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Abstract

Consumer depth cameras have dramatically improved

our ability to track rigid, articulated, and deformable 3D

objects in real-time. However, depth cameras have a lim-

ited temporal resolution (frame-rate) that restricts the ac-

curacy and robustness of tracking, especially for fast or un-

predictable motion. In this paper, we show how to perform

model-based object tracking which allows to reconstruct the

object’s depth at an order of magnitude higher frame-rate

through simple modifications to an off-the-shelf depth cam-

era. We focus on phase-based time-of-flight (ToF) sensing,

which reconstructs each low frame-rate depth image from

a set of short exposure ‘raw’ infrared captures. These raw

captures are taken in quick succession near the beginning of

each depth frame, and differ in the modulation of their ac-

tive illumination. We make two contributions. First, we de-

tail how to perform model-based tracking against these raw

captures. Second, we show that by reprogramming the cam-

era to space the raw captures uniformly in time, we obtain

a 10x higher frame-rate, and thereby improve the ability to

track fast-moving objects.

1. Introduction

Tracking objects that move is a fundamental computer

vision task that enables higher-level reasoning about the

world. There are several key challenges for visual ob-

ject tracking that limit the accuracy of current systems: (i)

changing object appearance due to object translation, ro-

tation, deformation, and lighting variation; (ii) occlusion,

and objects leaving the viewing volume; (iii) simultaneous

tracking of multiple objects whose number may vary over

time; and (iv) tracking under fast object or camera motion.

General purpose tracking approaches address these chal-

lenges through adaptive non-parametric methods, as in

mean-shift tracking [4], and by online learning of a flexi-

ble object representation [22]. For multiple objects longer

temporal reasoning is required to disambiguate different ob-
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Figure 1. Overview. Phase-based time-of-flight (ToF) sensors in-

fer a low frame-rate stream of depth images from a set of short-

exposure ‘raw’ captures that are clustered closely in time to reduce

motion artifacts. For illustration purposes, we use five colors here

to indicate different frequencies and phase modulations of the il-

luminant and sensor; see text. For the application of model-based

tracking, we propose to forego the depth reconstruction step, and

instead track directly from equispaced raw captures, giving us sig-

nal at much higher frame-rate.

jects with similar appearance [21, 1]. Despite significant

progress in the last decade, general purpose tracking re-

mains challenging, as illustrated by the recent VOT 2014

challenge [16]. For other general surveys on object track-

ing, see [27, 26].

In this paper we do not address the general purpose track-

ing problem but instead focus on accurately tracking fast-

moving rigid objects. One strategy to perform such track-

ing is to use custom high speed sensors and processing

units [20]. Alternatively one could increase the resolution

of the captured frames in order to improve angular accuracy,

a point made in an extensive synthetic SLAM study [10]. A

third option may be to use multiple camera systems [17].
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However, increasing the frame rate via a high frame rate

camera or even a custom built imaging sensor is expensive

and requires control over the imaging setup. In this paper

we instead show how the Kinect V2 time-of-flight (ToF)

sensor [2] can be repurposed for high speed object tracking.

Our approach should readily extend to other commercially

available ToF sensors.

Our approach is based on the internal workings of phase-

based ToF sensors, as illustrated in Fig. 1. More detail is

given below, but briefly, the Kinect camera captures a set

of actively illuminated infrared frames (the colored bars in

the left column) and infers from these a depth image frame

(each grey bar). In order to provide a 30Hz depth signal,

the Kinect sensor internally captures infrared frames at an

average of 300Hz. The frames are captured in a short burst

at the beginning of the frame, to minimize movement in the

scene during the capture period required for depth recon-

struction. Each frame is captured under one of three fre-

quencies of laser illumination, modulated by one of three

phases, resulting in nine infrared frames per depth frame. A

tenth infrared frame without active illumination is recorded

to adjust for ambient brightness independent of the active

illumination.

Our main contribution is to show how to repurpose this

phase-based ToF sensor in two ways. First, we show that

model-based tracking can be performed against the raw ToF

captures. This has the nice property that we do not need to

run through the noisy and potentially computational expen-

sive depth reconstruction process in order to track. Sec-

ond, instead of capturing the raw frames in bursts, we space

the frames out equally in time at 300Hz. This allows for

tracking much faster-moving objects than would have been

possible using the original 30Hz depth reconstruction (see

Fig. 2).

We report an initial study of the above ideas based on

a model-based tracker. This employs a probabilistic state

space model with a standard temporal prior. As the ob-

servation likelihood, we describe a generative model that

allows us to compare the observation to a rendered simula-

tion of the raw ToF captures, given a 3D model. Further, we

show that we can accurately track a fast moving rigid ob-

ject (> 6 m/s) in the regime where the depth reconstruction

fails.

2. Background

In this section we present some background material on

phase-based ToF and model-based tracking that will be nec-

essary to explain our main contributions in the subsequent

sections.

2.1. Phasemodulation timeofflight

Modern ToF cameras operate based on the principle of

phase modulation: a modulated light source emits a sinu-

Figure 2. Time-of-flight captures and fast motion. A table ten-

nis ball is dropped, and three raw captures are superimposed for

visualization using the red, green, and blue color channels. Left:

phase-based ToF clusters its captures temporally to minimize mo-

tion artifacts during depth reconstruction. Right: we propose re-

programming the ToF capture profiles to more equally space the

captures. This paper demonstrates how to exploit this extra tempo-

ral information by tracking objects without a depth reconstruction.

soidal light signal at a specific frequency, and a special sen-

sor images the light’s reflection, gain-modulated at the same

frequency [23, 18]. By recording a large number of periods

during the frame exposure time the recorded image intensi-

ties contain information about the phase shift between emit-

ted light and incoming light. This phase shift is dependent

on depth but will wrap around several times with the depth

ranges present in typical scenes. Instead of recording only

a single frame at a single frequency, modern cameras there-

fore record a sequence of frames at multiple modulation fre-

quencies and phase shifts. The set of recorded frames then

allows unique disambiguation of surface distances based on

phase unwrapping algorithms [11, 19, 9]. This standard op-

eration model is illustrated in the leftmost column in Fig. 1.

Formally, for each pixel we obtain a sequence of nine

measurements R1, . . . , R9 (3 frequencies × 3 phases) via

Ri =
ρ

d2
Si(d) + ǫi, (1)

where d > 0 is the depth of the imaged surface at that pixel

and ρ > 0 is the surface albedo. The ideal responses are

dependent on modulation frequency and phase delay and

are given by an idealized calibrated response curve [2],

Si : [dmin, dmax] → {−Imax, . . . ,−1, 0, 1, . . . , Imax},

where dmin and dmax is the range of valid depths and the

range of Si are signed image intensities. For the noise

model ǫi we simply assume zero mean Gaussian noise of

a fixed standard deviation.1

1Due to the way the Kinect sensor operates [2] the right noise model

would be an intensity-dependent Skellam noise, but for simplicity we adopt

the Gaussian approach.
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In the regular Kinect ToF sensor, a depth reconstruction

engine is used to infer the depth from the nine measure-

ments as

d̂ = f(R1, . . . , R9). (2)

Our system instead uses the raw measurements as detailed

below, without first needing to infer depth.

2.2. Modelbased tracking

We focus on the task of model-based object track-

ing [25, 15], using a generative observation model to relate

the tracked position to the observations over time. To pro-

vide stable tracking we use a temporal model and follow the

influential work by Isard and Blake [12] based on particle

filtering [8] in state space models. In a state space model we

need to specify a state space and both a probabilistic tran-

sition model and a probabilistic observation model [6]. We

use a state vector

Xt = (xt, vt), (3)

encoding a 3D world location xt ∈ R
3 and a 3D velocity

vector vt ∈ R
3. For general rigid objects we could include

rotation parameters, i.e. Xt = (xt, rt, vt), but, to demon-

strate our key contributions in as simple a setup as possible,

we will only use a spherical object (a table tennis ball) in

the experiments, which does not require rotational param-

eters. While not currently demonstrated, our approach is

general and our results should straightforwardly extend to

more complex rigid and non-rigid objects that have higher-

dimensional state spaces.

The stochastic transition model is specified via a distri-

bution P (Xt+1|Xt) that encodes the assumed laws of mo-

tion. The observation model is specified via an analysis-by-

synthesis approach: observation Yt corresponds to an entire

raw ToF frame, and therefore we compute an observation

likelihood by comparing the observed image to a synthetic

rendering of the scene; we provide further details below.

Together, the transition and observation model give a

joint distribution over the entire sequence of states X1:T and

observations Y1:T as

P (X1:T , Y1:T ) =

T
∏

t=1

P (Xt|Xt−1) P (Yt|Xt), (4)

where P (X1|X0) = P (X1) is assumed given.

Once the model is in place, inference given observations

can be done either by filtering or by smoothing [6]. In fil-

tering the past observations are used to infer the current be-

lieved distribution over positions and velocities. As such fil-

tering is causal and suitable for interactive tracking. Filter-

ing provides as output at each time step t the marginal dis-

tribution P (Xt|Y1:t) over the current state Xt. In smooth-

ing, we instead use observations both from the past and the

future, i.e. we perform inference offline after the entire se-

quence Y1:T of T frames has been observed. This is known

to significantly improve tracking accuracy [13] as the infer-

ence result P (X1:T |Y1:T ) now integrates all observations

coherently. A middle ground between filtering and smooth-

ing is to delay inference by a small number of K frames

and perform partial smoothing using a truncated sequence,

i.e. to infer P (X(t−K+1):t|Y1:t). This is known as fixed-

lag smoothing and offers an adjustable tradeoff between the

two extremes [5]: for K = 1 we recover filtering, and for

K = T we recover smoothing. This can allow for improved

accuracy of interactive tracking at the expense of introduc-

ing a fixed latency.

In this work we decided to use forward filtering and leave

a comparison to smoothing methods for future work. We

use a standard inference method: the bootstrap particle fil-

ter [8]

3. Method

We now describe our model for tracking fast moving ob-

jects. While the motion model is standard, the observation

model for raw ToF captures is a novel contribution.

3.1. Motion model P (Xt+1|Xt)

Using the state representation (3) we model the motion

linearly via a multivariate Gaussian distribution,

P (Xt+1|Xt) ∼ N

([

xt +∆vt
vt

]

,

[

σ2
x
I3 0
0 σ2

v
I3

])

,

(5)

where ∆ is the difference in time stamps between the frame

captured at step t + 1 and step t, and σx > 0 and σv > 0
are the noise terms for the position and velocity vectors.

In our experiments we set σx = 10 mm and σv = 1 mm

per 300 Hz. Intuitively we can understand the model (5) as

simply predicting the position xt+1 to be the linear extrap-

olation of the current position xt using the current estimate

of the velocity vt. The velocity is assumed to remain con-

stant, i.e. vt+1 = vt, which is a common simplifying as-

sumption. Other motion models are of course possible; we

chose (5) as probably the simplest possible model that could

help demonstrate our main contributions in raw ToF-based

tracking.

3.2. Observation model P (Yt|Xt) for raw ToF

This section describes one of our contributions: how to

create an observation model which removes the dependence

on a ToF depth reconstruction and instead compute obser-

vation likelihoods directly against the raw ToF captures.

The observation model is specified as P (Yt|Xt), where

Yt is an observed raw ToF frame of size 512-by-424 (plus

some meta information from the Kinect sensor), and Xt is

an object hypothesis. The raw ToF frame takes the form of

raw responses (1), one for each sensor element (sensel). Let
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Figure 3. Model Based Tracking. Depending on the frequency

and phase configuration of the individual exposures, the object ap-

pears with different illuminations in the raw ToF captures. The

generative forward model allows to synthesize the appearance of

the object for these different illuminations. First row: Observed

raw ToF image. Second row: Rendered image of the best hypoth-

esis. Columns correspond to individual exposures.

use denote by R̄i(u) the observed response at sensel loca-

tion u and shutter type i, where for a single frame only one

shutter type i is possible. The observed information is then

Yt = (i, R̄i), where i is the shutter type, and R̄i is the vec-

tor of all response at all sensels. The shutter type i changes

in a fixed cyclic order on the Kinect device, and thus does

not need to be modeled probabilistically. Therefore we only

need to specify a model for the frame R̄i.

Our probabilistic model for R̄i is based on a 3D render-

ing approach: given the object hypothesis Xt we first render

the distance d(u) and reflectivity ρ(u) for every sensel ray at

location u. The reflectivity is computed via a Blinn-Phong

model [3] whose coefficients we fit empirically to the object

appearance prior to tracking in an offline setup step. From

d(u) and ρ(u) and from the known shutter type i we use

equation (1) to compute the expected ideal object response

Robj
i
(u) for each location u. Fig. 3 shows pairs of observed

and rendered responses side by side.

The ideal response Ri(u) is compared to the observed

response R̄i(u) to compute a likelihood. Here, a compli-

cation arises: the rendering model expects a non-zero re-

sponse only at object locations, hence the background is not

modeled. One possibility is to compare only sensels at the

assumed object location provided by Xt, however, this does

not provide a valid distribution P (Yt|Xt) for the entire ob-

served frame.

To overcome this difficulty, we explicitly model the

background. This is commonly done for RGB images via

mixture models, as in the seminal work [7, 24, 28]. Here,

for simplicity and because we will assume a static camera,

we will use a simpler Gaussian model as follows. For every

shutter type i and every location u we capture a few seconds

of static background video and compute the empirical mean

µ̂i(u) to the observed responses R̄i(u). We then assume the

background to be distributed as

Rbg
i
(u) ∼ N (µ̂i(u), σ

2
bg), (6)

where σbg is a global parameter in raw ToF units, typically

in the range of a few hundred units.

The full model P (Yt|Xt) is now the composition be-

tween the background responses Rbg
i

and the object (fore-

ground) responses Robj
i

. For a given object hypothesis Xt

the renderer can perform this composition easily as it com-

putes a mask of object locations during rendering. Let use

denote the mask by M(u) ∈ {0, 1} where M(u) = 1 de-

notes a location where the object hypothesis causes the lo-

cation u to be occupied. We obtain the full model as

Ri(u) ∼

{

N (Robj
i
(u), σ2

obj), if M(u) = 1,

N (µ̂i(u), σ
2
bg), otherwise.

(7)

Here the additional parameter σobj is a constant specifying
the assumed noise in the object responses. From (7) and
assuming independent pixels we see that the full raw ToF
frame is modeled by a product of Gaussian distributions,
hence itself is a multivariate Gaussian. Therefore we com-
pute the log-likelihood function logP (Yt|Xt) as

logP (Yt|Xt) =−
∑

u:M(u)=1

[

(R̄i(u)−Robj(u))
2

2σ2
obj

+ log σobj

]

−
∑

u:M(u)=0

[

(R̄i(u)− µ̂i(u))
2

2σ2
bg

+ log σbg

]

+ C,

(8)

where C = −n

2 log(2π) is a constant independent of the

observation (n = 512 · 424 is the sensel count in a frame),

and can be omitted.

4. Implementation and Validation

Implementation details We implement the above modifi-

cations to the Kinect sensor [2] by using a custom firmware

and modified driver software. However, in principle, a sim-

ilar mode of operation could be supported by other phase-

based ToF cameras available commercially, e.g. the ones

available from PMD, Intel, and Mesa Imaging.

The tracker is implemented in C++ on a CPU and the

rendering and likelihood computations are performed en-

tirely on the GPU through custom shaders. A tiled layout

enables to evaluate over 8000 particles in parallel and when

using 4096 particles allows real time tracking at 300 Hz.

Experimental setup A. For our experiments we use two

different setups as shown in Fig. 4 and Fig. 5. In the first

setup, we use a static camera mounted on a tripod and a ta-

ble tennis ball as object model. The ball is released from a

fixed position with no inertia and falls downwards driven

purely by acceleration due to gravity. Quickly the ball

reaches a velocity that prevents a reliable depth reconstruc-

tion using phase unwrapping because of insufficient overlap

in the individual raw ToF frames (see §5.1). Therefore there
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Figure 4. Experimental setup A. A table tennis ball is released

from a stationary position and accelerates towards the ground. The

camera observes this fall at a slightly downwards angle.

Figure 5. Experimental setup B. A table tennis ball attached to a

rope swings as a pendulum. Attached to the rope are two reective

markers used for motion capture. The rope is kept straight using an

attached weight. The scene is captured by both the Kinect camera

and a commercial motion capture system consisting of 11 cameras

(not shown).

is no ground truth depth available. To nevertheless assess

tracking performance quantitatively we use the following

procedure. Because the ball starts from rest, the trajectory

lies on a line in 3D space. Our tracker predicts object coor-

dinates at each observation as the average of the weighted

particle positions. For each sequence we use the predicted

coordinates and fit a line using least squares. Each predicted

coordinate deviates from the line and the magnitude of this

deviation is a reasonable proxy of the quality of the tracking

result.

Specifically, because motion is present only in the y/z
plane, we fit a least squares regressor zt ≈ ayt + b from the

the object position at step t as predicted by the tracker. The

error metric is then the root mean squared error (RMSE),

RMSE =

√

1

T

∑

t=1:T

(zt − (ayt + b))2. (9)

To avoid potential biases due to initialization effects we

perform the above for only the second half of each se-

quence. All our methods use the same transition model and

Figure 6. Experimental setup B. A table tennis ball is attached

to a rope with two reflective markers. Additional markers in the

scene allows us to register the coordinate frames of the camera

and of the motion capture system. Shown in an averaged infrared

image of the ToF camera.

the same parameters in (5), so no systematic bias due to as-

suming a strict linear motion benefits one model over the

other.

Experimental setup B. In our second setup, the table ten-

nis ball is attached to a rope together with two reflective

markers. The markers are tracked in 3D at 150 Hz using

an eleven-camera motion capture system (Qualisys QTM,

Qualisys Inc., Gothenburg, Sweden). Attached to the end

of the rope is also a weight, which straightens the rope. For

quantitative comparison we transform the 3D trajectory of

the motion capture system to the Kinect camera coordinate

frame and compute the root mean squared error (RMSE)

between the three dimensional coordinates of the raw ToF

tracker result and the motion capture system output. To

achieve valid ground truth for the different exposure timings

of the Kinect V2 camera, we linearly interpolate positions

on the motion capture trajectory based on the timestamps

of the Kinect and use these interpolated positions as ground

truth for the evaluation.

Notes on the accuracy: The motion capture system is cal-

ibrated with a residual of less than 2 mm. The coordinate

frames of the Kinect camera and the motion capture sys-

tem are registered by using six reflective markers which are

visible in the Kinect camera frame. In the Kinect camera

frame, depth values are assigned to the markers using the

standard depth reconstruction of the Kinect. Registration of

both coordinate frames is achieved by using Kabsch’s algo-

rithm [14] with a residual of 8−9 mm. Due to the remaining

minor systematic deviations between the commercial mo-
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Camera frame rate

Low fps High fps

Mode
unmodulated video camera highspeed camera

modulated Kinect V2 depth our Kinect V2

Table 1. Relevant dimensions of camera operation and frame rate

for object tracking. Within the four quadrants going to the right or

going downwards potentially improves tracking performance. Our

approach combines the benefits of a high frame rate with phase

modulation to provide superior tracking performance.

tion capture system and our tracking system, we apply a

scaling and translation transformation to register the trajec-

tories. The transformation requires estimating six parame-

ters and the typical trajectory length is 1350 measurements.

5. Experiments

Our approach combines the use of raw ToF observations

with the use of a high frame rate. These benefits are com-

plementary, and are best understood as part of a landscape

of possible camera modes, as shown in Table 1. As a con-

sequence we design the experiments to verify that both the

ToF modulation and the equispaced frames are beneficial

for tracking and that these benefits are complementary.

We first demonstrate that tracking based on the

Kinect V2 depth reconstruction fails for fast moving objects

because of motion artifacts.

5.1. Failure of Standard Kinect Depth Tracking

The underlying assumption of the Kinect V2 depth re-

construction algorithm is a static scene. If an objects moves

between two raw frames that is then used for reconstructing

the depth frame, artifacts become visible in the depth re-

construction. Fig. 7 shows an overlay of the raw frames of

the falling table tennis ball together with the depth recon-

structions obtained from these frames. A depth value can

only be reconstructed in those regions where the moving

object overlaps in all the raw frames used for the depth re-

construction. Therefore it is obvious that the strategy of first

reconstructing a depth image and then tracking fast moving

objects has to fail. We therefore propose to track the object

in three dimensions by directly using the raw data of the

sensor.

5.2. Tracking with Raw ToF Observations

We now show that the unknown depth of an object can

be obtained by our model-based tracking method. Fig. 8

depicts the estimated depth with respect to the vertical y

coordinate of the table tennis ball. To validate our method,

we show for comparison the reconstructed depth values of

the table tennis ball, measured in the depth frame in the

overlapping region (compare to Fig. 7).

The exposures of the camera are all at the beginning of

Clustered Timing Equispaced Timing

Raw ToF Depth Raw ToF Depth
Figure 7. Depth reconstruction failure (Experiment A). The ball

quickly reaches a velocity that prevents a successful depth recon-

struction. This is due to insufficient overlap of the object in the

nine frames used for reconstruction. Left two images: an overlay

of the raw captures for five frames and the corresponding depth

reconstructions, using the standard ‘clustered’ exposure timing of

the Kinect. Note the depth reconstruction gets worse with increas-

ing velocity (the black ‘holes’). Right two images: Equidistant ex-

posure timing. Depth reconstruction now completely fails. How-

ever, we show that this timing is beneficial for our proposed track-

ing method because we can directly leverage the high frame-rate

raw ToF information.

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
1

1.1

1.2

1.3
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y (m)
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m
)

Figure 8. Validation of the estimated depth values when tracking

off raw ToF images captured using the standard ‘clustered’ tempo-

ral spacing (blue), in comparison to the depth values of the stan-

dard time of flight reconstruction method (red). (Experiment A)

each 30Hz depth frame capture in order to minimize mo-

tion artifacts. For tracking purposes these unevenly spaced

exposures are suboptimal: the larger time-gap between the

captures leads to low quality of the depth estimate for the

first frame of each capture, as is visible by the sharp drop of

estimated depth every 9th frame in Fig. 8.

5.3. Benefit of Equispacing

To overcome the large time gap between the 30Hz cap-

tures we propose to use an equidistant timing of the expo-

sures. Fig. 9 clearly demonstrates that this increases the sta-

bility of the trajectory estimates. Note that Fig. 9 tracks a
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Figure 9. Equispaced exposure timing leads to a more stable depth

estimate when tracking from raw ToF captures. (Experiment A)

different sequence to Fig. 8, since due to interference we are

unable to capture simultaneously with both clustered and

equidistant.

We also quantitatively compared the effect of the

equidistant timings in comparison with the standard clus-

tered exposure timings by computing the root mean squared

error of the residual towards a linear regressor as explained

in the beginning of this section. We compared both ex-

posure timings by individually tracking 10 sequences with

60 frames each of a table tennis ball falling straight to the

ground. The camera is slightly tilted downwards which

leads to a linear relation between the y and the z coordi-

nate. Our results in Table 2 and Table 3 show first that our

model-based tracking method is highly accurate and second

that the equidistant based shutter profile further improves

this accuracy for motion in the x- and y-coordinate. The

overall accuracy (RMSE) mainly depends on the object’s

speed whereas the root mean squared errors for the individ-

ual coordinates show that the equidistant exposure timing

improves the accuracy for tracking the objects motion in

the x- and y- coordinates. The clustered exposure timing

minimizes the distance between the different captures and

allows for a better depth reconstruction of a fast moving ob-

ject. For a slow moving object however, the equidistant ex-

posure timing allows to reconstruct the depth with an even

higher accuracy.

RMSE

Exposure Timing
clustered 16.2 mm

equidistant 15.9 mm

Table 2. Experiment A. Quantitative comparison of the standard

clustered exposure timing and our proposed equidistant timing for

a table tennis ball accelerated by gravity.

Exposure Object RMSE RMSE [mm]

Timing Speed x y z

clustered
1.33 km/h 16.3 mm 4.3 2.3 15.5
2.12 km/h 19.3 mm 8.4 9.1 14.7

equidistant
1.01 km/h 15.5 mm 4.5 3.3 14.4
2.32 km/h 23.7 mm 6.4 6.9 21.8

Table 3. Experiment B. Quantitative comparison of the differ-

ent exposure timings for a slow and fast moving table tennis ball.

Shown is the root mean squared error between the raw ToF tracker

and a commercial motion capture system, for all three coordinates

and separately for the x-, y- and z-coordinate in the camera coor-

dinate frame.

6. Discussion

6.1. Tracking from Raw ToF

A potential benefit of using (8) to directly fit to the raw

ToF observations (as opposed to fitting to reconstructed

depth images) is a reduced computational cost: whereas a

depth-based tracker first has to reconstruct depth and com-

pute a likelihood function based on this estimated depth,

we can skip the depth reconstruction altogether. While the

depth reconstruction in the Kinect device and drivers is op-

timized and can be highly parallelized, this computational

saving could be significant for mobile, power-limited de-

vices.

But an even greater benefit of fitting to raw ToF obser-

vations is that we avoid the artifacts that would result from

attempting to reconstruct depth from observations of fast

motion (examples of motion that would cause problems are

shown in Fig. 2). Each raw ToF frame has an order of

magnitude shorter exposure time compared to the full se-

quence of nine frames required for a depth reconstruction,

even when clustered as in the standard Kinect.

6.2. Equispaced ToF Captures

The Kinect V2 camera supports a flexible scheduling of

frame capture times and we can space the raw captures uni-

formly over time (see Fig. 1). When the goal was depth

reconstruction, it made sense to cluster the frames in time

to minimize motion artifacts. But in our approach, we do

not need to reconstruct depth, and so are free to space the

captures uniformly. Capturing frames more uniformly is es-

pecially useful if the object’s movement in the x- and y- co-

ordinates, the space of the image plane, is of higher impor-

tance. The tracking accuracy in these coordinates is directly

improved by the more uniformly spaced captures. How-

ever, because the object’s movement between the individual

captures is higher in comparison to the standard timing, re-

constructing the depth of the object becomes more difficult

which results in a slight decrease of accuracy in the esti-

mated depth.
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We are still exposed to intra-frame motion artifacts, but

these are negligible compared to the motion artifacts present

in the original stack of frames because the exposure time of

a single frame is an order of magnitude smaller than the

exposure time across all ToF frames required for depth re-

construction.

6.3. Limitations and Future Work

As we have shown, the ToF tracking framework obtains

several benefits, but there are also some limitations in prac-

tice. Tracking in ToF captures of a cluttered scene is much

harder than tracking in the depth frame. As future work,

we hope to explore other model-based tracking algorithms

which allow for tracking more general objects including ar-

ticulations, as well as arbitrary backgrounds. Also, espe-

cially for articulated objects, we believe that the benefits of

both methods can be combined by using the more robust

depth based tracking for slow moving object parts and uti-

lizing the higher time resolution of the ToF tracking frame-

work for the faster moving parts.

7. Conclusion

We proposed a novel mode of operation of a commonly

available ToF sensor for the purpose of high-speed object

tracking. Through experiments we demonstrated improved

tracking accuracy due to two distinct contributions: mod-

eling raw ToF frame observations, and spacing the capture

uniformly over time.

Our approach is potentially useful for other fast mov-

ing objects, for example the human hand. The approach

will likely struggle when tracking objects at large distances

(> 10m) because the active illumination does not extend to

this range; however, one could envision an extended sys-

tem which falls back to ambient light for large distances,

only leveraging the ToF illumination information for accu-

rate tracking at shorter distances.

We believe our work is just the first step in adapting

ToF sensor operation to better fit computer vision tasks; we

considered tracking, but other vision applications such as

surface reconstruction and camera localization may benefit

similarly. In addition, whereas we still operate the camera

in an manner that is fixed apriori, it is conceivable to further

adapt the camera operation online given observed data.
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