AGM algorithm;

Update Z← Zj ;

Evaluate objective function Fj ;

Calculate ∆F = Fj−1 − Fj ;

if ∆F < th break; end if

end for

probe set, we first extract low level feature xl′ and attribute

vector al
′

. By applying the transformation matrices, we

convert our feature and attribute vectors to a new set of vec-

tors, denoted as X̃l′ = [x̃l′

(1), x̃
l′

(2), · · ·, x̃
l′

(C)] ∈ R
(d+k)×C ,

where the c-th column x̃l′

(c) = [xl′ ;Z⊤

(c)a
l′ ] is the concate-

nation of the feature vector and the embedded attribute vec-

tor using the c-th transformation matrix Z(c). We further se-

lect weight vectors with respect to l′-th task from C weight

matrices, and multiply them with the new vectors to obtain

a score vector s as

s = [wl′⊤
(1) x̃

l′

(1),w
l′⊤
(2) x̃

l′

(2), · · ·,w
l′⊤
(C)x̃

l′

(C)], (12)

where wl′

(c) is the column weight vector extracted from

W(c) corresponding to the l′-th task T l′ trained for the c-th

class. Therefore, each image is finally represented by a C-

dimensional score vector s, similar to the reference coding

method in [23] and [1]. The similarity between a gallery

image and a probe image is then measured by the Euclidean

distance between two score vectors. Note that the classes in

the training set can be the same as or disjoint from those in

the gallery and probe sets.

For multi-shot scenarios, multiple images are presented

for each probe/gallery. Given a probe image set containing

mp images, the re-identification process needs to aggregate

image-level similarities to rank the gallery image sets. To

this end, we adopt the following voting scheme. We first

compute the distances between mp probe images and all

gallery images, and then apply a Gaussian kernel to convert

the distances to similarities. To obtain a single similarity

between the probe and a gallery image set of mg images,

we sum up all mp ×mg similarities and divide the sum by

the number of gallery images, mg , to discount the affect of

a gallery set that contains many images.
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4. Experiments

4.1. Datasets

We evaluate our approach on 4 public datasets, iLIDS-

VID [41], PRID [16] and VIPeR [14] and SAIVT-SoftBio [3].

The iLIDS-VID dataset consists of 600 image sets for 300

people from two cameras at an airport, which is designed

for multi-shot re-identification. Each person has two image

sets from the two cameras respectively, where each image

set contains 23 to 192 images, sampled from a short video

taken within a few seconds. The PRID dataset is used for

single-shot scenario; it contains images of different people

from two cameras, A and B, under different illumination

and background conditions. There are 385 and 749 people

appearing in cameras A and B, respectively, of which 200

appear in both cameras. The VIPeR dataset contains 632

persons from two cameras, with only one image per person

in each camera. The SAIVT-SoftBio dataset is also designed

for multi-shot re-identification, where images are also ex-

tracted from a short video containing a person. There are

152 people from 8 different cameras. Since not every per-

son appears in all cameras, following the evaluation setting

in [4], we select those appearing in three cameras (#3, #5

and #8) as our evaluation set.

4.2. Implementation Details

We use a 2784-dimensional color and texture descrip-

tor [15] as our low level feature representation, which is

composed of 8 color channels (RGB, HSV and YCbCr 1)

and 19 texture channels (Gabor and Schmid). As for at-

tributes, we learn binary SVMs as in [27] to predict the

same 20-bit attributes in [27] for PRID and 90-bit attributes

in [10] for VIPeR. For other datasets, we learn attribute

functions by [39] in an unsupervised manner on the train-

ing set and generate 32-bit attributes. Following the stan-

dard evaluation protocols, we randomly select 150, 100 and

316 persons appearing in all cameras as our training set

for iLIDS-VID, PRID and VIPeR, respectively, while the re-

maining 150, 649 and 316 persons serve as the test set (gal-

leries and probes). All the results are averaged over 10 ran-

dom training/test splits. Parameters for learning are empir-

ically set via cross-validation and fixed for all experiments.

r1 = 2, r2 = 5 and λ = 0.3 in (3). γ = 0.5 in (2). Iteration

number P = 500 and threshold th = 10−5 in Algorithm 1.

4.3. Experimental Results

4.3.1 iLIDS-VID

Among 150 persons in the test set, images from one camera

are used as the probe set, while those from another camera

serve as the gallery set.

1Only one of the luminance channels (V and Y) is used.

We first compare our approach with 8 completing meth-

ods for multi-short re-identification: Salience Matching

(Salmatch) [47], Learning Mid-level Filters (LMF) [48],

Multi-short Symmetry-driven Accumulation of Local Fea-

tures (MS-SDALF) [12], Multi-short color with RankSVM

(MS-color+RSVM) [41], Multi-short color&LBP with

RankSVM (MS-color&LBP+RSVM) [41], color&LBP

with Dynamic Time Warping (Color&LBP+DTW) [17],

HoGHoF with DTW (HOGHOF+DTW) [25], color&LBP

with Discriminative Video fragments selection and Rank-

ing (MS-color&LBP+DVR) [41]. We use cumulative match

characteristic (CMC) curves to evaluate performance, and

show experimental results in Figure 2 and Table 1.

Our MTL-LORAE approach produces the best results

consistently in terms of matching rate with respect to vary-

ing ranks. Specifically, when inspecting the matching

rate at rank 1 and rank 5, we find a relatively large im-

provement compared to the best existing method, MS-

color&LBP+DVR. Specifically, our method successfully

increases the rank 1 accuracy from 34.5% to 43.0%, result-

ing in an 8.5% improvement. In addition, we obtain nearly

100% matching rate at rank 50, while most compared meth-

ods can only achieve 80% matching rate or even less.

4.3.2 PRID

Following the protocol in [16], we use images of 100 per-

sons from camera A as the probe set, and 649 persons in

camera B as the gallery set, excluding all training samples.

We compare our algorithm with 11 learning-based meth-

ods 2: Relaxed Pairwise Metric Learning (RPML) [17],

Probabilistic Relative Distance Comparison (PRDC) [50],

RankSVM (RSVM) [38], Salmatch [47], LMF [48], Pair-

wise Constrained Component Analysis (PCCA) [11], regu-

larized PCCA (rPCCA) [42], Keep It Simple and Straight-

forward MEtric (KISSME) [21], kernel Local Fisher Dis-

criminant Classifier (kLFDA) [42], Marginal Fisher Analy-

sis (MFA) [42] and Kernel Canonical Correlation Analysis

(KCCA) [33]. We again use CMC curves to evaluate per-

formance, as shown in Figure 2 and Table 2.

Our MTL-LORAE approach outperforms all existing

methods by a large margin. In particular, our approach

achieves 50% matching rate at rank 10, while the match-

ing rate of most other approaches is less than 30%. Ex-

cept for our approach and KCCA, all other methods are

only able to obtain a 50% matching rate as far as rank 55.

Our approach also consistently outperforms KCCA, which

currently holds state-of-the-art performance, from the be-

ginning. Specifically, on average the absolute improvement

in terms of matching rate by our approach over KCCA is

6%, where the margin gradually increases as we move from

lower ranks to higher ranks. Notably, the relative improve-

ment by our approach over KCCA is nearly 10%. In terms

2We do not compare with DVR [41] that uses 89 persons for testing.
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Figure 2. CMC curves of our approach and state-of-the-art approaches on the iLIDS-VID dataset (left) and PRID dataset (right).

Table 1. CMC scores of ranks from 1 to 50 on the iLIDS-VID

dataset. Numbers indicate the percentage (%) of correct matches

within a specific rank.

Rank 1 5 10 20 30 50

Salmatch [47] 8.0 24.8 35.4 52.9 61.3 74.8

LMF [48] 11.7 29.0 40.3 53.4 64.3 78.8

MS-SDALF [12] 5.1 19.0 27.1 37.9 47.5 62.4

MS-color+RSVM [41] 16.4 37.3 48.5 62.6 70.7 80.6

MS-color&LBP+RSVM [41] 20.0 44.0 52.7 68.0 78.7 84.7

Color&LBP+DTW [41] 9.3 21.6 29.5 43.0 49.1 61.0

HoGHoF+DTW [41] 5.3 16.0 29.7 44.7 53.1 66.7

MS-color&LBP+DVR [41] 34.5 56.4 67.0 77.4 84.0 91.7

MTL-LORAE 43.0 60.0 70.2 85.3 90.2 96.3

of the accuracy at rank 1 and rank 5, our approach achieves

a matching rate 18% at rank 1 and 37.4% at rank 5, respec-

tively, leading to a 3.5% and 3.1% performance gain over

KCCA. When evaluated with more retrieved samples, our

approach still secures the best performance. Pairwise dis-

tance metric learning based on camera pairs is clearly not

powerful enough to obtain good results. Although using

kernel tricks, without fully investigating the relationships

of features and attributes, KCCA cannot improve the per-

formance much. The experiments further verify that MTL-

LORAE, which learns low rank attribute embedding in an

MTL setting, successfully exploits relationships among at-

tributes and produces a more discriminative model.

4.3.3 VIPeR

We apply data augmentation 3 to generate more train-

ing samples for MTL-LORAE. We compare MTL-LORAE

with 4 best-performing methods, including 2 recent ones:

LOMO+XQDA (LX) [32] and TSR [40], as shown in Ta-

ble 3. Our MTL-LORAE achieves the best accuracy at rank

1 and rank 5, outperforming existing methods by a large

margin, and comparable results at rank 10 and rank 20.

4.3.4 SAIVT-SoftBio

We use half of the people as the training set and the re-

maining half as the test set. In the test set, each image set

3For each training image, we apply horizontal and vertical translation

t ∈ {−6,−3, 0, 3, 6} pixels and clockwise rotation r ∈ {−5, 0, 5} de-

grees, resulting in totally 75 images.

Table 2. CMC scores of ranks from 1 to 50 on the PRID dataset.

Numbers indicate the percentage (%) of correct matches within a

specific rank.

Rank 1 5 10 20 30 50

RPML [17] 4.8 14.3 21.6 30.2 37.2 48.1

PRDC [50] 4.5 12.6 19.7 29.5 35.8 46.0

RSVM [38] 6.8 16.5 22.7 31.5 38.4 49.3

Salmatch [47] 4.9 17.5 26.1 33.9 40.5 47.8

LMF [48] 12.5 23.9 30.7 36.5 42.6 51.6

PCCA [11] 3.5 10.9 17.9 27.1 34.2 45.0

rPCCA [42] 3.8 12.3 18.3 27.5 35.2 45.4

KISSME [21] 4.1 12.8 21.1 31.8 40.7 52.5

kLFDA [42] 7.6 18.9 25.6 37.4 46.7 58.5

MFA [42] 7.2 18.7 27.6 39.1 47.4 58.7

KCCA [33] 14.5 34.3 46.7 59.1 67.2 75.4

MTL-LORAE 18.0 37.4 50.1 66.6 73.1 82.3

Table 3. CMC scores of ranks from 1 to 20 on the VIPeR dataset.

Numbers indicate the percentage (%) of correct matches within a

specific rank.

Rank kLFDA [42] KCCA [33] LX [32] TSR [40] MTL-LORAE

1 32.2 37.3 40.0 31.6 42.3
5 65.8 71.4 68.9 68.6 72.2
10 79.7 84.6 80.5 82.8 81.6
20 90.9 92.3 91.1 94.6 89.6

serves as the probe while all the remaining image sets are

regarded as the gallery. For fair comparison, we evaluate

the performance using precision, recall and F1-score by re-

garding the identification problem as a classification prob-

lem as [4] does, instead of CMC score that is not applicable

to the scenario with more than two cameras. We compare

our algorithm to RSVM [38], KISSME [21], RSVM with

Conditional Random Field (R-CRF) [4], and KISSME with

Conditional Random Field (K-CRF) [4]. Results are aver-

aged over all possible camera pairs of the three cameras, and

presented in Table 4. Our MTL-LORAE is able to achieve

the best F1-score, outperforming the best existing method,

K-CRF, by 4.6%. In addition, MTL-LORAE achieves the

second best recall rate and comparable precision rate. We

also note that our learning framework can learn the models

for all cameras simultaneously regardless of the number of

cameras, which is more computationally efficient than ex-
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Table 4. Comparison of precision, recall and F1-score (in %) by

existing methods and our approach on SAIVT-SoftBio dataset.

RSVM [38] KISSME [21] R-CRF [4] K-CRF [4] MTL-LORAE

Precision 22.0 19.7 53.7 50.3 45.2

Recall 42.1 66.1 39.4 49.8 63.7

F1-score 26.2 29.5 42.0 48.3 52.9

Table 5. CMC scores of ranks from 1 to 50 on the iLIDS-VID

and PRID datasets by STL, MTL-Att, MTL-FR and the complete

MTL-LORAE.

iLIDS-VID PRID

Rank 1 5 10 20 50 1 5 10 20 50

STL 14.7 42.7 41.8 58.5 91.7 11.3 27.9 41.8 53.0 74.6

MTL-FR 37.7 54.0 47.4 64.9 92.5 11.3 34.1 47.4 61.1 79.0

MTL-Att 40.5 54.9 47.5 64.2 91.2 12.2 34.7 47.5 61.7 79.8

MTL-LORAE 43.0 60.0 70.2 85.3 96.3 18.0 37.4 50.1 66.6 82.3
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Figure 3. Attribute correlations learned on the PRID dataset.

Larger values indicate two attribute are more positively correlated.

We only show representative examples rather than the whole ma-

trix Z.

isting methods that explicitly deal with all pairs of cameras.

4.4. Discussion

We conduct further experiments to better understand the

characteristics of our MTL-LORAE formulation and ana-

lyze the contribution of individual components.

Analysis on transformation matrix Z. Based on the as-

sumption that attributes are usually correlated, the learned

low rank matrix Z should preserve attribution correlations

well. We show in Figure 3 some representative examples

of attribute relations from the learned Z (averaged over all

persons) on the PRID dataset since the attributes are manu-

ally defined and have semantic meaning. Clearly, some at-

tributes are closely related so that they have higher correla-

tion score, i.e., the attributes shorts and barelegs, since they

should frequently co-occur. In contrast, a person cannot

wear light bottoms (or light shirt) and dark bottoms (or dark

shirt) at the same time so that these two attributes have neg-

ative correlation. Similar relationships of other attributes

can also be seen. The learned transformation matrix cap-

tures the correlations amongst attributes well and thus im-

proves the quality of the original attributes, which justifies

the effectiveness of the low rank structure of the embedding

space and our learning framework.

Evaluation of individual components. To verify the effect

of individual components in our framework and show that

each of them contributes to the performance boost, we eval-

uate three variants of our approach. Instead of MTL, we

assume tasks are independent and learn classifiers for each

task separately while keeping other components unchanged,

so that the learning is based on single tasks (STL). We also

use the original attributes without embedding, and discard

the embedding error term in the objective function in (2)

to have another variant, MTL-Att. In addition, we remove

the low rank constraint on Z in (4), which embeds original

attributes to a possible full rank space by making attributes

highly uncorrelated. We denote this variant as MTL-FR. We

then evaluate the three variants on iLIDS-VID and PRID to

see how each component affects the performance.

We show CMC scores at some ranks in Table 5. The re-

sults by STL are always worse than those by MTL-LORAE

and other two MTL-based variants, which indicates that

learning related tasks simultaneously successfully exploits

shared information amongst tasks and thus increases the

discriminative ability of the learned model. We also find

that MTL-FR is inferior to MTL-Att, suggesting that as-

suming attributes are uncorrelated is unreasonable and even

hurts performance. However, only using the original at-

tributes without investigating their correlations, MTL-Att

cannot produce the best results, although it already outper-

forms most existing approaches. The experiments reveal

that individual components, i.e., MTL and low rank embed-

ding, are integrated into our formulation in a principled way

and together improve the performance.

5. Conclusion

We have proposed a multi-task learning (MTL) formu-

lation with low rank attribute embedding for person re-

identification. Multiple cameras are treated as related tasks,

whose relationships are decomposed as a low rank struc-

ture shared by all tasks and task-specific sparse compo-

nents for individual tasks by MTL. Both low level features

and semantic/data-driven attributes are used. We have fur-

ther proposed a low rank attribute embedding that learns

attributes correlations to convert original binary attributes

to continuous attributes, where incorrect and incomplete at-

tributes are rectified and recovered. Our objective function

can be effectively solved by an alternating optimization un-

der proper relaxation. Experiments on four datasets have

demonstrated the outstanding performance and robustness

of the proposed approach.
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