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Abstract

This paper presents an efficient approach for localizing

actions by learning contextual relations, in the form of rel-

ative locations between different video regions. We begin

by over-segmenting the videos into supervoxels, which have

the ability to preserve action boundaries and also reduce

the complexity of the problem. Context relations are learned

during training which capture displacements from all the

supervoxels in a video to those belonging to foreground ac-

tions. Then, given a testing video, we select a supervoxel

randomly and use the context information acquired during

training to estimate the probability of each supervoxel be-

longing to the foreground action. The walk proceeds to a

new supervoxel and the process is repeated for a few steps.

This “context walk” generates a conditional distribution

of an action over all the supervoxels. A Conditional Ran-

dom Field is then used to find action proposals in the video,

whose confidences are obtained using SVMs. We validated

the proposed approach on several datasets and show that

context in the form of relative displacements between su-

pervoxels can be extremely useful for action localization.

This also results in significantly fewer evaluations of the

classifier, in sharp contrast to the alternate sliding window

approaches.

1. Introduction

The most challenging problems associated with auto-

mated analysis of videos are related to actions, with a va-

riety of approaches in computer vision [2, 33] developed

to address them. One of the problems is action recogni-

tion which entails classification of a given video in terms

of a set of action labels. With the introduction of un-

controlled datasets, consisting of videos captured in real-

istic non-experimental settings and longer durations such as

those from YouTube [24, 16], action detection has emerged

as a new problem where the goal is to determine the lo-

cation of an action in addition to its class. Action detec-

tion, which may refer to temporal detection [16] or spatio-

temporal action localization [6, 23, 4, 13], is especially dif-

C
o

m
p

o
si

te
 G

ra
p

h
 (


)

(a) Training Videos 
for Action c

……

Video n

(b) Context Graphs (c) Supervoxel
Action Specificity

Video 1 G1 ( V1, E1 )

Gn ( Vn , En ) H … …

Figure 1. This figure illustrates the idea of using context in the

form of spatio-temporal displacements between supervoxels. (a)

Given Nc videos for an action c which have been over-segmented

into supervoxels, we construct a context graph for each video as

shown in (b). Each graph has edges emanating from all the super-

voxels to those that belong to foreground action (circumscribed

with dashed green contours). The color of each node in (b) is the

same as that of the corresponding supervoxel in (a). Finally, a

composite graph (Ξ) from all the context graphs is constructed,

implemented efficiently using a kd-tree. (c) We also quantify ’su-

pervoxel action specificity’ which returns the likelihood of a par-

ticular supervoxel belonging to an action and use it in conjunction

with context to localize actions.

ficult when background is cluttered, videos are untrimmed

or contain multiple actors or actions. Applications include

video search, action retrieval, multimedia event recounting

[1], and many others related to video understanding.

Many existing approaches [26, 31] learn an action detec-

tor on trimmed training videos and then exhaustively search

for each action through the testing videos. However, with

realistic videos having longer durations and higher reso-

lutions, it becomes impractical to use sliding window ap-

proach to look for actions or interesting events [38, 13, 18].

Analyzing the videos of datasets used for evaluation of ac-

tion localization such as UCF-Sports [24], JHMDB [15],

and THUMOS [16] reveals that, on average, the volume oc-

cupied by an action (in pixels) is considerably small com-
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pared to the spatio-temporal volume of the entire video

(around 17%, using ground truth). Therefore, it is impor-

tant that action localization is performed through efficient

techniques which can classify and localize actions without

evaluating at all possible combinations of spatio-temporal

volumes.

The use of context has been extensively studied for ob-

ject detection in images through modeling of the relation-

ships between the objects and their surroundings including

background [10, 3, 5], which significantly reduce search

space of object hypotheses. However, it is non-trivial to

extend such approaches to actions in videos due to the fact

that the temporal dimension is very different from the spa-

tial dimensions. An image or a video is confined spatially,

but the temporal dimension can be arbitrarily long. The dif-

ferences in spatial and temporal dimensions also affects the

optimal representation of actions in videos [26]. Cuboid,

which is the 3D extension of a bounding box in images, is

not appropriate for action localization due to the following

two reasons: (i) Actions have a variable aspect ratio in space

and time as they capture articulation and pose changes of

actors. Furthermore, instances of repetitive actions (such as

running) can have different lengths depending on the num-

ber of cycles captured in the video. (ii) The nature of an

action or simply the camera motion can cause an actor to

move spatially in a video as time progresses. In such a case,

a cuboid would include large parts of the background. Ac-

cordingly, the ground truth in action localization datasets

consists of a sequence of bounding boxes which change in

size and move spatially with respect to time. Each such se-

quence can be visualized as a rectangular tube with varying

height, width and spatial location.

On the same grounds, the results of action localization

will be more useful if they contain minimal background,

which cannot be achieved with cuboid or sliding window

approaches [28, 32, 26, 38]. However, such a powerful rep-

resentation of actions comes with a cost. Generating tight

tubes around the actors makes the task of action localization

even more challenging as the action hypotheses not only de-

pend on space and time, but also on tube deformations. An

exhaustive search over all possible combinations is wasteful

and impractical. In this paper, we formulate the problem of

action localization in such a way that the issues associated

with cuboid and sliding window approaches are circum-

vented and use context to significantly reduce the search

space of hypotheses resulting in fewer number of evalua-

tions during testing.

For the proposed approach, we over-segment the videos

into supervoxels and use context as a spatial relation be-

tween supervoxels relative to foreground actions. The

relations are modeled using three dimensional displace-

ment vectors which capture the intra-action (foreground-

foreground) and action-to-scene (background-foreground)

dependencies. These contextual relations are represented

by a graph for each video, where supervoxels form the

nodes and directed edges capture the spatial relations be-

tween them (see Fig. 1). During testing, we perform a con-

text walk where each step is guided by the context relations

learned during training, resulting in a probability distribu-

tion of an action over all the supervoxels.

There are a few approaches that reduce the search space

to efficiently localize actions. To the best of our knowledge,

we are the first to explicitly model foreground-foreground

and background-foreground spatial relationships for action

localization. The proposed approach requires only a few

nearest neighbor searches in a testing video followed by a

single application of CRF that gives action proposals. The

action confidences of proposals are then obtained through

SVM. This is in contrast to most of the existing methods

[26, 31], which require classifier evaluations several order

of magnitudes higher than the proposed approach.

2. Related Work

Action recognition in realistic videos has been an active

area of research with several recent surveys [2, 33] pub-

lished on the subject. With significant progress in action

recognition over the past few years, researchers have now

started focussing on the more difficult problem of action lo-

calization [36, 35, 11, 6, 23, 31, 14]. Ke et al. [17] presented

an approach for detecting simple events in crowded videos.

Yuan et al. [38] used branch-and-bound and dynamic pro-

gramming for action localization using cuboids. Lan et al.

[18] treated the position of human in the video as a latent

variable, inferred simultaneously while recognizing the ac-

tion, which also helps in localization of the action. Since

our representation is constructed from supervoxels, it can

provide more accurate localization mimicking segmentation

of objects in images.

Jain et al. [13] recently proposed a method that extends

selective search approach [29] to videos by using supervox-

els instead of superpixels. Supervoxels are merged using

appearance and motion costs producing multiple layers of

segmentation. Selective search yields category-independent

hypotheses that are then evaluated for different actions.

There have been few similar recent methods for quantifying

actionness [4, 37] which yield fewer regions of interest in

videos. Similar to these methods, our output is more precise

than cuboids, however, we focus on localization through

context by learning the relations between background and

foreground action supervoxels. Furthermore, our proposed

approach generates fewer but class-dependent hypotheses,

and the hypotheses for each action are the result of context

walk where new observations depend on past observations.

Zhou et al. [40] used a split-and-merge algorithm to ob-

tain action segments and classify the segments with La-

tentSVM [7]. Tran et al. [27] used Structured SVM to local-
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ize actions with inference performed using Max-Path search

method. Me et al. [19] automatically discovered spatio-

temporal root and part filters for action localization. Tian et

al. [26] developed Spatiotemporal Deformable Parts Model

[7] to detect actions in videos. They use a sliding window

approach that can handle deformities in parts, both in space

and time. Unlike [19], who used a simple linear SVM on

a bag of hierarchical space-time segments representation,

they build a spatio-temporal feature pyramid followed by

LatentSVM. In contrast to these methods, we propose an

efficient approach that requires significantly fewer evalua-

tions for localizing actions.

Context has been used extensively for object detection

[10, 3, 5]. Heitz and Koller [10] reduced the number of

false positives using context between background and ob-

jects. Similarly, Alexe et al. [3] used context for object de-

tection in images by learning relations betweens windows in

training images to the ground truth bounding boxes. There

are several works that use context for action recognition us-

ing different significations of the word ‘context’. Gupta and

Davis [8] attempted to understand the relationship between

actions and the objects used in those actions. Han et al. [9]

also used object context for action recognition . However,

both the methods assume that detectors for multiple objects

are available. Ikizler-Cinbis and Sclaroff [12] used a vari-

ety of features associated with objects, actions and scenes to

perform action recognition. They also required person de-

tection using [7]. Marszalek et al. [20] used movie scripts

as automatic supervision for scene and action recognition in

movies. Zhang et al. [39] extracted motion words and uti-

lized the relative locations between the motion words and

a reference point in local regions to establish the spatio-

temporal context for action recognition. Sun et al. [25] pre-

sented a hierarchical structure to model the context informa-

tion of SIFT points, and their model consists of point-level,

intra-trajectory, and inter-trajectory relationships. Wu et al.

[34] incorporated context through spatio-temporal coordi-

nates for action recognition.

Our proposed approach is inspired from Alexe et al. [3],

and differs in several key aspects: First, for precise detec-

tion of actions in videos, we cannot use windows or cuboids

which can contain significant amounts of background due

to articulation, actor/camera movement and naturally from

cyclic actions. Furthermore, due to inherent differences be-

tween images and videos and the extra degree of freedom

due to time, we segment the video into supervoxels to re-

duce the search space of candidate hypotheses. Second, in-

stead of pixels in images, our proposed approach operates

on a graph where nodes represent supervoxels. Third, since

we localize actions using supervoxels instead of 3D win-

dows, we have to infer action locations using a Conditional

Random Field on the graph created for the testing video. In

summary, ours is the first work that explicitly relies on both

foreground actions and background for action localization

with an emphasis on fewer number of classifier evaluations.

3. Action Localization through Context Walk

The proposed approach for action localization begins by

over-segmenting the training videos into supervoxels and

computing the local features in the videos. For each train-

ing video, a graph is constructed that captures relations from

all the supervoxels to those belonging to action foreground

(ground truth). Then, given a testing video, we initialize

the context walk with a randomly selected supervoxel and

find its nearest neighbors using appearance and motion fea-

tures. The displacement relations from training supervox-

els are then used to predict the location of an action in the

testing video. This gives a conditional distribution for each

supervoxel in the video of belonging to the action. By se-

lecting the supervoxel with the highest probability, we make

predictions about location of the action again and update the

distribution. This context walk is executed for several steps

and is followed by inferring the action proposals through

Conditional Random Field. The confidences for the local-

ized action segments (proposals) are then obtained through

Support Vector Machine learned using the labeled training

videos (see Fig. 2).

3.1. Context Graphs for Training Videos

Let the index of training videos for action c = 1 . . . C
range between n = 1 . . . Nc, where Nc is number of train-

ing videos for action c. The ith supervoxel in the nth video

is represented by u
i
n, i = 1 . . . In, where In is the num-

ber of supervoxels in video n. Each supervoxel either be-

longs to a foreground action or the background. Next, we

construct a directed graph Gn(Vn,En) for each training

video across all the action classes. The nodes in the graph

are represented by the supervoxels while edges eij emanate

from all the nodes (supervoxels) to those belonging to the

foreground, i.e., supervoxels spatio-temporally contained

within the ground truth tube.

Let each supervoxel u be represented by its spatio-

temporal centroid, i.e., uin = (xin, y
i
n, t

i
n). The features as-

sociated with u
i
n are given by Φ

i
n = (1φ

i
n, 2φ

i
n, . . . , Fφ

i
n),

where F is the total number of features. Then, for a particu-

lar action c, the graphs Gn and features Φi
n, ∀n = 1 . . . Nc

are represented by the composite graph Ξc which consti-

tutes all the training information necessary to localize an

action during testing. The following treatment is developed

for each action class, therefore, we drop the subscript c for

clarity and use it when necessary.

3.2. Context Walk in the Testing Video

For a testing video, we obtain supervoxels (∼ 200− 300
per video) with each supervoxel and its local features rep-

resented by v and Φ, respectively. Then, we construct
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CRF (Eq. 7) + SVM v+1 (Eq. 5)

(b) Construct Spatio-
temporal Graph 

using all SVs

H (Eq. 2)SV (v), SV Features ()

(a) Segment Video into 
Supervoxels (SVs)

(c) Search NNs using SV 
features, then project 
displacement vectors

(d) Update SVs 
Conditional Distribution 

using all NNs

(e) Select SV with 
highest confidence

(f) Repeat for T steps

(g) Segment Action 
Proposals through CRF 

+ SVM Classification

G (V, E)

H
(Eq. 3)

i

n

j

n uu 
Ξ

(Eq. 4)τΨ
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Figure 2. This figure depicts the testing procedure of the proposed approach. (a) Given a testing video, we perform supervoxel (SV) seg-

mentation. (b) A graph G is constructed using the supervoxels as nodes. (c) We find the nearest neighbors of the selected supervoxel (vτ ;

initially selected randomly) in the composite graph Ξ which returns the displacement vectors learned during training. The displacement

vectors are projected in the testing video as shown with yellow arrows. (d) We update the foreground/action confidences of all supervoxels

using all the NNs and their displacement vectors. (e) The supervoxel with the highest confidence is selected as v
τ+1. (f) The walk is

repeated for T steps. (g) Finally, a CRF gives action proposals whose action confidences are computed using SVM.

an undirected graph G(V,E) where V contains the su-

pervoxels represented with spatio-temporal centroids, and

E contains edges between neighboring supervoxels. Our

goal is to find a contiguous subsets of nodes in this graph

that form action proposals. We achieve this by making se-

quential observations based on context. Given the compos-

ite graph Ξ, we traverse the supervoxels in testing video

in a sequence, referred to as context walk. The sequence

till step τ ≤ T is given by S
τ
v

= (v1,v2, . . .vτ ), and

S
τ
Φ

= (Φ1,Φ2, . . . ,Φτ ). Each observed supervoxel dur-

ing the walk independently proposes candidate supervoxels

which are later visited if they accumulate enough support

during the course of the walk. Next, we describe the proce-

dure of generating such a sequence on a given testing video.

The initial supervoxel v1 is selected randomly in the test-

ing video. We find similar supervoxels from the training

data and project their displacement vectors to the selected

supervoxel vτ in the testing video. The following function

ψ(.) with the associated parameters wψ generates a con-

ditional distribution over all the supervoxels in the testing

video given only the current supervoxel vτ , its features Φτ ,

and the composite graph Ξ, i.e.,

ψ(v|vτ ,Φτ ,Ξ;wψ) =

Z−1

Nc
∑

n=1

In
∑

i=1

∑

j|eij∈En

Hσ(Φ
τ ,Φi

n;wσ)

·Hδ(v,v
τ ,uin,u

j
n;wδ), (1)

where Hσ computes the similarity between features of cur-

rent supervoxel in testing video Φ
τ , and all the training su-

pervoxels (Φi
n). Hδ transfers displacements between su-

pervoxels in training videos to a supervoxel in the testing

video. Both functions have weight parameters wσ and wδ ,
respectively, and Z is the normalization factor. Theoreti-

cally, Eq. 1 loops over all displacement vectors in all the

training videos, and is computationally prohibitive. There-

fore, we only consider the nearest neighbors for the selected

supervoxel during testing using kd-trees (one per action). In

Eq. 1, the function Hδ assigns a confidence to each super-

voxel v in the testing video whether it is part of the action

or not. This is achieved by computing proximity of a super-

voxel in the testing video to the displacement vector pro-

jected onto the current supervoxel vτ . If ujn − u
i
n defines

the displacement vector from the supervoxel uin to the fore-

ground action supervoxel ujn, then Hδ is given by:

Hδ(v,v
τ ,uin,u

j
n;wδ) =

exp
(

− wδ‖v −
(

v
τ + u

j
n − u

i
n

)

‖
)

. (2)

Furthermore, the function Hσ in Eq. 1 is simply the

weighted sum of distances between the different features:

Hσ(Φ
τ ,Φi

n;wσ) =

exp
(

−
F
∑

f=1

(

wσf
Γσf

(fφ
τ , fφ

i
n)
))

, (3)

where Γσf
with the associated weight parameter wσf

de-

fines the distance function for the f th feature. For the pro-

posed method, we used the following features: (i) 1φ =
(x, y, t, s), i.e., centroid of the supervoxel in addition to

scale (or volume) s with each dimension normalized be-

tween 0 and 1 relative to the video, (ii) appearance and mo-

tion descriptor 2φ = d using improved Dense Trajectory

Features (iDTF) [30], and (iii) the supervoxel action speci-

ficity measure, as described in §3.3.

At each step τ , we compute the non-parametric condi-

tional distribution ψ(.) in Eq. 1 and use it to update Ψ(.)
in the following equation, which integrates the confidences

that supervoxels gather during the context walk:

Ψτ (v|Sτ
v
,Sτ

Φ
,Ξ;w) = wαψ(v|v

τ ,Φτ ,Ξ;wψ)

+ (1− wα)Ψ
τ−1(v|Sτ−1

v
,Sτ−1

Φ
,Ξ;w), (4)
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where w are the parameters associated with Ψ. In the above

equation, the conditional distribution Ψ is updated with ex-

ponential decay at the rate wα. Finally, the supervoxel with

the highest probability from Eq. 4 is selected to be visited

in the next step of the context walk:

v
τ+1 = argmax

v

Ψτ (v|Sτ
v
,Sτ

Φ
,Ξ;w). (5)

Each video typically contains several hundred supervox-

els. Although kd-tree significantly speeds up the Eq. 1,

the efficiency of nearest neighbor search can be further im-

proved using feature compression techniques [21].

3.3. Measuring Supervoxel Action Specificity

In a testing video, some supervoxels are distinct and

discriminative towards one action while other supervoxels

might be discriminative for other actions. We quantify this

observation using a simple technique where we cluster all

the descriptors (iDTF [30]) from the training videos of a

particular action c into kc = 1 . . .K clusters. Our goal

is to give each supervoxel an action specificity score. Let

ξ(kc) represent the ratio of number of supervoxels from

foreground (ground truth) of action c in cluster kc to all the

supervoxels from action c in that cluster. Then, given the

appearance/motion descriptors d, if the supervoxel belongs

to cluster kc, its action specificity Hχ(v
i) is quantified as:

Hχ(v
i) = ξ(kc) · exp

(‖di − dkc‖

rkc

)

, (6)

where dkc and rkc are the center and radius for the kth clus-

ter, respectively.

3.4. Inferring Action Locations using 3DCRF

Once we have the conditional distribution Ψ
T (.), we

merge the supervoxels belonging to actions so that result-

ing action proposals have contiguous supervoxels without

any gaps or voids. For this, we use a Conditional Random

Field where nodes form the supervoxels while edges link

neighboring supervoxels. We minimize the negative log-

likelihood over all supervoxel labels a in the video:

− log
(

Pr(a|G,Φ,ΨT ;wΥ)
)

=
∑

vi∈V

(

Θ
(

ai|vi,ΨT
)

+
∑

vj |eij∈E

Υ
(

ai, aj |vi,vj ,Φi,Φj ;wΥ

)

)

, (7)

where Θ(.) captures the unary potential and depends on the

conditional distribution in Eq. 4 after T steps and action

specificity measure computed through Eq. 6, both of which

are normalized between 0 and 1:

Θ
(

ai|vi,ΨT
)

= − log
(

Hχ(v
i) ·ΨT (vi)

)

. (8)

If Ωi is the volume of the ith supervoxel, then the bi-

nary potential Υ(.) between neighboring supervoxels with

parameter wΥ is given by:
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Figure 3. This figure shows the average of maximum supervoxel

overlap in every training video of different actions as a function

of segmentation level. Using the correct level from the hierarchy

reduces the number of potential supervoxels we have to handle

while testing. This speeds up the method without sacrificing per-

formance.

Υ
(

ai, aj |vi,vj ,Φi,Φj ;wΥ

)

=

wΥΓd(d
i,dj)

(

| log(Ωi/Ωj)|+ |Ωi − Ωj |
)

. (9)

Once we have the actions segmented in the testing video,

we use Support Vector Machine to obtain the confidence for

each action segment using the appearance/motion descrip-

tors of all supervoxels in each segment.

4. Experiments

We evaluate the proposed approach on three challenging

action localization datasets: UCF-Sports [24], sub-JHMDB

[15, 31] and THUMOS’13 [16]. First, we provide experi-

mental details about the three datasets followed by detailed

analysis of the performance and complexity of the proposed

algorithm.

Experimental Setup: For each video in the training and

testing data, we obtain a supervoxel based segmentation us-

ing [22]. This is followed by extraction of improved Dense

Trajectory Features (iDTF: HOG, HOF, MBH, Traj) [30].

Every supervoxel in the video is encoded using bag-of-

words (BoW) representation on iDTFs. For all our experi-

ments, we use Top-20 nearest neighbors using kd-trees with

context walk executed for T = 5 steps. Once we obtain seg-

ments using CRF, an SVM with histogram-intersection ker-

nel is used to classify each action segment. We train a one-

vs-all SVM per action class using ground truth bounding

boxes from training videos as positive samples, while neg-

ative samples are randomly selected from the background

and other action classes. Each sample is a supervoxel based

BoW histogram and we consider supervoxels as positive

samples only if they overlap (≥ 80%) with the ground truth.

Features from all the supervoxels within the ground truth

are accumulated to form one representative descriptor for

SVM training. Furthermore, since we used normalized fea-

tures, the parameters for ψ(.) did not require tuning and

were set to 1, i.e., wδ = wσ1
= wσ2

= wσ3
= 1. The decay
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Figure 4. The ROC and AUC curves on UCF Sports Dataset [24] are shown in (a) and (b), respectively. The results are shown for Jain et

al. [13] (orchid), Tian et al. [26] (blue), Lan et al. [18] (amber), Wang et al. [31] (green) and Proposed Method (red). (c) shows the AUC

for THUMOS’13 dataset [16], for which we are the first to report results.

rate was set to wα = 0.5 and the weight for CRF was set to

wΥ = 0.1 using training data.

Selecting Segmentation Level: Supervoxel methods [22,

13] generate different levels of a segmentation hierarchy.

Each level has a different number of segmented supervoxels

and may or may not cover an action. Searching for an action

over the entire hierarchy is computationally inefficient and

can also significantly hurt the performance of localization

if an incorrect level in the hierarchy is selected. Manually

choosing the correct level for a dataset is cumbersome since

every action has its own complexity characterized by vari-

ation in scale, background clutter, and actor/camera move-

ment. To automatically choose the right hierarchy level, we

sample training videos from each action, and within every

level of the hierarchy we find the overlap of the supervoxels

with the ground truth bounding boxes. We take the maxi-

mum supervoxel overlap for each video and average it for

all training videos of an action at a particular level of the

segmentation hierarchy. Fig. 3 shows the average of maxi-

mum supervoxel overlap for each action at different levels

of the hierarchy. The overlap peaks at a certain level and

reduces thereafter. The average maximum supervoxel over-

lap varies for every action and selecting a unique level of

segmentation for each action using this technique helps in

correctly localizing an action in testing videos.

4.1. Experiments on UCFSports

The UCF Sports dataset [24] consists of 150 videos col-

lected from broadcast television channels. The dataset in-

cludes 10 action classes: diving, golf swing, kicking, etc.

Videos in the dataset are captured in a realistic setting with

intra-class variations, camera motion, background clutter,

scale and viewpoint changes. We follow evaluation method-

ology of Lan et al. [18] using the same train-test splits with

intersection-over-union criterion at an overlap of 20%.

We construct a codebook (K = 1000) of iDTFs [30]

using all the training videos. The quantitative comparison

with state-of-the-art methods using ROC and Area Under

Curve (AUC) for overlaps of 10%, 20%, 30%, 40%, 50%
and 60% is shown in Fig. 4(a,b). The ROC curve highlights

that the proposed method performs better than the state-

of-the-art methods [18, 26, 31, 13]. Although, we evalu-

ated the classifier on very few segments of supervoxels, we

are still able to achieve better results at an overlap of 20%.

The comparison using AUC measure (Fig. 4(b)) also shows

that we are able to achieve comparable results for different

overlaps. We accredit this level of performance to avoiding

background clutter and irrelevant camera motion through

the use of context which allows the proposed method to ig-

nore the potential false positive regions in the videos.

4.2. Experiments on THUMOS’13

THUMOS’13 action localization dataset was released as

part of the THUMOS Challenge workshop [16] in 2013.

This dataset is a subset of UCF-101 and has 3207 videos

with 24 action classes such as basketball, biking, cliff div-

ing, etc. The dataset is quite challenging and is currently

the largest dataset for action localization. It includes sev-

eral complex interactive actions such as salsa spin, fencing,

cricket bowling with multiple action instances in the same

video. We are the first to report action localization results

on THUMOS’13. We also evaluated a competitive baseline

using iDTFs with BoW (K = 4000), and trained a one-vs-

all SVM-HIK for each action. Given a test video, we per-

form an exhaustive multi-scale spatio-temporal sub-volume

search. The results are shown in Fig. 4(c).

4.3. Experiments on subJHMDB

The sub-JHMDB dataset [31] is a subset of the JHMDB

[15] dataset where all the joints for humans in the videos

have been annotated. Similar to [31], we use the box en-

compassing the joints as the ground truth. This dataset con-

tains 316 clips over 12 action classes: catch, climb stairs,

golf, etc. Jhuang et al. [15] have shown that this subset

is far more challenging in recognizing actions compared to

the entire dataset. The probable reason is the presence of

the entire human body which exhibits complex variations in

appearance and motion.

We used K = 4000 codebook centers for bag-of-words

representation of the supervoxels. We report our results us-
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Figure 5. The ROC and AUC curves for sub-JHMDB dataset [31,

15] are shown in (a) and (b), respectively. Green and black curves

are from the method by Wang et al. [31] and their iDTF + Fisher

Vector baseline. Red curve shows the performance of the proposed

method which is better than [31].

ing both ROC and AUC curves as shown in Fig. 5. At an

overlap of 20%, we perform better than the state-of-the-art

and achieve competitive results at other overlapping thresh-

olds. Note that Wang et al. [31] also evaluated a competitive

baseline over this dataset. This baseline uses iDTF features

with a Fisher Vector encoding (black curves in Fig. 5) to ex-

haustively scan at various spatio-temporal locations at mul-

tiple scales in the video. Performing better than the baseline

in a far more efficient manner emphasizes the strength of the

proposed approach and reinforces that context does make a

significant impact in understanding and predicting the loca-

tions of actions.

4.4. Analysis and Discussion

In Table 1, we report the percentage AUC on UCF-Sports

[24] and sub-JHMDB [31] datasets. These numbers are

computed at an overlap of 20% and show we perform com-

petitively or better than existing approaches.

Computational Efficiency: Our approach achieves com-

petitive results compared to the state-of-the-art methods on

multiple datasets. However, in certain cases, some exist-

ing methods show better accuracy at higher overlaps, but

this does come with a price of evaluating classifiers at a sig-

nificantly higher number of locations. Note that, the BOW

framework in our approach is only a matter of choice and ef-

ficiency, and results are expected to improve further through

Fisher Vectors [31, 23].

Component’s Contributions: The proposed approach has

several aspects that contribute to its performance. We quan-

tify their relative contributions to overall performance in

Fig. 6, which shows both the ROC and AUC curves com-

puted on UCF-Sports dataset. The grey curves represent the

output using just supervoxel action specificity (§3.3). Here,

we assign confidences using Eq. 6 to each supervoxel, fol-

lowed by a fixed threshold. Each segment is considered as

an action segment and evaluated using the ground truth.

Next, we incorporate context walk as shown with green

curves in Fig. 6. In this case, the confidence for supervoxels

are obtained using Eq. 8. The difference between grey and

Table 1. Quantitative comparison of proposed approach with ex-

isting methods at 20% overlap.
Method UCF-Sports sub-JHMDB

Wang et al. [31] 47% 36%

Wang et al. (iDTF+FV) [31] - 34%

Jain et al. [13] 53% -

Tian et al. [26] 42% -

Lan et al. [18] 38% -

Proposed 55% 42%

red curves highlights the importance of context for action

localization. Next, we show improvement in performance

obtained by using CRF (Eq. 7) in blue curves, which helps

in obtaining contiguous and complete action segments. Fi-

nally, the performance obtained with all aspects of the pro-

posed approach (including SVM) is shown with red curves.

The reason SVM gives a large boost is that the evaluation of

action localization simultaneously quantifies action classifi-

cation. Correctly localizing the action but assigning it an in-

correct label is treated as incorrect localization. Since each

SVM is trained on both background and negative samples

from other classes, it significantly contributes to the correct

classification of the localized actions. Note that for non-

linear kernels, the summation of scores from supervoxels

does not equal that of an action volume, thus, necessitating

classification using an SVM. Nevertheless, this is an inex-

pensive step since we require very few SVM evaluations.

Action Contours: The proposed approach uses over-

segmented supervoxels, therefore, it produces action seg-

ments which can be used for video segmentation as well.

Since the local features (iDTF) are based on motion, the

segments are heavily dependent on the motion of actors.

Such results are an improvement over cuboid representa-

tion which can contain significant quantities of background.

Some qualitative results of the proposed approach with seg-

mented actors are presented in Fig. 7. Since the proposed

method uses supervoxels to segment the video, we are able

to capture the entire human body contours after CRF. These

results show that supervoxels indeed help in obtaining fine

contours while reducing the complexity of the problem.

However, there are certain cases where the proposed ap-

Overlap Threshold

0.1 0.2 0.3 0.4 0.5 0.6

A
U

C

0  

0.1

0.2

0.3

0.4

0.5

0.6 [D]istinctness

D+[C]ontext

D+C+CRF

D+C+CRF+SVM

False Positive Rate

0 0.1 0.2 0.3 0.4 0.5 0.6

T
ru

e 
P

o
si

ti
ve

 R
at

e

0

0.2

0.4

0.6

0.8

1

[D]istinctness

D+[C]ontext

D+C+CRF

D+C+CRF+SVM

Figure 6. This figure shows the contributions of the fours aspects

of the proposed approach towards overall performance, in terms

of ROC (left) and AUC of Precision-Recall curve as a function of

overlap threshold (right).
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Figure 7. This figure shows qualitative results of the proposed approach (yellow contours) against ground truth (green boxes) on selected

frames of testing videos. The first two rows are from UCF-Sports [24], third and fourth are from sub-JHMDB [31], while fifth and sixth

rows are from THUMOS’13 [16] datasets. Last row shows two failure cases from sub-JHMDB.

proach fails as shown in the last row of Fig. 7. The action

depicted on the left of the last row shows the case where the

action push was classified as walk, even though it was local-

ized correctly. The second set of images on the right shows

incorrect localization of the action kick-ball. For this par-

ticular case, the large motion of the actor resulted in a large

number of supervoxels on the lower body as compared to

training videos. Many supervoxels had different distances

(from Eq. 2) as compared to the ones seen during training.

This caused lower confidences for such supervoxels result-

ing in only upper-body localization.

Complexity Analysis: We offer an analysis of the num-

ber of classifier evaluations of the proposed approach on the

number of supervoxels or subvolumes with two other state-

of-the-art methods. Table 2 shows Tian et al. [26] who learn

a Spatio-temporal Deformable Parts Model detector that is

used to search for an action over width (X), height (Y), time

(T) and different aspect ratios (S) within the video. This re-

quires enormous computations which can incur many false

positives as well. We also compare the effectiveness of the

proposed approach to Jain et al. [13], who also use super-

voxels to reduce computation. Given N supervoxels at the

lowest level, they apply an agglomerative hierarchical clus-

tering, which merges supervoxels at each level of the hier-

archy followed by an application of SVM classifier on each

supervoxel. Compared to these approaches we localize in

constant time (context-walk with 5 steps and one inference

through CRF followed by an execution of SVM). Note that

this table only shows the complexity of localizing the ac-

Table 2. Number of classifier evaluations as a function of super-

voxels / subvolumes in a video.
Method Evaluated Volumes Complexity

SDPM [26] XYTS O(n4)
Action Tubelets [13] N + (N-1) + . . . + 1 O(n2)

Proposed 5 (+ CRF) O(c)

tion, assuming the features have been computed and models

have been learnt in advance.

5. Conclusion

We presented an efficient and effective approach to lo-

calize actions in videos. We use context to make a series

of observations on supervoxels, such that the probability of

predicting the location of an action increases at each step.

Starting with a random supervoxel, we find similar super-

voxels from the training data, and transfer the knowledge

about relative spatio-temporal location of an action to the

test video. This gives a conditional distribution over the

graph formed by supervoxels in the testing video. After se-

lecting the supervoxel with highest probability, we repeat

the steps. The conditional distribution at the end of Context

Walk over supervoxel graph is used in a CRF to infer the

number and location of action proposals. Finally, each of

the proposals is evaluated through an SVM. Due to both su-

pervoxels and context, the proposed approach requires very

few classifier evaluations. The future work will aim at ac-

tion localization in longer videos, which will need multiple

random initializations and increased number of steps for the

context walk.
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