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Abstract

We propose an online tracking algorithm that adaptively

models target appearances based on an online gradient

boosting decision tree. Our algorithm is particularly use-

ful for non-rigid and/or articulated objects since it handles

various deformations of the target effectively by integrating

a classifier operating on individual patches and provides

segmentation masks of the target as final results. The pos-

terior of the target state is propagated over time by particle

filtering, where the likelihood is computed based mainly on

a patch-level confidence map associated with a latent target

state corresponding to each sample. Once tracking is com-

pleted in each frame, our gradient boosting decision tree

is updated to adapt new data in a recursive manner. For

effective evaluation of segmentation-based tracking algo-

rithms, we construct a new ground-truth that contains pixel-

level annotation of segmentation mask. We evaluate the

performance of our tracking algorithm based on the mea-

sures for segmentation masks, where our algorithm illus-

trates outstanding accuracy compared to the state-of-the-

art segmentation-based tracking methods.

1. Introduction

Visual tracking problem has been studied extensively

and significant progress has been made recently in terms of

tracker performance and evaluation methodology. Tracking

algorithms typically deal with various challenges by adapt-

ing target appearances over time [13, 23, 26], reasoning oc-

clusion [20], handling abrupt motion [21, 24], and/or man-

aging background clutter [6]. However, most of existing

algorithms are limited to producing bounding boxes as their

outputs, and they often suffer from drifting problems when

substantial non-rigid and articulated motions are involved in

a target. To overcome such limitations, part- or patch-based

tracking algorithms [2, 14, 22] have been proposed, but they

still employ bounding boxes for target localization.

We believe that segmentation-based tracking is a natural

solution to handle non-rigid and deformable objects effec-

tively. Hence, we propose a novel tracking-by-segmentation

framework, which maintains target appearances based on

small local patches and performs tracking by classifying the

patches into the target or the background. A new online gra-

dient boosting decision tree is integrated for classification,

where the loss function is minimized incrementally without

offline samples. We employ the distance to the object center

as a feature in addition to ordinary visual features for clas-

sification, which turns out to improve performance substan-

tially. Particle filter is adopted to propagate the posterior,

where a segmentation mask is constructed for each latent

target state corresponding to a sample. The final tracking re-

sult is given by the mask of the best sample. To evaluate our

tracking algorithm, we construct new ground-truths of ex-

isting datasets, which contain pixel-level label annotations

and facilitate accurate tracking performance evaluation of

segmentation-based tracking algorithms.

There are several prior studies about segmentation-based

tracking. Aeschliman et al. [1] propose pixel-level prob-

abilistic models for joint target tracking and segmentation,

but this algorithm assumes a static camera environment sim-

ilar to a background subtraction. Another segmentation-

based tracking algorithm is proposed in a particle filter

framework by applying GrabCut [27] to each sample for

robust observation [4], but the likelihood computation is

based on simple features such as color and gradient distri-

butions. A mid-level appearance structure, superpixel, is

employed to distinguish the target from background, where

target state is obtained by computing Maximum a Posteri-

ori (MAP) based on a confidence map of superpixels [28].

HoughTrack [10] relies on an online Hough forest, where

patch-based classification and voting is performed to iden-

tify the target area. PixelTrack [7] provides soft segmenta-

tions of the target based on pixel-wise classification. Re-

cently, Hong et al. [17] propose a multiple quantization

technique, which tracks the target by identifying the best

configuration across pixel, superpixel and bounding box

levels. These methods may have trouble to handle scale

variations effectively since the size of voting vector does

not adapt a target size [10, 7] and the algorithm is designed

for fixed-size bounding boxes [17]. In addition, although

all the above tracking algorithms can generate segmentation
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masks, the evaluations still rely on bounding boxes.

Online boosting algorithms have often been applied to

visual tracking due to its simplicity and robustness. A sim-

ple online boosting-based tracking algorithm is proposed in

[11], and tracking by a semi-supervised online boosting is

presented in [12]. Gradient boosting, which is a more so-

phisticated algorithm to update boosting classifiers online,

often improves classification accuracy [9]. To handle label-

ing ambiguity for semi-supervised learning, [3] describes

an online gradient boosting technique based on multiple in-

stance learning. Weak classifiers in boosting are typically

simple linear functions but decision trees are sometimes

used for better generalization [9]; the resulting classifier is

referred to as gradient boosting decision tree [5]. Accord-

ing to our survey, the online version of the gradient boosting

decision tree is not explored yet at least for visual tracking.

Our algorithm has several interesting features compared

to the existing methods as summarized below:

• We propose a novel learning algorithm for an online

gradient decision boosting tree. This machinery clas-

sifies each patch into target or background.

• Our classifier employs a distance to the object center as

a feature. By exploiting this feature for patch classifi-

cation and updating the classifier online, we can handle

deformations and scale changes of target naturally.

• We construct ground-truth segmentation masks of ev-

ery frame in testing videos, and evaluate segmentation-

based tracking algorithms more rigorously.

The rest of this paper is organized as follows. We first re-

view gradient boosting and gradient boosting decision tree

in Section 2. The details about online gradient boosting de-

cision tree are presented in Section 3, and the procedure of

our tracking algorithm is discussed in Section 4. Section 5

describes our performance evaluation method and Section 6

illustrates experimental results.

2. Background

This section reviews a gradient boosting based on regres-

sion trees, which is referred to as gradient boosting decision

tree [5, 9]. Specifically, we first describe the main idea of

gradient boosting briefly and discuss how the weak learners

are designed in gradient boosting decision tree.

2.1. Gradient Boosting (GB)

Gradient boosting [5, 9] is a gradient-based approach to

learn a boosting classifier incrementally, and approximates

a function f : Rn → R based on a linear combination of

weak learners h : Rn → R as

f(x) =
M
∑

j=1

αjhj(x; θj), (1)

Algorithm 1 Gradient boosting [9]

1: Initialize f0(x) = 0
2: for j = 1 . . .M do

3: g(xi) =
[

∂ℓ(yi,f(xi))
∂f(xi)

]

f(x)=fj−1(x)
, i = 1 . . . N

4: θj = arg minθ,β
∑N

i=1[−g(xi)− β · h(xi; θ)]
2

5: αj = arg minα
∑N

i=1 ℓ(yi, fj−1(xi)+α·h(xi; θj))
6: fj(x) = fj−1(x) + αj · h(x; θj)

7: end for

where x ∈ R
n is an input vector, αj ∈ R is a real-valued

weight, and M is the number of weak learners.

Given training examples, {(xi, yi)|xi ∈ R
n and yi ∈

R}i=1:N , f(·) is constructed in a greedy manner by select-

ing parameter θj and weight αj of a weak learner iteratively

to minimize an augmented loss function given by

L =
N
∑

i=1

ℓ (yi, f(xi)) ≡
N
∑

i=1

exp (−yif(xi)) , (2)

where an exponential loss function is adopted1. The greedy

optimization procedure is summarized in Algorithm 1.

2.2. Gradient Boosting Decision Tree (GBDT)

GBDT is a gradient boosting algorithm that utilizes de-

cision stumps or regression tress as weak classifiers. In

GBDT, the weak learners measure the error observed in

each node, split the node using a test function κ : Rn → R

with a threshold τ , and return values ηl and ηr. The optimal

split is obtained by identifying triplet (τ, ηl, ηr) to minimize

the error after split, which is given by

ǫ(τ) =
∑

i:κ(xi)<τ

wj
i (r

j
i − ηl)2 +

∑

i:κ(xi)≥τ

wj
i (r

j
i − ηr)2, (3)

where wj
i and rji denote the weight and response of xi in

the j-th iteration, respectively. Formally, they are given by

wj
i = exp (−yifj−1(xi)) and (4)

rji = g(xi)/w
j
i = −yi exp (−yifj−1(xi)) /w

j
i = −yi. (5)

We identify the optimal triplet (τ∗, ηl∗, ηr∗) by minimizing

the error in Eq. (3) over all possible τ ’s at each node, where,

given τ , (ηl∗, ηr∗) can be found simply by computing the

weighted average of rji ’s over training examples that fall on

the corresponding side of the split. ηl∗ and ηr∗ are given to

the left and right children of the current node, respectively,

and η’s stored in the leaf node is used as a score of the weak

learner corresponding to the tree depending on its input x.

The training procedure of gradient boosting decision tree

is presented in Algorithm 2, where ν is a shrinkage factor to

1A log loss function, ℓ = log(1+ exp (−yif(xi))), is also available.
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Algorithm 2 Gradient boosting decision tree

1: Initialize f0(x) = 0, η0, d0 = 0
2: for j = 1 . . .M do

3: wi = exp(−yifj−1(xi)), i = 1 . . . N
4: ri = −yi, i = 1 . . . N
5: S = {(xi, wi, ri)}i=1:N and U = {x|x ∈ R

n}
6: R = GROWTREE(S,U , η0, d0)

7: fj(x) = fj−1(x)− ν ·
∑|R|

k=1 ηkδ(x ∈ Rk),
where (Rk, ηk) ∈ R

8: end for

9: procedure GROWTREE(S,R, η, d)

10: if d < dmax ∧ |S| > Nmin then

11: (τ, ηl, ηr) = SPLITLEARNING(S)
12: Rl = {x|κp(x)<τ} andRr = {x|κp(x)≥τ}
13: Rl = GROWTREE(Si:κp(xi)<τ ,R

l, ηl, d+ 1)
14: Rr = GROWTREE(Si:κp(xi)≥τ ,R

r, ηr, d+ 1)

15: return Rl ∪Rr

16: else

17: return {(R, η)}

18: end if

19: procedure SPLITLEARNING(S)

20: (τ∗, ηl∗, ηr∗) = arg min(τ,ηl,ηr) ǫ(τ) in Eq. (3)

21: return (τ∗, ηl∗, ηr∗)

avoid overfitting, d is a depth of the tree, p is a node index,

and δ(·) denotes an indicator function. Refer to [5] for more

details.

3. Online Gradient Boosting Decision Tree

This section describes a generic framework to learn an

online gradient boosting decision tree. If additional data are

given sequentially, we need to update the weak classifiers in

an online manner, where the data used for training until the

previous stages are no more available.

Suppose that we have a classifier at the current time step

t and its error at a node p in a weak classifier is defined as

ǫt(τt,p) =

Np
∑

i=1

wt,i(ri − ηt,p)
2, (6)

where Np is the number of examples falling on node p, and

ηt,p =

{

ηlt,p, if κp(xi) < τt,p

ηrt,p, otherwise
.

Note that ηt,p represents either ηlt,p or ηrt,p depending on

κ(xi) in the following derivations for simplicity and that

ǫt(τt,p) in Eq. (6) has two terms as in Eq. (3).

The goal of our online gradient boosting decision tree

is to learn new parameters τt+1,p and ηt+1,p, given a new

training example to the classifier, through optimization of

the following error function:

ǫt+1(τt+1,p) =

Np+1
∑

i=1

wt+1,i(ri − ηt+1,p)
2

=

Np+1
∑

i=1

wt+1,i(ri − (ηt,p +∆η))2. (7)

Assuming that the optimal τt+1,p is known at the moment,

we optimize ηt+1,p first. A critical issue in this procedure is

that {(wt+1,i, ri)}i=1...Np
is unavailable in online learning.

Therefore, it is impossible to minimize the error exactly by

adjusting τt+1,p and computing the weighted average of ri’s
as we can do in offline learning. Instead, we should update

the weak classifier based on the new example as well as the

limited information of the current classifier.

If we represent ǫt+1(τt+1,p) in Eq. (7) with a function of

∆η as

ǫt+1(τt+1,p) =

Np+1
∑

i=1

{wt+1,i(ri − ηt,p)
2 (8)

+ wt+1,i

(

−2(ri − ηt,p)∆η + (∆η)2
)

},

we can apparently minimize this quadratic function with re-

spect to ∆η and obtain the following solution:

∆η(τt+1,p) =

{

∆ηl(τt+1,p), if κp(xi) < τt+1,p

∆ηr(τt+1,p), otherwise
, (9)

where

∆ηl(τt+1,p) =

∑Np+1

i:κp(xi)<τt+1,p
wt+1,iri

∑Np+1

i:κp(xi)<τt+1,p
wt+1,i

− ηlt,p (10)

and

∆ηr(τt+1,p) =

∑Np+1

i:κp(xi)≥τt+1,p
wt+1,iri

∑Np+1

i:κp(xi)≥τt+1,p
wt+1,i

− ηrt,p. (11)

However, since {(wt+1,i, ri)}i=1...Np
are not available as

mentioned earlier, we employ a recursive method to find η.

Note that ηlt+1,p and ηrt+1,p are given respectively by

ηlt+1,p(τt+1,p) =

∑Np+1

i|κp(xi)<τt+1,p
wt+1,iri

∑Np+1

i|κp(xi)<τt+1,p
wt+1,i

≈ (1− α)ηlt,p + αwt+1,Np+1rNp+1 (12)

and

ηrt+1,p(τt+1,p) =

∑Np+1

i|κp(xi)≥τt+1,p
wt+1,iri

∑Np+1

i|κp(xi)≥τt+1,p
wt+1,i

≈ (1− α)ηrt,p + αwt+1,Np+1rNp+1 (13)
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Algorithm 3 Online gradient boosting decision tree

1: Input : Current classifier f0 = ft, {xi, yi}i=1:No

2: for j = 1 . . .M do

3: wi = exp(−yifj−1(xi)), i = 1 . . . No

4: ri = −yi, i = 1 . . . No

5: Identify examples falling on each node in the tree.

6: for each node p from root do

7: Update ηlt+1,p(τt+1,p) for each τt+1,p : Eq. (12)

8: Update ηrt+1,p(τt+1,p) for each τt+1,p : Eq. (13)

9: Compute ǫt+1(τt+1,p) for each τt+1,p : Eq. (8)

10: τ∗t+1,p = arg minτt+1,p
ǫn+1(τt+1,p)

11: Find (Rt+1,p, η
l∗
t+1,p, η

r∗
t+1,p) using τ∗t+1,p

12: end for

13: end for

where α denotes learning rate. Therefore, we obtain the

following two equations to update weak classifier

∆ηl(τt+1,p) = α(wt+1,Np+1rNp+1 − ηlt,p) (14)

∆ηr(τt+1,p) = α(wt+1,Np+1rNp+1 − ηrt,p). (15)

Intuitively, the return value η is updated with proportion to

the amount of the difference between the weighted response

of the new example and the previous return value.

We have described how to update weak learner given a

new example, but it is trivial to extend the algorithm when

multiple new examples are available. Specifically, ∆η’s are

∆ηl(τt+1,p) = α





No
p

∑

i=1

wt+1,iri − ηlt,p



 (16)

∆ηr(τt+1,p) = α





No
p

∑

i=1

wt+1,iri − ηrt,p



 , (17)

where No
p denotes the number of online examples falling on

node p.

We have discussed how to find the optimal ηt+1,p given

τt+1,p. Note that we need to search over τt+1,p to find

the optimal triplet (τ∗t+1,p, η
l∗
t+1,p, η

r∗
t+1,p) by minimizing

ǫt+1(τt+1,p) in Eq. (8). Since it is implausible to search

over all possible τ ’s, we sample τ ’s from a uniform dis-

tribution and interpolate missing values. Once the optimal

parameters are obtained, we estimate the error in the current

stage ǫt+1(τt+1,p) including the information of new exam-

ple (wt+1,Np+1, rNp+1), and propagate it to the next stage.

Algorithm 3 presents the online update procedure of gra-

dient boosting decision tree when No new examples with

either positive or negative labels are given for each update.

4. Online Tracking for Non-Rigid Objects

Our tracking algorithm propagates the posterior through

particle filtering to estimate the optimal target state, and ob-

tain target segmentation by classifying patches in the region

of interest. We employ an online gradient boosting decision

tree for the classification. Since the proposed algorithm pro-

vides the segmentation mask as well as the bounding box of

the target, it is useful to track non-rigid and articulated ob-

jects. The details of our algorithm is described next.

4.1. Latent Target State Estimation

We adopt particle filtering framework [18] to estimate

the posterior of target state, which is propagated through

prediction and measurement steps as

p(st|z1:t) ∝ p(zt|st)p(st|z1:t−1) (18)

= p(zt|st)

∫

p(st|st−1)p(st−1|z1:t−1)dst−1,

where st and zt are state and observation variable at frame

t, respectively. The posterior is approximated by a set of

particles and their weights {(s
(k)
t , ω

(k)
t )}k=1...K . Each par-

ticle represents the center location of target in our imple-

mentation. Although the state space is 2-dimensional, our

patch classification algorithm and its online update can han-

dle moderate scale changes of target over time. The optimal

target state is given by the particle with maximum weight.

4.2. Generating Patch Confidence Map

Given a classifier by online gradient boosting decision

tree learned based on the algorithm discussed in Section 3,

our tracking algorithm classifies each patch in a frame into

either the target or background.

We employ two different kinds of features to repre-

sent individual patches; one is an ordinary visual feature

φ(p) ∈ R
m and the other is the distance to target center

υ(p; s) ∈ R, where p and s denote the center of patch

and target, respectively. The score of each patch is given

by applying the learned function to the joint feature vector

Φ(p; s) ≡
[

φ(p)⊤, υ(p; s)
]⊤

.

Note that, we obtain a confidence map for each latent

target center s, which corresponds to each sample from par-

ticle filter. Since the feature vector Φ(p; s) contains the

field corresponding to the distance to target center denoted

by υ(p; s), the confidence map typically has higher values

around the optimal target location s∗.

4.3. Likelihood

The weight of a particle, ω
(k)
t ∝ p(zt|s

(k)
t ), is measured

by two factors—classification scores of patches within the

region of interest and similarity of holistic appearances be-

tween target model and candidate, which is given by

p(zt|s
(k)
t ) = pcls(zt|s

(k)
t )papp(zt|s

(k)
t ), (19)

where pcls(zt|s
(k)
t ) and papp(zt|s

(k)
t ) are likelihoods for

classification scores and holistic appearance similarity, re-

spectively.
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Patch confidence map The likelihood by patch-level

classifier scores is based on the summation of the confi-

dence map scores of positive patches, which is given by

pcls(zt|s
(k)
t ) = exp

(

λ

Nt
∑

i=1

max{f(Φ(pi
t; s

(k)
t ), 0}

)

, (20)

where Nt is the number of patches at frame t, k is the sam-

ple index, and λ is a constant.

Holistic appearances The holistic appearance models are

based on Histogram of Oriented Gradients (HOG) and

color histogram. The HOG feature is extracted from the

bounding box of each sample, and color histogram is con-

structed only with positive patches. The likelihood of holis-

tic appearances, pappr(zt|s
(k)
t ), is computed by using the

Bhattacharyya distances between target and candidate his-

tograms.

4.4. Generating Segmentation Mask

Once the likelihood of all samples are computed, we

identify the target state by maximum a posterior solution.

We have the confidence map for the best sample, and the

preliminary target segmentation result is obtained by sim-

ple thresholding in the map. After that, we employ simple

morphological operations and connected component analy-

sis to improve segmentation results. We apply closing op-

eration first to connect regions with small gaps, and then

opening operation to remove trivial noises. After that, we

find a largest segment by connected component analysis. It

is possible to use more sophisticated binary segmentation

algorithms such as GrabCut [27], but we could not find any

noticeable improvement when GrabCut is used.

Our tracking algorithm propagates the posterior of tar-

get only in 2-dimensional state space through particle fil-

tering. However, we can handle moderate scale changes of

target since our patch-level classification is robust to small

variations in the distance to target center and the partition

function for distance feature is updated in each frame.

4.5. Online Sample Selection

Our online gradient boosting decision tree is updated

based on the segmentation output obtained from Sec-

tion 4.4. Since online learning techniques often suffer from

drifting issue due to labeling error in new data, we update

the classifier using reliable patches. In our algorithm, we

select top 20% of patches with high absolute scores in both

positive and negative sides to retrain the classifier.

The overall procedure of our tracking algorithm is sum-

marized in Algorithm 4.

Algorithm 4 Tracking by online GBDT

1: Initialize gradient boosting classifier f1
2: for each frame t = 2 . . . T do

3: for each sample k = 1 . . .K do

4: Compute p(zt|s
(k)
t ) using Eq. (19)

5: end for

6: s∗t = arg max
st
p(st|zt)

7: Predict patch labels: yi = sgn(ft−1(Φ(p
i
t; s

∗
t ))), ∀i

8: Update classifier by Algorithm 3:

ft ← OnlineGBDT(ft−1, {Φ(p
i
t; s

∗
t ), yi}

Nt

i=1)

9: end for

5. Evaluation Methodology

This section presents the motivation of new ground-truth

construction and describes the details of our performance

evaluation methods based on the ground-truth.

5.1. Motivation for New GroundTruths

Performance evaluation of tracking algorithms based on

bounding boxes is straightforward and there are already

a few well-known standard evaluation suites such as on-

line tracking benchmark [29] and VOT challenge bench-

mark [19]. However, the evaluation of segmentation-based

tracking algorithms is more complicated because ground-

truth annotation is extremely time consuming and requires

huge human efforts. Hence, most of existing works still rely

on the evaluation protocol of bounding box trackers; results

may not be sufficiently reliable since one needs to compare

tracking results in segmentation masks and ground-truths in

bounding boxes to compute quantitative scores.

We combined two datasets released in [10, 22] for eval-

uation. They contain 11 videos altogether, each of which

involves significant non-rigid and articulated motions of

target, and are often used to evaluate segmentation-based

tracking algorithms. However, the ground-truth annotations

of these datasets are based only on bounding box, and more

importantly the quality of annotations are very poor. Fig-

ure 1 illustrates several examples of ground-truth errors;

red bounding boxes are the ground-truths provided in the

dataset. The ground-truths are not consistent at all and

sometimes misaligned with target. It is obvious that eval-

uation based on such poor ground-truths is not reliable.

5.2. Groundtruth Annotations

To handle the problems discussed above, we constructed

new ground-truth of pixel-level segmentation in each frame

of all videos in the datasets. Our annotation results are given

in Figure 1 as well, where the segments for target objects are

highlighted and target bounding boxes are illustrated with

green bounding boxes. The pixel-level annotations were

performed manually, and we generated bounding box an-
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Figure 1. Examples of inaccurate ground-truth annotations and our

new annotations for Cliff-dive2, Diving, and High-jump sequences.

(Red) existing ground-truth (Green) our new ground-truth (High-

light) segmentation mask.

notations by computing the tightest rectangular bounding

boxes containing all target pixels; although this may not be

the best way to obtain the bounding box annotation, we be-

lieve that this is at least consistent.

5.3. Evaluation Protocol

We compared our tracking algorithms with three recent

segmentation based methods, which are focused on non-

rigid and deformable objects and can generate segmenta-

tion masks, and five state-of-the-art regular tracking meth-

ods. The segmentation based algorithms include Hough-

Track (HT) [10], Superpixel Tracker (SPT) [28], PixelTrack

(PT) [7]. We selected Struck [15], SCM [31], MEEM [30],

MQT [17] and MUSTer [16] as the regular tracking algo-

rithms. To investigate the benefit of online GBDT classifier

and integrated distance feature, we tested the performance

of the tracking algorithm based on online boosting [25] with

and without distance feature, which are denoted by OABd

and OAB, respectively, and online GBDT without distance

feature (Ours-d). The number of weak classifiers in OABd

and OAB is determined empirically and set to 400.

To measure the accuracy of the trackers, the PASCAL

VOC [8] overlap ratio is employed for the evaluation of suc-

cess ratios based on both bounding boxes and segmentation

masks. The center location error between ground-truth and

tracking results is analyzed as well. Table 1 summarizes

the methods to construct the final segmentation masks and

bounding boxes. We adopt the options used in the original

algorithms by default, but generate segmentation masks for

SPT and PT through simple thresholding followed by mor-

phological operations like our algorithm. Note that prior

Table 1. Methods for segmentation masks and bounding boxes

Segmentation mask Bounding box

HT [10] GrabCut Fit to segmentation

SPT [28] *Thresholding from CM MAP from particle filter

PT [7] *Thresholding from CM Center of mass in CM+voting

(fixed scale)

Ours Thresholding from CM Fit to segmentation

CM: confidence map, *: integrated in this paper for evaluation purpose

works [10, 7, 17] employ the success ratio at 10% of bound-

ing box overlap for performance evaluation. However, 10%

overlap ratio is too low and it is difficult to interpret the

evaluation result; we believe that our evaluation method is

more intuitive and comprehensive.

6. Experiments

6.1. Implementation Details

We implemented an online extension of gradient boost-

ing decision tree based on the code by Becker et al. [5].

We used all patches centered at every pixels within the re-

gion of interest. The patch size for classification is 8 × 8,

from which features are extracted. As visual features, we

employed the means and the standard deviations of 6 color

channels in RGB and HSV (12D) and Gabor filter bank re-

sponses (2 scales × 2 frequencies × 8 orientations = 32D).

Euclidean distance (1D) to the object center is used as dis-

tance feature, and the number of samples for particle filter

is 100. The shrinkage factor ν of boosting in Algorithm 2 is

set to 0.1. We used 20 weak-classifiers, 1000 bins for sam-

pling τ , and maximum depth of tree dmax = 5. Distance

measure is used only in the last level; classification by dis-

tance measure is based on whether the patch falls between

certain lower and upper bounds of distance. All algorithms

are given bounding box initializations. Our algorithm con-

structs the initial segmentation masks at the first frame from

the bounding box annotation using GrabCut [27] automat-

ically. Our tracking algorithm runs at 2-3 frame/sec in the

standard PC.

6.2. Results and Discussion

Figure 2 illustrates the performance of all compared al-

gorithms in terms of success ratios of segmentation and

bounding box overlaps and precision of center location er-

rors, which are based on the standard criteria used in on-

line tracking benchmark [29]. The trackers providing target

segmentation masks are denoted by solid lines, and dashed

lines correspond to the methods returning bounding boxes

only. For Figure 2(a), we evaluate the tracking algorithms

with no segmentation mask based on overlap ratios between

ground-truth segmentation mask and bounding box outputs.

Table 2 presents the average overlap ratios for bounding box

and segmentation mask, where the best results are marked

in red and the second best in blue.
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Figure 2. Success and precision plots in the non-rigid object tracking dataset

Table 2. Quantitative results based on bounding box and segmentation in the non-rigid object tracking dataset

(a) Bounding box overlap ratio (b) Segmentation overlap ratio

HT SPT PT Struck SCM MEEM MQTMUSTer OAB OABd Ours-d Ours HT SPT PT OAB OABd Ours-d Ours

Cliff-dive1 61.0 66.5 29.9 62.4 61.8 33.3 65.1 60.9 66.7 68.2 74.3 75.9 64.2 54.6 60.1 57.9 58.7 65.8 67.6

Cliff-dive2 52.0 30.3 13.4 34.0 30.0 27.6 35.0 14.8 32.2 24.6 36.6 49.3 49.4 41.8 16.0 16.8 16.3 25.8 36.7

Motocross1 55.1 11.2 3.6 29.2 10.8 9.1 24.0 22.1 5.4 11.2 26.8 62.4 52.2 8.9 1.4 4.4 8.3 24.1 53.1

Motocross2 62.0 46.1 21.3 70.6 41.7 60.4 66.3 68.1 56.6 55.0 69.8 72.1 53.0 37.1 39.7 46.3 37.1 59.4 64.5

Skiing 50.2 27.7 21.4 3.2 7.4 29.5 31.3 3.5 21.3 20.0 21.1 39.0 41.0 37.3 43.0 19.5 17.7 26.7 32.1

Mtn-bike 48.6 53.0 12.9 66.2 71.4 64.8 57.4 69.5 13.5 62.4 38.7 61.2 53.4 43.0 32.1 10.2 46.8 37.9 54.9

Volleyball 27.7 26.8 15.2 36.2 13.2 31.1 54.5 19.0 0.3 33.8 16.3 46.2 31.1 6.5 25.1 0.0 24.7 10.2 41.1

Diving 7.9 35.2 12.3 33.6 15.1 12.6 30.9 20.7 36.3 52.7 50.5 50.6 6.7 21.2 25.5 30.4 44.0 43.3 44.1

Gymnastics 10.4 42.6 26.0 53.7 13.9 17.6 35.7 47.7 56.1 58.3 77.0 70.4 9.2 10.6 52.0 39.3 44.8 67.3 69.8

Transformer 63.4 55.8 13.9 57.7 55.6 51.4 54.2 59.6 72.1 85.4 84.6 86.6 45.0 2.8 5.5 59.1 72.0 74.1 74.0

High jump 39.1 5.3 0.6 15.4 8.4 21.1 33.0 8.3 4.7 23.7 42.8 51.5 40.4 52.1 0.9 4.9 19.3 18.5 42.8

average 43.4 36.4 15.5 42.0 29.9 32.6 44.3 35.8 33.2 45.0 49.0 60.5 40.5 28.7 27.4 26.3 35.4 41.2 52.8

The results in Figure 2 and Table 2 clearly show that

our algorithm outperforms all other methods in terms of

all metrics. In particular, the proposed algorithm is gen-

erally good for segmentation and bounding box alignment

while the improvement of center location errors is relatively

small. According to our experiments, both online GBDT

classifier and distance feature made substantial contribution

to improve performance, which is noticeable in Figure 2 and

Table 2. Although MEEM [30] and MUSTer [16] are out-

standing in the online tracking benchmark [29], they are not

successful to track deformable and articulated objects. In

our experiments, PT uses small bounding boxes inside the

standard ground-truths for initialization, tracking and eval-

uation, thus their success ratio on bounding box overlaps is

low while it has relatively high precision. All the results re-

ported here are based on the new annotations for bounding

box and segmentation mask described in Section 5.2.

We obtained reasonably successful results (success rate

= 0.524, precision = 0.748) in the online tracking bench-

mark [29]. Although our algorithm is not the best compared

to the latest ones optimized in the benchmark, it is still com-

petitive. Note that we aim to generate pixel-level segmenta-

tion, which is more difficult than bounding box tracking.

Figure 3 illustrates the qualitative results on a represen-

tative frame of each sequence, where segmentation mask

and bounding box results of each algorithm are illustrated.

The first column presents original frames, the second one

is ground-truth segmentations, and the remaining ones cor-

respond to the results of HT, SPT, PT and our algorithm.

The segmentation overlap ratio is shown at the bottom of

each result. Again, it clearly shows that our tracker handles

diverse challenges, including deformations, in-plane rota-

tions, and articulations, effectively and presents good re-

sults compared to other techniques.

The detailed results including new ground-truth annota-

tions are provided in our project website2.

7. Conclusions

We proposed a novel online learning algorithm for gra-

dient boosting decision tree to track and segment non-rigid

and deformable objects. For more rigorous performance

evaluation, we constructed a new ground-truth for both seg-

mentation mask and bounding box. The experimental re-

sults demonstrate that our algorithm outperforms the state-

of-the-art tracking algorithms substantially in terms of suc-

cess ratio, precision, and average overlap ratio.
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58.89 46.96 64.85 68.90

72.42 83.10 17.42 64.30

53.89 0.00 0.00 65.93

31.35 51.80 47.60 70.25

48.49 58.79 50.82 44.92

40.24 29.43 23.69 46.94

0.64 35.40 69.10 76.82

10.07 0.00 43.00 64.72

0.00 0.00 32.17 73.21

38.73 70.18 7.44 80.82

55.26 0.00 0.00 54.51

Figure 3. Qualitative performance evaluation. The order of sequences is same as the order in Table 2.
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