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Abstract

Sparse representation and low-rank matrix decomposi-

tion approaches have been successfully applied to several

computer vision problems. They build a generative repre-

sentation of the data, which often requires complex training

as well as testing to be robust against data variations in-

duced by nuisance factors. We introduce the invariant com-

ponents, a discriminative representation invariant to nui-

sance factors, because it spans subspaces orthogonal to the

space where nuisance factors are defined. This allows de-

veloping a framework based on geometry that ensures a uni-

form inter-class separation, and a very efficient and robust

classification based on simple nearest neighbor. In addi-

tion, we show how the approach is equivalent to a local

metric learning, where the local metrics (one for each class)

are learned jointly, rather than independently, thus avoiding

the risk of overfitting without the need for additional regu-

larization. We evaluated the approach for face recognition

with highly corrupted training and testing data, obtaining

very promising results.

1. Introduction

Recent approaches based on sparse representation [44]

and low-rank matrix decomposition [5] have demonstrated

great potential for addressing the problem of human iden-

tification, based on matching face images. Sparse coding

has led to impressive performance even for image classi-

fication [30, 12]. Similarly, low-rank methods, after be-

ing applied to domains such as segmentation and group-

ing [7], tracking [49], and 3D visual recovery [26], are

now also being used for classification [50]. For face recog-

nition the sparse representation-based classification (SRC)

method [44] has shown robustness with respect to a high

degree of noise and occlusions in the test images. At the

same time, sparse coding dictionary learning was shown to

be sensitive to training samples corrupted by structural nui-

sance factors, such as occlusions, disguise, pose, lighting

variations, and so on. This has motivated the development

of low-rank matrix decomposition approaches [5, 6, 48, 39],

which have the ability to learn a representational dictio-

nary even in presence of corrupted data. Those approaches

build a generative representation of the data that focusses on

capturing all the information descriptive of an entity. This

leads to complex training and testing for building robust-

ness against, and filtering out unwanted data variations due

to nuisance factors.

In this work we introduce a low-rank modeling frame-

work that gives up capturing all the descriptive informa-

tion of an entity (referred to as the sufficient component),

and focusses on learning a representation that is invariant

to nuisance factors (referred to as the invariant component).

The main advantage of this approach is a fast procedure for

computing and comparing invariant components for recog-

nition. Indeed, we will see that this can be achieved by a

simple matrix multiplication. On the other hand, the main

challenge of this approach is that different entities may orig-

inate the same invariant component, thus preventing their

discrimination. We will show that the proposed framework

not only learns different invariant representations for dif-

ferent entities, but such representations promote a uniform

inter-class separation.

The approach couples simple geometry tools with recent

advances in low-rank matrix recovery theory [5], and devel-

ops a supervised model for learning the proposed invariant

representation, which spans an invariant subspace. Such

subspace has to be orthogonal to the variation subspace,

generated by data variation induced by nuisance factors on

all the entities. We make the assumption that the variation

subspace is low-rank. Although this is an approximation,

we empirically verify that it leads to very promising re-

sults for face recognition when training and testing data are

highly corrupted, which is typical in video surveillance ap-

plications.

While the framework is grounded on geometry, we will

show how it relates to metric learning [36, 9, 34, 4], typi-

cally used for improving nearest neighbor (NN) classifica-

tion based on the Euclidean distance. We will show that

learning the invariant components is equivalent to learn-
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ing the representatives of a set of entities (or classes),

thus classification is based on identifying the nearest in-

variant component. Less intuitively, the same invariant

components define a global metric, and also a local met-

ric. This is important because local metric learning ap-

proaches [16, 1, 13, 42], improve upon global ones by tak-

ing into account the variability of the discriminative power

of features across different neighborhoods. In particu-

lar, most of the approaches learn local metrics for differ-

ent neighborhoods independently, and use regularization to

avoid overfitting. Our framework learns the invariant com-

ponents, and therefore the local metrics jointly. In addition,

their interpretation as a global metric is shown to promote

uniform inter-class separation.

The rest of the paper will build more connections and

differentiations with the related literature by taking advan-

tage of the introduced notation. In addition, Section 2 intro-

duces the idea of invariant subspace. Section 3 highlights

its advantages and challenges for classification. Section 4

describes a supervised model for training. Section 5 shows

how classification is done, describes its properties, and de-

fines the global and local metrics being learned. Finally,

Section 6 validates the proposed approach.

2. Invariant Subspace Representation

We assume that a data point x ∈ R
m, representing an

entity (e.g., the vectorized version of the image pixels of

a face), can be modeled by two additive components. The

first one, s ∈ R
m, represents all the information necessary

to recognize the entity (e.g., everything that describes the

specific identity of the individual depicted by the face im-

age). From a statistical point of view, we can imagine s
to be the equivalent of a sufficient statistic for recognition,

and we refer to it as the sufficient component. The second

component, v ∈ R
m, represents how the data point differs

from the sufficient component by the effect of nuisance fac-

tors, which are not descriptive of the entity. For instance,

the image of a face might be modified by different light-

ing conditions, facial expressions, occlusions, etc. We call

variation subspace, V ⊂ R
m, the space where the varia-

tion component v is defined. It is assumed that v spans V
as changes in nuisance factors affect a data point, which is

modeled as

x
.
= s+ v . (1)

If PV : Rm → V is the projection operator mapping an m-

dimensional vector onto V , x can be further decomposed as

x = (PVs + v) + (s − PVs). In particular, the first com-

ponent a
.
= PVs + v, is defined in V , whereas the second

component b
.
= s− PVs, is defined in the orthogonal com-

plement of the variation space, V⊥.

The decomposition x = a + b has the following prop-

erty. Let us assume that x1 and x2 are two different points

representing the same entity. According to (1), it must be

that x1 = s + v1 and x2 = s + v2, because they have

been affected by different nuisance factors. This means

that a1 = PVs + v1, and a2 = PVs + v2; however,

b1 = s− PVs = b2, which highlights that the component b
is invariant to the changes induced by the nuisance factors.

We refer to the subspace where b is defined as the invariant

subspace1 B, which will be a subspace of V⊥.

3. Recognition via the Invariant Subspace

We assume that a set of n training data samples from N
different entities, or object classes (e.g. images of faces,

or whole body appearances), are given, where each class

i has ni samples. Every sample xj is modeled according

to (1), and we concatenate the data into a matrix X =
[X1, X2, · · · , XN ] ∈ R

m×n, where Xi ∈ R
m×ni is the

training data matrix obtained by lining up the samples for

class i.
Model (1) has been implicitly adopted by the most suc-

cessful recent approaches to the face recognition problem.

In particular, the SRC method [44] aims at “carefully” com-

posing each of the Xi’s in such a way that the selected

samples are able to represent the salient components si’s
in the best possible way. The matching between a test point

x = s + v, and a salient component si (i.e., the classifica-

tion), is based on sparse coding and residual computation,

and has demonstrated a remarkable robustness against the

variation component v, leading to high recognition rates.

The SRC approach has been further improved against po-

tential corruptions of the test data point [17, 46]. For in-

stance, [45] improves upon occlusions and computational

cost, [32] robustifies the sparse coding problem by com-

puting a sparsity-constrained maximum likelihood solution,

[40] simultaneously handles the misalignment, pose and il-

lumination invariance, and [10] addresses the problem of

reducing the large amount of training data needed by SRC

to be effective.

To address the more general case where also the training

data is highly affected by nuisance factors, and a “careful”

composition of X is not possible, the SRC approach has

been augmented in different ways. In [6] a low-rank ma-

trix recovery [5] approach is designed for pre-processing

the corrupted training data. After this step, the SRC method

can be applied more effectively. Another approach, [11],

proposes to apply sparse coding for modeling the sufficient

component by learning a dictionary of prototypes, each of

which, given by the average of the data in Xi, is meant to

approximate si. In addition, sparse coding is also used for

modeling the variation subspace. The concatenation of the

1A geometric parallel could be observed between the variation and the

invariant subspaces with the shared and the private subspaces in the dataset

bias problem [23, 37]. However, unlike the shared subspace, used for

cross-dataset recognition, the variation space is something we get rid of.
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prototype and the variation dictionaries form a new dictio-

nary with which the SRC method can be applied more ef-

fectively.

In this work we propose to address the recognition prob-

lem with highly corrupted training and testing data by ex-

ploiting model (1) in a very different way than previous

work. The idea is based on a simple observation. Suppose

that the projection operator PV was available. Then, a test

sample x could be processed by computing x − PVx = b.
Similarly, for the training dataset, following the property

of the invariant subspace, computing X − PVX produces

[b11
⊤
n1
, b21

⊤
n2
, · · · , bN1⊤nN

], where bi is the invariant com-

ponent of class i, and 1ni
is a column vector of ones with

length ni. Therefore, recognition could be done by a sim-

ple matching between b and the set of bi’s. This means that

corruption (or intra-class variability) in training and testing

data, as well as recognition could be handled in a very easy,

and efficient way with simple geometry tools.

One major challenge of the proposed approach is posed

by the case when two different sufficient components s1 6=
s2, are such that s1 − PVs1 = s2 − PVs2. This means

it would be impossible to discriminate between the corre-

sponding classes. The supervised learning approach intro-

duced in the following sections will: (1) allow learning of

the invariant subspace, and (2) inherently address the chal-

lenge just outlined by promoting a uniform inter-class sep-

aration as described in Section 5.2.

4. Invariant Subspace Learning

We begin by observing that since every data point is

modeled as xj = aj+bj , the training data set X , can be de-

composed by X
.
= A+B, where A ∈ R

m×n collects all the

aj’s, and B ∈ R
m×n collects all the invariant components,

bj’s. We assume that the variation subspace V has a finite

dimension, which is lower than min{m,n}. This is reason-

able because it states that there are enough data for learning

the variation subspace of interest, it allows avoiding over-

fitting, and it makes the problem tractable. Therefore, at-

tempting to recover A, which in turn allows recovering B,

entails solving a low-rank matrix recovery problem.

In practice, the training data will also be affected by

noise. We admit that a small percentage of the entries of

X are corrupted by values not modeled by the variation and

invariant components, which means that such noise should

be sparse. This will account for data deviations unlikely to

be captured by a finite dimensional linear subspace, such as

those induced by image saturations, like image glare, or the

presence of strong edges. Therefore, if E ∈ R
m×n is the

matrix of sparse noise, the model for the training dataset is

given by

X
.
= A+B + E . (2)

Before posing the optimization problem for the estimation

of A, and B, we review the standard low-rank matrix recov-

ery problem with sparse noise.

4.1. Lowrank Matrix Recovery

Low-rank (LR) matrix recovery seeks to decompose a

data matrix X into A+E, where A is a low-rank matrix and

E is the associated sparse error. More precisely, given the

input data matrix X , LR minimizes the rank of the matrix A
while reducing ‖E‖0 to derive the low-rank approximation

of X . Since the aforementioned optimization problem is

NP-hard, [5] proposed to relax the original problem into the

following tractable formulation

min
A,E

‖A‖∗ + α‖E‖1 s.t. X = A+ E . (3)

In (3), the nuclear norm ‖A‖∗ (i.e. the sum of the singular

values) approximates the rank of A, and the ℓ0-norm ‖E‖0
is replaced by the ℓ1-norm ‖E‖1, which sums up the abso-

lute values of the entries of E. It is shown in [5] that solving

the relaxed version of the problem (3) is equivalent to solv-

ing the original low-rank matrix approximation problem, as

long as the rank of A to be recovered is not too large and

the number of errors in E is small (sparse). To solve the

optimization problem (3) it is possible to apply the efficient

method of augmented Lagrangian multipliers (ALM) [27].

In face recognition X represents the gallery of images

of N subjects. By performing the low-rank matrix recov-

ery (3), X gets decomposed into A = [A1, · · · , AN ], and

E = [E1, · · · , EN ]. The desired effect is for a subject i to

produce a low-rank matrix Ai with columns that look very

much alike and span a very narrow space around the suf-

ficient component si [6]. The corresponding sparse matrix

Ei is expected to pick up the variation components, caused

by nuisance factors (e.g., occlusions, disguise, lighting vari-

ations, pose, etc.). In [6] the low-rank matrices Ai’s are it-

eratively optimized with robust PCA [5]. In addition, for

an increased class separation, a structural incoherence prior

is included in the optimization. Other approaches instead,

increase discriminability by learning a dictionary in combi-

nation with sparse coding and low-rank modeling. In par-

ticular, [29] learns a low-rank discriminative dictionary for

every class to operate the sparse representation of data sam-

ples. [50] instead learns a discriminative dictionary for a

sparse and low-rank representation. In [29] testing is simi-

lar to the SRC; in [50] the learning of an extra linear multi-

class classifier is required.

Unlike previous work, we do not learn a dictionary, and

the columns of the low-rank matrix A are meant to span

the variation space V , not the space of the sufficient com-

ponents. Discriminability comes from learning the invari-

ant components B, which leads to a very simple and effi-

cient rule for classification, and can promote class separa-

tion with a supervised learning approach described in the

following section.
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4.2. Supervised Learning

To learn model (2), standard LR (3) is insufficient be-

cause we also need to learn the invariant components B.

To do so, we need to take into account the geometric, and

invariance constraints of (2).

Geometric constraint. In particular, the invariant sub-

space should be included in the orthogonal complement of

the variation subspace V⊥. Therefore, A and B should sat-

isfy the relationship

B⊤A = 0 . (4)

Invariance constraint. In addition, given two data points

x1 = a1+b1+e1 and x2 = a2+b2+e2, if they are represen-

tative of the same class i, the invariant components should

be the same, i.e. b1 = b2. To express this in an algebraic

form, b1 and b2 should be the solution to the linear system

given by the equations b1 = 1
2 (b1+b2), and b2 = 1

2 (b1+b2).
For n data points, where B = [B1, B2, · · · , BN ], the con-

straint on the invariant components would be b1 = b2 · · · =
bn1

, for B1, · · · , and bn−nN+1 = bn−nN+2 = · · · = bn,

for BN . This can still be expressed in an algebraic form,

by generalizing the system of two linear equations to the

following expression

B(I −Q) = 0 , (5)

where I is the identity matrix, and Q is

a block-diagonal matrix, given by Q
.
=

diag( 1
n1

1n1
1⊤n1

, 1
n2

1n2
1⊤n2

, · · · , 1
nN

1nN
1⊤nN

), and 1ni

is a column vector with ones of length ni.

In order to learn A and B, we propose to augment prob-

lem (3) with model (2), the geometric constraint (4), and the

invariance constraint (5). In particular, to make the problem

more tractable, the geometric and invariance constraints are

relaxed to the penalty terms ‖B⊤A‖2F , and ‖B(I − Q)‖2F
in the following optimization problem

min
A,B,E

‖A‖∗+α‖E‖1 + β‖B(I −Q)‖2F + γ‖B⊤A‖2F
s.t. X = A+B + E , (6)

where ‖ · ‖F indicates the Frobenius norm, and α, β, and γ
are penalty weights. Note that the addition of the invariance

constraint (5) as a penalty, through Q injects the training

dataset labeling information inside the learning problem,

turning it into a supervised approach.

4.3. Optimization

In order to solve problem (6), we use the exact ALM

method [27], and start by computing the augmented La-

Algorithm 1 Invariant Components Learning via the Exact

ALM Method
Input: Observation matrix X , labels Q, and penalty weights α, β, γ

1: k = 0; ρ > 1; µ0 > 0; η = ‖X‖2F ; λ0 =
sgn(X)

max(‖sgn(X)‖F ,α−1‖sgn(X)‖∞)
; A0 = 0; B0 = XQ; E0 = 0

2: while not converged do

3: j = 0; A0
k = Ak; B0

k = Bk; E0
k = Ek

4: while not converged do

⊲ Line 5 solves (8)

5: (U,Σ, V ) = svd(X −B
j

k
− E

j

k
+ µ−1

k
λk − γB

j

k
B

j

k

⊤
A

j

k
) ;

A
j+1
k

= US(ηµk)−1 (Σ)V ⊤

⊲ Line 6 solves (9)

6: E
j+1
k

= S
αµ

−1
k

(X − A
j+1
k
− B

j

k

⊤
+ µ−1

k
λk)

7: Update B
j+1
k

by solving (11) with A
j+1
k

and E
j+1
k

8: j ← j + 1
9: end while

10: Ak+1 = A
j+1
k

; Bk+1 = B
j+1
k

; Ek+1 = E
j+1
k

11: µk+1 = ρµk; λk+1 = λk + µk(X − Ak+1 − Bk+1 − Ek+1)
12: k ← k + 1
13: end while

Output: Ak , Bk , Ek

grangian function L(A,B,E, λ), given by

L =‖A‖∗ + α‖E‖1 + β‖B(I −Q)‖2F + γ‖B⊤A‖2F
+ 〈λ,X −A−B − E〉+ µ

2
‖X −A−B − E‖2F

=‖A‖∗ + α‖E‖1 + β‖B(I −Q)‖2F + γ‖B⊤A‖2F

+
µ

2
‖X −A−B − E +

λ

µ
‖2F − 1

2µ
‖λ‖2F

=‖A‖∗ + α‖E‖1 + β‖B(I −Q)‖2F + h(A,B,E, λ, µ)

− 1

2µ
‖λ‖2F ,

(7)

where 〈X,Y 〉 .
= trace(X⊤Y ), µ is a positive scalar, λ

is a Lagrange multiplier matrix, and h(A,B,E, λ, µ) =
µ
2 ‖X−A−B−E+ λ

µ
‖2F +γ‖B⊤A‖2F is a quadratic con-

venience function. We optimize (7) with an alternating di-

rection strategy, and at every outer iteration of Algorithm 1,

A, B, and E are first iteratively updated until convergence;

subsequently, λ and µ are updated. The inner iteration up-

dates of Algorithm 1 are given below.

Updating Ak+1: From the reduced augmented La-

grangian it is convenient to use the linearization technique

of the LADMAP method [28], very effectively used also

by other approaches [29, 52, 50], and replace the quadratic

term h with its first order approximation, computed at itera-

tion k, and add a proximal term giving the following update

Ak+1 = argmin
A

‖A‖∗+ < ∇Ah(Ak, Bk, Ek, λk, µk),

A−Ak > +
ηµk

2
‖A−Ak‖2F

= argmin
A

‖A‖∗ +
ηµk

2
‖A− (X −Bk − Ek +

λk

µk

− γBkB
⊤
k Ak)‖2F , (8)
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(a)

(b)
Figure 1. Synthetic data. (a) Decomposition of 12 synthetic data

points. (b) Decomposition of the same 12 points with Algorithm 1.

Top row: input points X . Second row: A components. Third row:

Sparse errors E. Bottom row: Invariant components B. Columns

with invariant components depicting the same digit belong to the

same class. The digits appear “hazy” as a result of being orthogo-

nal to the A components by construction.

where η must be greater than ‖A‖2F [28]. The solution

to (8) is reported in Algorithm 1, and is obtained by apply-

ing the singular value thresholding algorithm [3], with the

soft-thresholding shrinkage operator Sǫ(x), which is equal

to: x− ǫ if x > ǫ, x+ ǫ if x < −ǫ, and 0 elsewhere.

Updating Ek+1: From (7), the augmented Lagrangian re-

duces to

Ek+1 = argmin
E

α‖E‖1+
µk

2
‖E−(X−Ak+1−Bk+

λk

µk

)‖2F
(9)

and the solution, reported in Algorithm 1, is still obtained

with an instance of the singular value thresholding algo-

rithm [3].

Updating Bk+1: This update is computed as

Bk+1 =argmin
B

µk

2
‖X −Ak+1 − Ek+1 −B +

λk

µk

‖2F+

β‖B(I −Q)‖2F + γ‖B⊤Ak+1‖2F . (10)

Note that the cost function in (10) is quadratic in B.

Therefore, the update can be obtained by computing the

partial derivative with respect to B of the cost function, and

then setting it to zero. This leads to a Sylvester equation in

B, given by

γAk+1A
⊤
k+1B +B

(

(β +
µk

2
)I − 2βQ− βQQ⊤

)

=

µk

2

(

D −Ak+1 − Ek+1 +
λk

µk

)

. (11)

Figure 2. AR dataset. Decomposition results for the 13 images of

one subject taken in one session. Row meanings are explained in

Figure 1. Images are rescaled for better contrast and visualization.

Therefore, the update (10) can be computed with a standard

Sylvester equation solver. The full optimization procedure

is summarized in Algorithm 1.

5. Classification

Given a test data point x, even if, strictly speaking,

we are not in an instance-based learning setting, the ob-

vious approach to perform classification is to compute a

label y with a nearest-neighbor (NN) method, where y =
argmini d(x,Bi), and d(·, ·) is a suitable distance between

x and the invariant matrix Bi, representing class i.
Following the strategy outlined in Section 3, from the in-

variant components Bi one can estimate PBi
: Rm → Bi,

the operator that projects data points directly onto Bi ⊂ B,

the invariant subspace for class i. Doing so has the ad-

vantage that the projection of x onto V⊥ gives b + PV⊥e,

whereas the projection of x onto Bi gives b + PBi
e, and

since Bi ⊂ V⊥, it follows that ‖PBi
e‖F ≤ ‖PV⊥e‖F ,

which means a lower noise corruption. Therefore, we pro-

pose to use the following Frobenius norm dF (x,Bi) =

n
− 1

2
i ‖Bi − PBi

x 1⊤ni
‖F . Note that if Bi can be approxi-

mated with bi1
⊤
ni

, as it normally should, then the distance

computation is even faster, because given by

dF (x,Bi) = ‖bi − PBi
x‖F . (12)

5.1. Local Metric Learning

Metric learning improves the performance of the NN

classifier if used instead of the Euclidean metric. It has been

applied effectively for classification [33], retrieval [19], per-

son reidentification [51, 18], and widely for face verifica-

tion [8, 15, 34, 35, 20]. Different aspects of metric learn-

ing have been investigated, like distance parameters selec-

tion, scalability, whether training data should be used in

pairs [34], triplets [36] or quadruplets [25], or whether data
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Figure 3. AR dataset. Recognition rates versus different numbers p, of corrupted training images per class for the three scenarios:

sunglasses (left), scarf (center), sunglasses and scarf (right).

undergoes a linear [9, 24], or nonlinear [4, 20, 38, 47] trans-

formation.

The approach outlined before, which has been derived

using geometry, is amenable to an interpretation from a

metric learning perspective. Let us recall the definition of

Mahalanobis distance between two points xi and xj , given

by dM (xi, xj) =
√

(xi − xj)⊤M(xi − xj), where M is

a symmetric positive semi-definite matrix. A global linear

metric learning method learns a matrix M according to a

specific criterion. Since the decomposition M = L⊤L is

always possible, the Mahalanobis distance can be expressed

also as dM (xi, xj) = ‖L(xi − xj)‖F .

Global metric learning methods learn the importance and

correlation of different input features and take them into ac-

count for NN classification, regardless of the specific fea-

ture neighborhood where they are applied. Since discrim-

inative power of input features might vary between differ-

ent neighbors, learning a global metric may be suboptimal.

This has motivated the development of local metric learning

approaches [16, 1, 13, 42, 2], which increase the discrimina-

tive power of global Mahalanobis metric learning by learn-

ing a number of local metrics.

The proposed approach can be seen as a local metric

learning approach, where for the neighborhood of each of

the invariant components we learn a Mahalanobis metric. In

particular, if Bi = UBi
SBi

V ⊤Bi
is the singular value decom-

position (SVD) of Bi, then the distance (12) can be rewrit-

ten as dF (x,Bi) = ‖UBi
U⊤Bi

(x − bi)‖F . This means that

dF (x,Bi) = dMi
(x, bi), i.e., the Mahalanobis distance be-

tween x and bi, with respect to Mi = UBi
U⊤Bi

. Therefore,

learning a representation based on the invariant components

B, is equivalent to learning a set of cluster centers {bi}, and

a set of Mahalanobis matrices {Mi} that act on the neigh-

borhood of each center, and with which labels are assigned

based on the NN rule y = argmini dMi
(x, bi).

5.2. Class Separation

Most local approaches learn the metrics for each neigh-

borhood independently [42] and require the addition of a

form of regularization to avoid overfitting. In contrast, re-

lated to [41], our approach learns the metrics jointly, ac-

cording to the constraints (4) and (5). While the first elim-

inates the effects of nuisance factors, the second ensures

not only invariance, but also class separation. More specif-

ically, since the invariance constraint (5) can be rewritten

as Q = B⊤(BB⊤)+B, it is easy to realize that the Ma-

halanobis distance dM (bi, bj), with M = (BB⊤)+/n, be-

tween the invariant components bi and bj , for classes i and

j, is such that

dM (bi, bj) =

{

0 if i = j ,√
2N otherwise ,

(13)

where for simplicity it is assumed ni = nj . Without loss

of generality, if we assume that the columns of B are zero

mean, M is the inverse of the covariance of B (for a short

discussion we do not address the rank deficiency of B,

which leads to a reduced-rank metric, and to using the pseu-

doinverse (BB⊤)+). Therefore, (13) means that the invari-

ant subspace B is such that two different sufficient compo-

nents si and sj originate two invariant components bi and

bj that are different (i.e., bi = si−PBsi 6= sj−PBsj = bj),

and equidistant (i.e., dM (bi, bj) =
√
2N ∀i 6= j), thus pro-

moting a uniform class separation.

The observation above suggests also the use of a global

Mahalanobis metric for NN classification, e.g., in the form

of d2M (x,Bi) = n−1i

∑

b∈Bi
d2M (x, b). However, it is

more efficient to use the corresponding similarity mea-

sure κM (bi, bj) = b⊤i (BB⊤)+bj , which gives 0 if i 6=
j, and 1

ni
if i = j. Therefore, we propose the global

Mahalanobis similarity measure defined as κM (x,Bi) =
1⊤ni

B⊤i (BB⊤)+x, and the label assignment is done accord-

ing to y = argmaxi κ(x,Bi). If Bi = bi1
⊤
ni

, the similarity

reduces to

κM (x,Bi) = nib
⊤
i (BB⊤)+x . (14)

6. Experiments

In order to validate the proposed method we have per-

formed experiments on synthetic data, and on three face

recognition datasets. All the results were obtained with a

grid search of the parameters α, β, and γ.
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Figure 4. Extended Yale B dataset. From left to right: Recognition scores at different image downsampling rates for 8 and 32 training

samples per subject; recognition rates obtained with the global metric (14) (Scheme 1) and the local metric (12) (Scheme 2) at various

image resolutions and 32 training samples; running time in seconds of our Matlab implementations for training and testing.

Synthetic Data. To empirically verify the convergence of

Algorithm 1, we have created a synthetic dataset made of

n = 120 images of 32 × 28 pixels, with N = 10 invariant

components depicting digits, and with image patterns repre-

senting A. The synthetic A and B satisfy the constraints (4),

and (5), and we have added sparse noise E, corrupting 20%
of randomly selected pixels with values drawn from a uni-

form distribution between 0 and the largest possible pixel

value in the image. Figure 1(a) shows the decomposition

in A, E, and B of 12 synthetic data points, X (top row),

and Figure 1(b) shows the estimated decomposition of the

same points. Visually, the recovered decomposition closely

resembles the originals, and the coefficients of variation

(i.e., ‖ẑ − z‖F /‖z‖F where ẑ is the estimated quantity),

are 9.71%, 8.67%, 37.2%, for A, B, and E, respectively.

AR Dataset. For this face recognition dataset [31], we

follow a protocol used also by other recent works [6, 50].

The dataset contains over 4,000 frontal images of 126 peo-

ple’s faces (70 men and 56 women), images are taken in

two sessions and under different facial expressions, illumi-

nation conditions and occlusions. In each session 3 im-

ages are occluded by sunglasses, 3 by a scarf, and all are

taken in different lighting conditions. The images have

165 × 120 = 19, 800 pixels, and are converted into gray

scale, and down-sampled by a factor of 4. As other authors

did [6, 50, 11], we select a subset of 50 men and 50 women.

Figure 2 illustrates 13 images taken from one subject in one

session, along with the decomposition. The proposed al-

gorithm effectively extracts the invariant component (bot-

tom row), which is almost identical for every image, as ex-

pected. The second row from the top is a low-rank repre-

sentation of the face images, and the second row from the

bottom is sparse noise. Note how the low-rank representa-

tion, a, contains a significant amount of facial features. This

is expected because it represents the additive contributions

of the variation component, v, plus the projection, PVs, of

the sufficient component, s (which is essentially the face),

onto the variation subspace, V , which is shared among all

the classes.

Following [6, 50] we consider three scenarios, indicated

as SUNGLASSES, SCARF and SUNGASSES+SCARF, where

we do face recognition with highly corrupted training and

testing data. For SUNGLASSES a subject in the training set

is composed by p randomly selected face images occluded

with sunglasses, and 8 − p neutral, all selected from ses-

sion 1. The remaining 6− p images occluded by sunglasses

plus 6 + p neutral from both sessions, form 12 testing im-

ages per person. Note that face images with sunglasses are

occluded about 20%. For the SCARF scenario, the data sub-

division is identical only that we consider the face images

occluded by a scarf, which produces occlusions of about

40%. For the SUNGLASSES+SCARF case, the difference is

that for a given person, p images are occluded with sun-

glasses and p with the scarf, leaving 17 images for testing

per person. Unlike previous work, that have shown results

only for p = 1, here we also test the case for p = 2 and

p = 3. The experiment has been repeated 5 times and the

average recognition rates are plotted in Figure 3. The opti-

mal penalty parameters were α = 1.5, β = 1000, γ = 0.9.

Unless otherwise specified, every result obtained in this sec-

tion is with the distance (12), i.e., the local metric. Along

with ours, we have also tested the structured low-rank repre-

sentation (SLR) approach [50], the low-rank with incoher-

ence (LRwIn) approach [6], the superposed SRC (SSRC)

approach [11], and the SRC [44]. We have reimplemented

the SLR, the SSRC, and the LRwIn approaches. For the

SRC we have used the code publicly available. Every ap-

proach was tested with input images with the same size, and

with other parameters set at the peak of their performance.

From Figure 3 it can be appreciated that the proposed ap-

proach demonstrates a superior robustness with respect to

corruption in the training set as p increases. For instance,

compared to the overall best competitor, which is SLR, for

the SUNGLASSES+SCARF case, for p = 1 the improvement

is 2.8%, for p = 2 is 4.9%, and for p = 3 is 8.7%.

Extended-Yale B Dataset. This face recognition

dataset [14] contains tightly cropped face images of 38

subjects. Each of them has 59 to 64 images taken under
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varying lighting conditions, which in total add up to 2,414

images. The cropped images have 192 × 168 = 32, 256
pixels. We randomly select 8, and in a subsequent experi-

ment 32, training images for each person, and use the rest

for testing in a recognition experiment. We repeat this 5

times and report the average recognition rate for the images

down-sampled by a factor of 2, 4, and 8. For each of

those conditions we also compare against the SLR [50], the

LRwIn [6], the SSRC [11], and the SRC [44] approaches at

the peak of their performance. For our approach the optimal

penalty parameters were α = 0.9, β = 1000, γ = 0.01.

Figure 4 illustrates the comparison between the recognition

rates. For the SRC, we also include what happens when

the training set drops in size from 8 to 5, and from 32 to

20 training images. This experiment highlights that our

approach compares favorably with the others especially

when a smaller corrupted training dataset is available, and

works on par with others (SRL and LRwIn) with lots of

training data. This is because our approach inherently

attempts learning a global variation space, shared by all

the training data. Even with fewer training images per

person their aggregation allows learning the variation space

better than in other approaches. SSRC, instead, is the best

performer with lots of training data, since it can better learn

the variation space for each individual.

Figure 4, right, also shows a comparison between the

local metric approach (Scheme 2), based on (12), and the

global metric approach (Scheme 1), based on (14), on a

subset of the dataset with 32 training data points per per-

son, against different image resolutions. As expected, the

local metric learning approach, because it adapts to the in-

variant component where it operates on, is able to provide

better performance. From a geometric perspective, as high-

lighted in Section 5, the performance drop is justified by the

fact that the global approach is not able to filter out as much

noise as the local approach is capable of.

Figure 4, far right, shows a running time comparison be-

tween the Matlab implementations of ours, the SLR, and

the LRwIn methods, running on a high-end PC. Our train-

ing procedure appears slightly more costly than the others,

but, as anticipated, testing appears faster than SLR by a fac-

tor of 10, and faster than LRwIn by a factor of 25.

Metric Learning on LFW and AR Datasets. We have

tested the large-margin nearest neighbor (LMNN) metric

learning approach [43], SRC, SSRC, and ours on the La-

beled Faces in the Wild (LFW) dataset [22]. Out of the

13,233 face images of 5749 unique individuals, we selected

those with at least 10 images for a total of 143 people and

4174 face images, which were aligned using deep funnel-

ing [21], tightly cropped to include only face information,

and resized to 106 × 96 pixels. For each subject, we ran-

domly selected 7 images for training, and the rest were

Dataset Euclidean SRC SSRC LMNN Ours

LFW 15.40± 0.50 36.91± 1.90 46.31± 2.43 46.90± 1.00 47.10± 1.50
AR 29.30± 0.50 63.60± 0.64 65.70± 0.61 62.8± 1.00 71.20± 0.52

Table 1. Metric learning. Comparison between metric learning

and other methods on the LFW dataset [22], and on the AR dataset

on the scenario SUNGLASSES+SCARF with p = 2.

used for testing. The penalty parameters were α = 0.5,

β = 1000, γ = 0.2. The actual processing for both al-

gorithms was repeated 10 times, and was done with the

cropped images down-sampled by a factor of 4. In such

a scenario with a highly non-linear variation space we ob-

tained the results reported in Table 1, where we also pro-

vided results using the baseline Euclidean distance. We

also run LMNN and our method on the AR dataset on the

highly corrupted scenario given by SUNGLASSES+SCARF

with p = 2. Table 1 reports the results, which shows that our

method performs better especially when robustness against

corrupted samples in the gallery is needed.

7. Conclusions

We proposed to represent data by their invariant com-

ponents. By leveraging recent advances in low-rank ma-

trix recovery, we developed a framework for the supervised

learning of invariant components, which corresponds to a

metric learning optimization. This representation leads to

a simple and efficient testing rule, and promotes inter-class

separation. We empirically verified the convergence of the

training algorithm, and we applied the model to the face

recognition problem with highly corrupted training and test-

ing data. The performance are very promising since they are

on par or better than state-of-the-art, with significant gains

in time complexity at testing time and in classification ac-

curacy at higher fractions of corrupted training data, as well

as with small-size and corrupted training datasets.
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