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Abstract

Data from real applications involve multiple modalities

representing content with the same semantics and deliver

rich information from complementary aspects. However,

relations among heterogeneous modalities are simply treat-

ed as observation-to-fit by existing work, and the param-

eterized cross-modal mapping functions lack flexibility in

directly adapting to the content divergence and semantic

complicacy of multi-modal data. In this paper, we build

our work based on Gaussian process latent variable model

(GPLVM) to learn the non-linear non-parametric mapping

functions and transform heterogeneous data into a shared

latent space. We propose multi-modal Similarity Gaussian

Process latent variable model (m-SimGP), which learns the

nonlinear mapping functions between the intra-modal simi-

larities and latent representation. We further propose multi-

modal regularized similarity GPLVM (m-RSimGP) by en-

couraging similar/dissimilar points to be similar/dissimilar

in the output space. The overall objective functions are

solved by simple and scalable gradient decent techniques.

The proposed models are robust to content divergence and

high-dimensionality in multi-modal representation. They

can be applied to various tasks to discover the non-linear

correlations and obtain the comparable low-dimensional

representation for heterogeneous modalities. On two wide-

ly used real-world datasets, we outperform previous ap-

proaches for cross-modal content retrieval and cross-modal

classification.

1. Introduction

Data from real applications often involve multiple

modalities representing content with the same semantics [4]

and deliver rich information from complementary aspects.

For example, in content-based image retrieval, the seman-

tics in an image can be inferred from visual features, such as

color or texture features, and from its associated textual de-

scriptions such as user tags, paragraphs and user comments.

The key problem for multi-modal data analytics is how to

model the correlations across different modalities to facili-

tate content retrieval of heterogeneous modalities. This mo-

tivates latent variable modeling to discover the correlation

information shared by different modalities.

As a possible solution, canonical correlation analysis (C-

CA) [11, 19, 20] projects multi-modal data into a shared

subspace that guarantees different modalities are maximal-

ly correlated. However, CCA-based methods lack proba-

bilistic interpretation on the intra-modal similarities. Topic

models [3, 12, 25] learn latent topics to describe the intrin-

sic semantic correlations in multi-modal data. Based on La-

tent Dirichlet Allocation (LDA) [3], a variety of constraints

are imposed. For example, mmLDA [2] enforces that all

modalities share the same topic proportions, and CorrLDA

[2] assumes one-to-one correspondence between the topics

in each modality. These assumptions inherently restrain the

flexibility of correlation models. In general, existing stud-

ies take intra-modal similarity and inter-modal similarity in-

discriminately as the observations of multi-modal relation,

thus the correlation learning problem is solved by fitting the

mapping function outputs to the observations. However, the

prior constraints are imposed to avoid non-smoothness in

the functional space, lacking flexibility in directly adapting

to the properties of multi-modal data.

Gaussian Process Latent Variable Model (GPLVM) [13,

8, 6] is a well-established generative approach for learning

nonlinear low-dimensional embedding. Instead of specify-

ing a set of deterministic (e.g. CCA-based [1, 11, 19, 20])

or parametric (e.g., univariate Gaussian [27]) mapping func-
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tions, a smooth non-parametric Gaussian process is defined

in GPLVM on the probabilistic mapping from latent space

to observation space. The flexibility of Gaussian process,

determined by a variety of covariance functions, facilitates

learning from real world data with content divergence and

complicated semantic relations. Despite that GPLVM bet-

ter adapts to different modalities, there has been very few

studies in describing multi-modal relation using GPLVM.

We hereby address cross-modal correlation learning with

multi-modal GPLVMs. In fact, GPLVM can effectively dis-

cover the non-linear relationship among multi-modal da-

ta by introducing additive priors over latent space [8] or

modality-specific covariance functions [6]. Given the laten-

t representation, multi-modal data is reconstructed by the

learned Gaussian process parameterized by covariance ker-

nels. However, two primary drawbacks of existing GPLVM

[13, 8, 6] limit its application on real-world data.

First, the topological structure in the observation space

is not guaranteed to be preserved in the function embed-

ding process of GPLVM, which leads to model degradation

in processing high-dimensional multi-modal data due to the

curse-of-dimensionality. In existing study, the affinity struc-

ture is constructed to encode the modality-specific topologi-

cal structure, which reflects the intra-modal content similar-

ity [27, 24], context information [24] and semantic consis-

tency [10]. It can be used as observation-to-fit [27] or map-

ping function regularizer [10] for learning a common latent

space. To preserve the intra-modal topology, we propose

to learn the nonlinear mapping functions between the intra-

modal similarities and latent representation. From the max-

imum likelihood perspective, the nonlinear covariance ma-

trices of multi-modal mapping functions are learned to max-

imize the consistency to the modality-specific intra-modal

topologies. It better encodes the nonlinear semantic simi-

larity in multi-modal data. Compared to existing correla-

tion models, our non-parametric similarity-based GPLVM

is robust to content divergence and high-dimensionality in

multi-modal representation.

Second, existing models exploit simple inter-modal re-

lation in correlation learning. For example, CCA-based

models [1, 11, 19, 20] assume that the inter-modal rela-

tion is expressed by co-occurrence of multi-modal data ob-

jects. The inter-modal relation is also encoded as bina-

ry observation matrix to be fit by the correlation models

[3, 12, 25, 27]. By contrast, we directly impose two kinds

of inter-modal relations (i.e., semantic similarity and dis-

similarity) as smooth priors on the output of multi-modal

GPLVM. By using such regularization on the latent space,

our model enforces that the semantically similar/dissimilar

cross-modal observations are also similar/dissimilar in the

latent space, which provides goal-oriented solution to max-

imize the cross-modal semantic consistency.

In summary, we propose the multi-modal Similarity

Gaussian Process latent variable model (m-SimGP) for

multi-modal data analysis, which learns the nonlinear map-

ping functions between the intra-modal similarities and la-

tent representation. We further impose a cross-modal sim-

ilarity/dissimilarity constraint as a smooth prior to the la-

tent space. Accordingly, we develop a regularized mod-

el, called m-RSimGP, to learn the cross-modal correla-

tion. The m-RSimGP model enforces that the semanti-

cally similar/dissimilar cross-modal observations are also

similar/dissimilar in the latent space, which maximizes the

cross-modal semantic consistency. The conditional depen-

dency among latent space and muti-modal similarity obser-

vations can be easily constructed in a maximum a posteri-

ori inference framework, while the overall objective func-

tions can be solved by simple and scalable gradient decent

techniques. The proposed models can be applied to var-

ious tasks to discover the non-linear correlations and ob-

tain the comparable low-dimension representation for het-

erogeneous modalities. On two widely used real-world

multi-modal datasets, we achieve at least 15% improvemen-

t over the existing approaches in cross-modal content re-

trieval task, and about 3% improvement over DS-SBP [10]

in cross-modal classification task.

2. Preliminary

Gaussian process latent variable model (GPLVM) [13]

is a probabilistic model for non-linear low dimensional em-

bedding. It assumes that high dimensional data is generat-

ed from a low dimensional latent space, where the mapping

from latent space to observation space is a Gaussian process

(GP), as shown in Figure 1.a.

Let Y = [y1, . . . , yN ]
⊤

∈ R
N×d represent the train-

ing data set with N data points yi ∈ R
d, i = 1, ..., N .

The goal is to learn the corresponding latent space X =

[x1, . . . , xN ]
⊤

∈ R
N×q , with q ≪ d. The assumption is

that the training data set is drawn from the latent space with

a noisy process,

yi = f (xi) + ε, (1)

where ε is additive Gaussian noise with zero mean. A Gaus-

sian process prior is placed over the mapping function f :

f (x) ∼ GP (μ (x) , k (x, x′)) , (2)

where the mean function μ (x) is typically taken to be zero

for simplicity, and the covariance function k (x, x′) is nec-

essarily constrained to positive definite matrices.

The marginal likelihood of the observation Y with re-

spect to the latent space X can be formulated by integration

over f ,

p(Y |X ) =

∫

p (Y |f ) p (f |X ) df. (3)

Specifically, given a GP with covariance function k (x, x′),
the likelihood of the data Y given the latent variable X is

p(Y |X, θ ) =
1

A
exp

(

−
1

2
tr
(

K−1Y Y ⊤
)

)

, (4)
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(c) m-SimGP

Figure 1: GPLVMs v.s. the proposed m-SimGP. (a) is the original GPLVM proposed by Lawrence [13]. The observed data Y

is assumed to be generated from a latent variable set X . (b) shows the shared GPLVMs for multi-modal data. Two observed

data modalities Y and Z are assumed to share the common latent space X . (c) is the proposed m-SimGP in this paper.

To preserve local structure of each data modality, we build a multi-modal latent variable model between the intra-modal

similarities and latent space.

where the normalization factor A =

√

(2π)
Nd

|K|
d
, and

K ∈ R
N×N is the kernel matrix defined on X , i.e., Kij =

k(xi, xj). Any positive definite kernel can be used to con-

struct a Gaussian process covariance function. Considering

that RBF kernel is simpler and more effective for high di-

mensional data [13], we adopt RBF with white noise as the

covariance function,

k(x, x′) = σ2
rbf exp(−

‖x− x′‖
2

2l2rbf

) + σ2
wδx,x′ , (5)

where θ = {σ2
rbf, σ

2
w, lrbf} denotes the parameters of the co-

variance matrix, which govern the variance of the RBF ker-

nel, the variance of additive noise, and the RBF bandwidth,

respectively.

In practice, a maximum a posteriori (MAP) probability

estimation is used to learn the latent space X . The posterior

distribution can be written as

p (X, θ |Y ) ∝ p (Y |X, θ ) p (X) . (6)

The latent space X is then obtained by minimizing the neg-

ative log posterior:

argmin
X

L − log p (X) , (7)

where L is the negative logarithm associated with Eq. (4),

L =
d

2
ln |K|+

1

2
tr
(

K−1Y Y ⊤
)

(8)

Different forms of prior knowledge can be easily intro-

duced into the GPLVM to enhance the flexibility [13, 14,

22]. For example, the spherical Gaussian prior [13] is used

over the latent variables to enforce the smoothness of X and

prevent the GPLVM from placing latent positions infinitely

far apart. To preserve local distance structure, the back-

constrained GPLVM [14] is proposed, which preserves the

local affinity structure in the original data space.

GPLVM can be generalized to multiple data spaces,

which are assumed to share a common latent space [21, 9,

6], as shown in Figure 1.b. These models have achieved

success in numerous applications, such as human pose esti-

mation [8], tracking [23, 18], facial expression recognition

[10], etc. We apply GPLVM to multi-modal data analysis

for cross-modal correlation learning and classification.

3. The Proposed Approach

The goal of our work is to discover a general latent repre-

sentation shared by observations from multiple modalities.

To achieve this, GPLVM is constructed on the modalities for

its flexibility in probabilistic modeling on the conditional

dependency between observation and latent space. In Sec-

tion 3.1, we introduce multi-modal similarity Gaussian pro-

cess latent variable model, using similarity information in

each data modality to preserve the intra-modal consistency.

We further impose cross-modal similarity and dissimilari-

ty constraints on the latent space, which further enhances

the model generality of our multi-modal similarity GPLVM

approach as shown in Section 3.2.

Specifically, we consider a set of bi-modal data object-

s O = {oi}
N
i=1, each comprising of observation from t-

wo modalities, i.e., oi = {yi, zi}. Let Y ∈ R
N×dy and

Z ∈ R
N×dz represent two data modalities, respective-

ly. The objective is to relate these two modalities to the

same latent space. Gaussian kernel is used to measure the

intra-modal similarities. Specifically, the similarity matri-

ces Sy ∈ R
N×N and Sz ∈ R

N×N are defined as follows,

Sy (yi, yj) = exp
(

−d2 (yi, yj)
/

2γy
)

,

Sz (zi, zj) = exp
(

−d2 (zi, zj)
/

2γz
)

,
(9)

where d (yi, yj) = ‖yi − yj‖2 and d (zi, zj) = ‖zi − zj‖2.

γy, γz > 0 are bandwidth parameters.

3.1. Multi-modal Similarity GPLVM (m-SimGP)

As shown in Figure 1.c, we assume that the intra-modal

similarity matrices Sy and Sz are generated from a shared

q-dimensional latent manifold, where q ≪ min (dy, dz).
Each similarity matrix can be represented by the mappings

with respect to a common latent space X ∈ R
N×q:

S
y
ij = f

y
ij (X) + ε

y
ij , Sz

ij = fz
ij (X) + εzij , (10)

where f
y
ij = f

y
j (xi) and fz

ij = fz
j (xi) map the latent vari-

able to the corresponding similarity. Each xi generates the
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i-th row of Sy and Sz with fj , j = 1, . . . , N . The noise

terms εy and εz are typically taken to be Gaussian with ze-

ro mean.

Similar as GPLVM, to find the latent representation X

and the mappings {f
y
j }

N
j=1 and {f

z
j}

N
j=1, we place Gaus-

sian process priors over the mappings:

fy ∼ GP (μy (X),Ky(X,X)) ,

fz ∼ GP (μz (X),Kz(X,X)) .
(11)

As in section 2, the mean functions are taken to be zero,

and the covariance functions are generated by RBF kernel.

The definition allows the mappings to be marginalized out

analytically, and the marginal likelihood with respect to the

latent variable can be computed as,

p (Sy, Sz |X, θy, θz ) = p (Sy |X, θy ) p (Sz |X, θz ), (12)

p(Sy |X, θy ) = 1
Ay exp

(

− 1
2 tr

(

K−1
y Sy(Sy)

⊤
))

, (13)

p(Sz |X, θz ) = 1
Az exp

(

− 1
2 tr

(

K−1
z Sz(Sz)

⊤
))

. (14)

If Gaussian prior is used over the latent variable, the objec-

tive function can be written as:

argmin
X

Ly + Lz +
N
∑

i=1

1

2
‖xi‖

2
, (15)

where Ly and Lz are the negative log-likelihood associated

with Eq. (13) and (14), respectively. When the observed da-

ta are coming from more than two modalities, the model can

be readily extended by adding the modality-specific nega-

tive log-likelihood. The model optimization can be solved

by scaled conjugate gradient (SCG) technique [17].

However, nothing in GPLVM encourages the semanti-

cally dissimilar observations to be far in the latent space, nor

semantically similar observations to be close in the latent s-

pace [22]. The learned latent space may not appropriately

reflect the true cross-modal correlation in the observation s-

pace in the context of multi-modal correlation learning. To

address this problem, we propose a regularized similarity

GPLVM in the following section.

3.2. Multi-modal Regularized Similarity GPLVM
(m-RSimGP)

In the m-SimGP model, a simple spherical Gaussian pri-

or is placed over the latent variable. Inspired by [26], to

minimize the distance between similar data pairs and max-

imize the distance between dissimilar data pairs, we devel-

op a multi-modal regularized similarity Gaussian process

latent variable model (m-RSimGP), where the prior charac-

terized by a cross-modal similarity matrix is placed over the

latent space, as shown in Figure 2.

Given a set of data objects O = {oi}
N
i=1 with two fea-

ture modalities yi and zi, the cross-modal similarity matrix

Syz ∈ {0, 1}N×N is defined as follows:

(Syz)ij =

{

1, if (oi, oj) ∈ S

0, if (oi, oj) ∈ D
(16)

��

�

�

�� �

�

Figure 2: Multi-Modal Regularized Similarity GPLVM

where i, j = 1, 2, . . . , N . S = {(oi, oj)} denotes the set

of pairs with similar semantics, and D = {(oi, oj)} de-

notes the set of pairs with dissimilar semantics. To make

sure that semantically similar observations are close to each

other and semantically dissimilar observations are far from

each other in the embedded latent space, we impose the sim-

ilarity and dissimilarity priors on the latent representation.

The corresponding learning problem with respect to the la-

tent variable X is formulated as follows:

min
X

∑

(oi,oj)∈S
‖xi − xj‖

2

s.t. ‖xi − xj‖
2
� 1, ∀ (oi, oj) ∈ D

(17)

where xi is the representation of the data point oi = {yi, zi}
in the latent space. Euclidean distance is used as the dis-

tance measure for the embedded latent representation. The

dissimilar points are separated by a margin of 1 in the latent

space similar to [26].

The optimization problem in Eq. (17) can be interpret-

ed as a prior over the latent variable and combined with the

likelihood maximization problem, where the smooth Gaus-

sian prior constraint in Eq. (15) is substituted with the cross-

modal similarity and dissimilarity constraints. As a result,

our proposed m-RSimGP model is formulated as:

min
X

Ly + Lz +
∑

(oi,oj)∈S
‖xi − xj‖

2

s.t. ‖xi − xj‖
2
� 1, ∀ (oi, oj) ∈ D

(18)

The dissimilar constrains in Eq. (18) can be further relaxed

with a convex hinge loss. Thus we obtain an unconstrained

problem that is much easier to optimize:

min
X

Ly + Lz + λ1

∑

(oi,oj)∈S
‖xi − xj‖

2
+

λ2

∑

(oi,oj)∈D
max

(

0, 1− ‖xi − xj‖
2
) (19)

where λ1 and λ2 are the tradeoff parameters. They can be

assigned with the same value, indicating equal importance

of similar pairs and dissimilar pairs.

The m-RSimGP model can be easily extended and scaled

to multi-modal data. For example, given data with three

modalities, oi = (yi, zi, wi), i = 1, . . . , N , the observation-

s of different modalities share the common latent variables
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xi for each oi. Therefore, the pair-wise semantic relation is

still applied between oi and oj , i, j = 1, . . . , N .

3.3. Optimization and Inference

By substituting the cross-modal similarity matrix Syz in-

to Eq. (19), the equivalent formulation is:

min
X

Ly + Lz + λ1

∑

i,j

(Syz)ij · ‖xi − xj‖
2

(20)

+λ2

∑

i,j

1

(

‖xi − xj‖
2
< 1

)(

1− (Syz)ij

)(

1− ‖xi − xj‖
2
)

.

The scaled conjugate gradient can be applied to obtain the

optimal latent representation X . Specifically, the gradients

of Ly and Lz can be computed as follows:
∂Ly

∂xi

=
1

2

(

NK−1
y −

(

K−1
y Sy(Sy)

⊤
K−1

y

)) ∂Ky

∂xi

,

(21)

∂Lz

∂xi

=
1

2

(

NK−1
z −

(

K−1
z Sz(Sz)

⊤
K−1

z

)) ∂Kz

∂xi

, (22)

where
∂Ky

∂xi
and ∂Kz

∂xi
can be easily obtained, since the RBF

kernel is infinitely differentiable. The gradient of the third

term in Eq. (20), denoted as Ls, is computed as:

∂Ls

∂xi

= 4λ1

N
∑

j=1

(Syz)ij (xi − xj). (23)

Since the hinge loss is convex and non-differential, we com-

pute the subgradient with respect to the distances induced

by the dissimilar pairs at each step. The subgradient of the

last term in Eq. (20), denoted as Ld, is computed as:

∂Ld

∂xi

= 4λ2

N
∑

j=1

1

(

‖xi − xj‖
2
< 1

)

(1− Syz)ij (xj − xi) .

(24)

The gradient of Eq. (20) with respect to the latent represen-

tation is the sum of these four terms.

After the optimization procedure, we obtain the Gaus-

sian processes for generating multi-modal observations

with the shared space X . When inferring the new set of

observed test points, the inference procedure is straightfor-

ward in our solution framework. We take image observa-

tion as an example. The procedure for the text is similar.

Given the image observation yt, we need to learn the cor-

responding latent representation xt by maximizing the pos-

teriori probability. The inference is presented in Algorithm

1, where (t, ·) indicate the index of the test sample and the

index set of all the training samples, respectively. For a

test observation with both modalities, we use similar way

to obtain its latent representation. An approximation to the

posterior p(xt|s
y
t,·, s

z
t,·) is used to predict the latent repre-

sentation xt.

Based on different types of queries, our method can

perform three kinds of cross-modal retrieval tasks: image

retrieval from a text query, text retrieval from an image

query, and multi-modal retrieval from a multi-modal query.

Algorithm 1: Inference for the latent space

Input: The image observation yt.

Step 1: Compute the similarity matrix s
y
t,· between yt

and the training images Y according to Eq. (9).

Step 2: Find the corresponding latent position xt by

maximizing the posteriori probability p(xt|s
y
t,·).

Output: xt.

By maximizing the posteriori probability of p(xt|s
y
t,·),

p(xt|s
z
t,·) and p(xt|s

y
t,·, s

z
t,·), the observations of different

modalities can be projected into the unified latent space X .

Then cross-modal retrieval is performed by measuring the

distance between the latent representations.

4. Relation to Existing Models

Our model naturally extends GPLVM [13] on multiple

modalities. To encode the intra-modal relation, we con-

struct Gaussian processes on the mappings between laten-

t representation and multi-modal observations at the simi-

larity level rather than high-dimensional feature level [13].

It is robust to the notorious curse-of-dimensionality issue,

which is even more jeopardizing for correlation modeling

on heterogeneous high-dimensional data. It can be seen

as a non-parametric generalization of existing subspace-

learning-based correlation models, e.g., canonical correla-

tion analysis [11]. The conditional dependency among la-

tent space and muti-modal observations can be easily con-

structed in a maximum a posteriori inference framework,

while the overall objective functions can be solved by sim-

ple and scalable gradient decent techniques.

The mapping function of GPLVM does not necessarily

guarantee that the similarity and dissimilarity in observa-

tion are preserved in the latent space. One solution to this

problem is back-constraints [14], encoding the latent rep-

resentation with the affinity information in the observation

space. The discriminative shared-space prior [10], defined

by a data-dependent weight matrix, enforces to preserve the

topological structure. The topology preserving constraints

regularize the latent space for multi-modal distance met-

ric learning [26]. In the context of cross-modal learning,

existing approaches [11, 12, 27] develop multi-modal pro-

jections to fit to observations of both intra-modal similarity

and inter-modal relation among heterogeneous data objects.

We directly impose cross-modal similarity and dissimilari-

ty constraints on the output of our similarity-based GPLVM

as smooth priors, which provides goal-oriented solution to

maximize the cross-modal semantic consistency.

Most existing models assume that both inter-modal rela-

tion and intra-modal relation are independent. For example,

CCA directly maximizes the correlation among a set of data

object pairs that are assumed to be independently generated.

MLBE [27] assumes that the intra-modal similarities and

inter-modal relations are conditionally independent to each
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other, and models the dependence between similarity obser-

vations and the latent variables by univariate Gaussians and

binary latent factors. Markov random field is constructed

on the topic models [12] that generate the mutually inde-

pendent multi-modal similarities. Our method explains the

multi-modal correlations from a new perspective of prob-

abilistic interdependency. We assume that the intra-modal

relation is conditionally independent of each other given the

latent representation. The intra-modal similarities are sam-

pled from multi-modal Gaussian processes determined by

the modality-specific covariance functions on the latent rep-

resentation. Such a non-parametric model better deals with

content divergence and cross-modal correlation complicacy

in real-world applications.

5. Experiments

5.1. Datasets and Experimental Settings

In our experiments, two popular multi-modal datasets

listed below are used:

Wiki [19] is collected from Wikipedia consisting of 2,866

image-text documents. Each image is represented by a 128-

dimensional bag-of-words based on SIFT descriptor and

each text is represented by a 10-dimensional LDA feature.

Totally 10 categories are considered and each document is

labeled with one of them. A random 80/20 split of the

dataset is used to produce a training set and a testing set.

Flickr [5] is a subset selected from NUS-WIDE, consisting

of 5730 paired objects. Each pair includes an image repre-

sented by a 500-dimensional bag-of-words based on SIFT

descriptor and 1000-dimensional tag text. The class labels

of image-text pairs are selected as the classes with the top-

10 largest numbers of images. We randomly choose 85% of

the data for training and the remaining 15% for testing.

Unless specified, we use the optimal settings of the pa-

rameters tuned by a parameter validation process for all the

experiments. The bandwidth parameters of similarity ma-

trices and the tradeoff parameters in m-RSimGP are set to

1, i.e., γy = γz = λ1 = λ2 = 1. CCA is used to obtain

a low-dimensional initial representation of the latent space

shared by two data modalities.

5.2. Image-Text Retrieval

Image-text retrieval is a typical cross-modal problem,

consisting of two tasks: (1) image query vs. text database,

(2) text query vs. image database. A retrieved result is

considered correct if it belongs to the same class as the

query. We use 11-point interpolated precision-recall (PR)

curve and mean average precision (MAP) [16] to measure

the retrieval performance.

We compare m-SimGP and m-RSimGP with canoni-

cal correlation analysis (CCA) [11], semantic correlation

matching (SCM) [19], multi-modal latent binary embed-

ding (MLBE1) [27] and back-constrained shared GPLVM

1MLBE: https://bitbucket.org/zhenyisx.

❳
❳
❳
❳

❳
❳

❳
❳

❳
❳

Methods

Tasks
img-query txt-query Average

CCA [11] 0.2453 0.2010 0.2232

SCM [19] 0.2684 0.2276 0.2480

MLBE [27] 0.3787 0.4109 0.3948

SGPLVM [8] 0.1961 0.1546 0.1754

m-SimGP 0.4336 0.4188 0.4262

m-RSimGP 0.4697 0.4418 0.4558

Table 1: The MAP comparison on Wiki dataset. The results

shown in boldface are the best.

❳
❳
❳
❳

❳
❳

❳
❳

❳
❳

Methods

Tasks
img-query txt-query Average

CCA [11] 0.2072 0.2003 0.2038

SCM [19] 0.3282 0.2187 0.2735

MLBE [27] 0.2533 0.3232 0.2883

SGPLVM [8] 0.2666 0.1429 0.2048

m-SimGP 0.3473 0.3380 0.3427

m-RSimGP 0.3855 0.3719 0.3787

Table 2: The MAP comparison on Flickr dataset. The re-

sults shown in boldface are the best.

(SGPLVM2) [8]. In SCM, the CCA modeling is first applied

to learn two maximally correlated subspaces, and then Lo-

gistic regressors are learned in each of these subspaces. As

a generative model, MLBE uses binary hash codes as latent

variables to generate intra-modal and inter-modal similari-

ties. The code length for MLBE is set to 8 in our exper-

iments. SGPLVM uses back-constraints to learn a shared

latent representation that captures the correlations among

different modalities.

On the Wiki dataset, Figure 3.a and 3.b show that our

m-SimGP and m-RSimGP achieve significant improvemen-

t over CCA, SCM and SGPLVM in both retrieval tasks.

Compared to SGPLVM, m-SimGP gains significant perfor-

mance improvement, which indicates that similarity infor-

mation is important in capturing the correlation structure of

multi-modal data. Compared to our methods, MLBE is a

parametric model pre-specified with the nearly optimal la-

tent feature dimension and thus achieves better precision at

low recall rates on small-scale dataset Wiki. Table 1 pro-

vides further comparison by measuring their MAP scores.

It is clear that our nonparametric models outperform the

parametric MLBE model. The best performance achieved

by m-RSimGP outperforms MLBE by 15% higher MAP.

It shows that the cross-modal similarity and dissimilarity

2SGPLVM: https://github.com/SheffieldML/SGPLVM.
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(a) Wiki: PR curves for image query
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(b) Wiki: PR curves for text query
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(c) Wiki: average per-class map
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(d) Flickr: PR curves for image query
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(e) Flickr: PR curves for text query
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(f) Flickr: average per-class map

Figure 3: Precision-Recall curves of cross-modal retrieval using both image ((a)(d)) and text ((b)(e)) queries. Average per-

class MAP scores across image and text queries also shown in (c) and (f).

constraints in Eq. (17) over the latent variables contribute

significantly to the cross-modal correlation learning. Fig-

ure 3.c also shows the per-class MAP scores of our meth-

ods compared to SGPLVM. On all the classes of Wiki, both

m-SimGP and m-RSimGP have higher MAP scores than S-

GPLVM, a GPLVM-based baseline. The m-RSimGP model

outperforms m-SimGP on most of the Wiki classes.

Figure 3.d and 3.e show the PR curves on the Flickr

dataset. For the image retrieval task with textual queries,

we can see that m-SimGP and m-RSimGP perform much

better than any other methods. m-RSimGP further achieves

the best performance. For the text retrieval task with image

queries, the PR curves of our methods dominate other meth-

ods but the classification-based SCM. Our methods achieve

higher precision than SCM at low levels of recall, which

is more applicable in practice. Table 2 further provides

solid evidence demonstrating the superior performance of

our methods. Specifically, m-RSimGP achieves 31% high-

er MAP compared to MLBE. The per-class MAP scores on

the Flickr dataset are also compared to SGPLVM, shown in

Figure 3.f. Similar to the Wiki dataset, m-RSimGP has the

best overall performance.

Our methods consistently achieve promising perfor-

mance on both retrieval tasks, which verifies the effective-

ness of our methods in reducing the semantic gap between

modalities. As shown in Table 1 and 2, other latent variable

models either achieve better MAP performance of image

query (e.g., SGPLVM) or better MAP of text query (e.g.,

MLBE). For our methods, the MAP scores of both retrieval

tasks are pretty close to each other. Therefore, our models

can better achieve the semantic consistency among cross-

modal data and the learned latent representation can better

reflect the cross-modal correlation in the observation space.

5.3. Classification

Our work aims to discover a general latent representation

shared by multi-modal observations. Therefore, the result-

ing posterior of our framework is the latent space instead

of the class information. In other words, the classification

problem is not directly modeled in our methods. To ob-

tain the class prediction, we apply a classifier to the learned

latent space. In our experiments, classification is accom-

plished by using the k-nearest neighbor (k-NN) classifier to

find the closest latent representations to the test data.

The proposed m-SimGP and m-RSimGP are compared

to 1-NN, CCA, SGPLVM, Discriminative GPLVM (D-

GPLVM) [22] and Discriminative Shared GPLVM (DS-

GPLVM3) [10]. As a single-view method, D-GPLVM re-

stricts the latent space with a prior based on Linear Discrim-

inant Analysis (LDA). In our experiments, we extend it to

learn from multi-modal observations. DS-GPLVM general-

izes the Gaussian Markov Random Field (GMRF) prior for

single view to multi-view learning. In [10], DS-GPLVM is

performed in two scenarios for inference. In the first, each

modality is independently back-projected to the latent s-

3DS-GPLVM: https://ibug.doc.ic.ac.uk/resources/

ele_TIP15.
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Methods

Datasets 1-NN CCA [11] SGPLVM [8] D-GPLVM [22] DS-IBP [10] DS-SBP [10] m-SimGP m-RSimGP

Wiki 0.1746 0.1948 0.1457 0.1934 0.1499 0.6921 0.5959 0.6472

Flickr 0.1956 0.1713 0.2072 0.1562 0.1988 0.6898 0.6765 0.7095

Table 3: Average classification accuracy on both Wiki and Flickr datasets. The results shown in boldface are the best.

pace, where the back-constraints are defined on each modal-

ity separately. In the second, a single back-projection to the

latent space is performed for all the modalities, where the

back-constraint is defined on the set of all the modalities.

We denote the former as DS-IBP and the latter as DS-SBP.

We build 1-NN classifier baseline in the image feature s-

pace. In the testing stage, we apply 1-NN classifier to the

learned latent space to obtain the prediction results.

Table 3 presents the average classification accuracy on

both the Wiki and Flickr datasets. The results show that

our methods can effectively learn a discriminative latent s-

pace from multi-modal observations. We can see that our

methods are either comparable or better than other method-

s. DS-SBP and our m-RsimGP achieve the best classifica-

tion accuracy on Wiki and Flickr, respectively. Though DS-

IBP and D-GPLVM are designed for the classification prob-

lem, their poor performance reflects that these two methods

lack the ability to effectively capture the semantically con-

sistent representation of multi-modal data. Since the ma-

jor difference between DS-IBP and DS-SBP is the pattern

of back-projection, we attribute the superior performance

of DS-SBP to the fact that DS-SBP back-projects comple-

mentary information from all the data modalities during the

inference process. Different from DS-SBP, the inference

procedure of our methods is much simpler, where only the

image information is used to estimate a posteriori to infer

the testing latent representations.

5.4. Parameter Sensitivity Analysis

We conduct sensitivity analysis on the tradeoff param-

eters λ1 and λ2 to test how they impact the cross-modal

correlation learning. Without loss of generality, we perform

sensitivity experiments on the training sets of the Wiki and

Flickr datasets, respectively. Figure 4 shows the curves of

average MAP scores of image-text retrieval with differen-

t tradeoff parameters. We consider three different settings:

(1) λ1 is fixed with 0, (2) λ2 is fixed with 0, (3) λ1 and

λ2 are set to the same value. For simplicity, the parameter

variables are denoted as λ , as shown in Figure 4.

We can observe that both similar and dissimilar seman-

tic information have great impact on the performance of

m-RSimGP. The curves of λ1 and λ2 are pretty similar to

each other, which indicates their equal importance in cross-

modal correlation learning. In all the settings, the average

MAP is low for small λ, e.g., 10−4, and it is improved by

increasing λ. When λ is increased to 101 and 102, the per-

formance is much better. Figure 4.a clearly shows that the
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Figure 4: Sensitivity test on the tradeoff parameters w.r.t.

the performance of image-text retrieval

average MAP on Wiki decreases when λ reaches 103, and

Figure 4.b also shows the average MAP on Flickr is on a

downward trend. These phenomenons are possibly due to

the over-fitting problem caused by an overly large λ.

6. Conclusions

We address cross-modal correlation learning problem

based on non-parametric GPLVM. We propose m-SimGP,

which learns the nonlinear mapping functions between

the intra-modal similarities and latent representation. We

further propose m-RSimGP by forcing similar/dissimilar

points to be similar/dissimilar in the output space. The pro-

posed models are robust to content divergence and high-

dimensionality in multi-modal representation, and can be

applied to various tasks to obtain the comparable low-

dimensional representation. The effectiveness of our mod-

els has been shown on cross-modal retrieval and classifi-

cation. In future work, we will investigate on constructing

hierarchical/deep structure for latent variable model [15, 7]

to better capture the intrinsic semantic consistency of het-

erogeneous modalities. We will also address the problem-

s of correspondence missing and information imbalance in

real-world data based on our similarity-based GPLVM.
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