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Abstract

Part models of object categories are essential for chal-

lenging recognition tasks, where differences in categories

are subtle and only reflected in appearances of small parts

of the object. We present an approach that is able to

learn part models in a completely unsupervised manner,

without part annotations and even without given bound-

ing boxes during learning. The key idea is to find constel-

lations of neural activation patterns computed using con-

volutional neural networks. In our experiments, we out-

perform existing approaches for fine-grained recognition

on the CUB200-2011, Oxford PETS, and Oxford Flowers

dataset in case no part or bounding box annotations are

available and achieve state-of-the-art performance for the

Stanford Dog dataset. We also show the benefits of neu-

ral constellation models as a data augmentation technique

for fine-tuning. Furthermore, our paper unites the areas of

generic and fine-grained classification, since our approach

is suitable for both scenarios.

1. Introduction

Object parts play a crucial role in many recent ap-

proaches for fine-grained recognition. They allow for

capturing very localized discriminative features of an ob-

ject [18]. Learning part models is often either done in a

completely supervised manner by providing part annota-

tions [7, 38] or labeled bounding boxes [15, 29].

In contrast, we show how to learn part-models in a com-

pletely unsupervised manner, which drastically reduces an-

notation costs for learning. Our approach is based on learn-

ing constellations of neural activation patterns obtained

from pre-learned convolutional neural networks (CNN).

Fig. 1 shows an overview of our approach. Our part hy-

potheses are outputs of an intermediate CNN layer for

which we compute neural activation maps [29, 30]. Unsu-

pervised part models are either build by randomly selecting

a subset of the part hypotheses or learned by estimating the
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Figure 1. Overview of our approach. Deep neural activation maps

are used to exploit the channels of a CNN as a part detector. We

estimate a part model from completely unsupervised data by se-

lecting part detectors that fire at similar relative locations. The

created part models are then used to extract features at object parts

for weakly-supervised classification.

parameters of a generative spatial part model. In the lat-

ter case, we implicitly find subsets of part hypotheses that

“fire” consistently in a certain constellation in the images.

Although creating a model for the spatial relationship of

parts has already been introduced a decade ago [16, 14],

these approaches face major difficulties due to the fact

that part proposals are based on hand-engineered local de-

scriptors and detectors without correspondence We over-

come this problem by using implicit part detectors of a

pre-learned CNN, which at the same time greatly simpli-

fies the part-model training. As shown by [36], intermedi-

ate CNN outputs can often be linked to semantic parts of

common objects and we are therefore using them as part

proposals. Our part model learning has to select only a few

parts for each view of an object from an already high qual-

ity pool of part proposals. This allows for a much simpler

and faster part model creation without the need to explicitly

consider appearance of the individual parts as done in pre-
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vious works [16, 1]. At the same time, we do not need any

ground-truth part locations or bounding boxes.

The obtained approach and learning algorithm improves

the state-of-the-art in fine-grained recognition on three

datasets including CUB200-2011 [33] if no ground-truth

part or bounding box annotations are available at all. In ad-

dition, we show how to use the same approach for generic

object recognition on Caltech-256. This is a major differ-

ence to previous work on fine-grained recognition, since

most approaches are not directly applicable to other tasks.

For example, our approach is able to achieve state-of-the-art

performance on Caltech-256 without the need for expensive

dense evaluation on different scales of the image [31].

Furthermore, our work has impact beyond fine-grained

recognition, since our method can also be used to guide

data augmentation during fine-tuning for image classifica-

tion. We demonstrate in our experiments that it even yields

a more discriminative CNN compared to a CNN fine-tuned

with ground-truth bounding boxes of the object.

In the next section, we give a brief overview over re-

cent approaches in the areas of part constellation models

and fine-grained classification. Sect. 3 reviews the approach

of Simon et al. [29] for part proposal generation. In Sect. 4,

we present our flexible unsupervised part discovery method.

The remaining paper is dedicated to the experiments on sev-

eral datasets (Sect. 5) and conclusions (Sect. 6).

2. Related work

Part constellation models Part constellation models de-

scribe the spatial relationship between object parts. There

are many supervised methods for part model learning which

rely on ground-truth part or bounding box annotations [39,

18, 29]. However, annotations are often not available or ex-

pensive to obtain. In contrast, the unsupervised setting does

not require any annotation and relies on part proposals in-

stead. It greatly differs from the supervised setting as the

selection of useful parts is crucial. We focus on unsuper-

vised approaches as these are the most related to our work.

The early works of Fergus et al. [16] and Fei-Fei et

al. [14] build models based on generic SIFT interest point

detections. The model includes the relative positions of the

object parts as well as their relative scale and appearance.

While their interest point detector delivers a number of de-

tections without any semantics, each of the CNN-based part

detectors we use correspond to a specific object part pro-

posal already. This allows us to design the part selection

much more efficient and to speed up the inference. The run

time complexity compared to [16, 14] decreases from expo-

nential in the number of modeled parts to linear time com-

plexity. Similar computational limitations occur in other

works as well, for example [27]. Especially in the case of a

large number of part proposals this is a significant benefit.

Yang et al. [35] select object part templates from a set

of randomly initialized image patches. They build a part

model based on co-occurrence, diversity, and fitness of the

templates in a set of training images. The detected ob-

ject parts are used for part-based fine-grained classification

of birds. In our application, co-occurrence and fitness are

rather weak properties for the selection of CNN-based part

proposals. For example, detectors of frequently occurring

background patterns such as leaves of a tree would likely be

selected by their algorithm. Instead our work considers the

spatial relationship in order to filter unrelated background

detectors that fire on inconsistent relative locations.

Crandall et al. [11] improve part model learning by

jointly considering object and scene-related parts. However,

the number of combinations of possible views of an object

and different background patterns is huge. In contrast, our

approach selects the part proposals based on the relative po-

sitions which is simpler and effective since we only want to

identify useful part proposals for classification.

In the area of detection, there are numerous approaches

based on object parts. The deformable part model (DPM,

[15]) is the most popular one. It learns part constellation

models relative to the bounding box with a latent discrimi-

native SVM model. Most detection methods require at least

ground-truth bounding box annotations. In contrast, our ap-

proach does not require such annotations or any negative

examples, since we learn the constellation model in a gen-

erative manner and by using object part proposals not re-

stricted to a bounding box.

Fine-grained recognition with part models Fine-

grained recognition focuses on visually very similar classes,

where the different object categories sometimes differ only

in minor details. Examples are bird species [33] or car mod-

els [21] recognition. Since the differences of small parts of

the objects matter, localized feature extraction using a part

model plays an important role.

One of the earliest work in the area of fine-grained recog-

nition uses an ellipsoid to model the bird pose [13] and

fuse obtained parts using very specific kernel functions [38].

Other works build on deformable part models [15]. For ex-

ample, the deformable part descriptor method of [39] uses

a supervised version of [15] for training deformable part

models, which then allows for pose normalization by com-

paring corresponding parts. The work of [17] and [18]

demonstrated nonparametric part detection for fine-grained

recognition. The basic idea is to transfer human-annotated

part positions from similar training examples obtained with

nearest neighbor matching. Chai et al. [8] use the detections

of DPM and the segmentation output of GrabCut to predict

part locations. Branson et al. [7] use the part locations to

warp image patches into a pose-normalized representation.

Zhang et al. [37] select object part detections from object

proposals generated by Selective Search [32]. The men-

tioned methods use the obtained part locations to calculate
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localized features. Berg et al. [4] learns a linear classifier for

each pair of parts and classes. The decision values from nu-

merous of such classifiers are used as feature representation.

While all these approaches work well in many tasks, they

require ground-truth part annotations at training and often

also at test time. In contrast, our approach does not rely

on expensive annotated part locations and is fully unsuper-

vised for part model learning instead. This also follows the

recent shift of interest towards less annotation during train-

ing [37, 34, 29]. The method of Simon et al. [29] presents a

method, which requires bounding boxes of the object during

training rather than part annotations. They also make use of

neural activation maps for part discovery, but although our

approach does not need bounding boxes we are still able to

improve over their results.

The unsupervised scenario that we tackle has also been

considered by Xiao et al. [34]. They cluster the channels of

the last convolutional layers of a CNN into groups. Patches

for the object and each part are extracted based on the ac-

tivation of each of these groups. The patches are used to

classify the image. While their work requires a pre-trained

classifier for the objects of interest, we only need a CNN

that can be pre-trained on a weakly related object dataset.

3. Deep neural activation maps

CNNs have demonstrated an amazing potential to learn

a complete classification pipeline from scratch without the

need to manually define low level features. Recent CNN

architectures [22, 31] consist of multiple layers of convo-

lutions, pooling operations, full linear transformations and

non-linear activations.

The convolutional layers convolve the input with numer-

ous kernels. As shown by [36], the kernels of the convo-

lutions in early layers are similar to the filter masks used

in many popular low level feature descriptors like HOG or

SIFT. Their work also shows that the later layers are sen-

sitive to increasingly abstract patterns in the image. These

patterns can even correspond to whole objects [30] or parts

of objects [29] and this is exactly what we exploit.

The output f of a layer before the fully-connected layers

is organized in multiple channels 1 ≤ p ≤ P with a two-

dimensional arrangement of output elements, i.e. we denote

f by (f
(p)
j,j′(I)) where I ∈ R

W×H denotes the input image

and j and j′ are indices of the output elements in the chan-

nel. Fig. 2 shows examples of such a channel output for the

last convolutional layer. As can be seen the output can be

interpreted as detection scores of multiple object part de-

tectors. Therefore, the CNN automatically learned implicit

part detectors relevant for the dataset it was trained from.

In this case, the visualized channel shows high outputs at

locations corresponding to the head of birds and dogs.

A disadvantage of the channel output is its resolution,

which would not allow for precise localization of parts. Due

Input CNN last conv. output Neural activation map

I





f1,1 . . . f1,13
. . . . . . . . .

f13,1 . . . f13,13









m1,1 . . . m1,227

. . . . . . . . .

m227,1 . . . m227,227





Figure 2. Examples for the output of a channel of the last convolu-

tional layer and the corresponding neural activation maps for two

images (index of the channel is skipped to ease notation). A deep

red corresponds to high activation and a deep blue to no activation

at all. Activation maps are available in higher resolution and better

suited for part localization. Best viewed in color.

to this reason, we follow the basic idea of [30] and [29]

and compute deep neural activation maps. We calculate the

gradient of the average output of the channel p with respect

to the input image pixels Ix,y:

m(p)
x,y(I) =

∂

∂Ix,y

∑

j,j′

f
(p)
j,j′(I) (1)

The calculation can be easily achieved with a back-
propagation pass [29]. The absolute value of the gradient

shows which pixels in the image have the largest impact on

the output of the channel. Similar to the actual output of

the layer, it allows for localizing image areas this channel

is sensitive to. However, the resolution of the deep neural

activation maps is much higher (Fig. 2). In our experiments,

we compute part proposal locations for a training image Ii
from these maps by using the point of maximum activation:

µi,p = argmax
x,y

∣
∣
∣m(p)

x,y(Ii)
∣
∣
∣ . (2)

Each channel of the CNN delivers one neural activation map

per image and we therefore obtain one part proposal per

channel p. RGB images are handled by adding the absolute

activation maps of each input channel. Hence we reduce

a deep neural activation map to a 2D location and do not

consider image patches for each part during the part model

learning. In classification, however, image patches are ex-

tracted at predicted part locations for feature extraction.

The implicit part detectors are learned automatically dur-

ing the training of the CNN. This is a huge benefit compared

to other part discovery approaches like poselets [6], which

do not necessarily produce parts useful for discrimination

of classes a priori. In our case, the dataset used to train the

CNN does not necessarily need to be the same as the final

dataset and task for which we want to build part representa-

tions. In addition, determining the part proposals is nearly
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as fast as the classification with the CNN (only 110ms per

image for 10 parts on a standard PC with GPU), which al-

lows for real-time applications. A video visualizing a bird

head detector based on this idea running at 10fps is available

at our project website. We use the part proposals throughout

the rest of this paper.

4. Unsupervised part model discovery

In this section, we show how to construct effective part

models in an unsupervised manner given a set of training

images of an object class. The resulting part model is used

for localized feature extraction and subsequent fine-grained

classification. In contrast to most previous work, we have a

set of robust but not necessarily related part proposals and

need to select useful ones for the current object class. Other

approaches like DPM are faced with learning part detectors

instead. The main consequence is that we do not need to

care about expensive training of robust part detectors. Our

task simplifies to a selection of useful detectors instead.

As input, we use the normalized part proposal locations

µi,p ∈ [0, 1]
2

for training image i = 1, . . . , N and part

proposal p = 1, . . . , P . The P part proposals correspond to

the channels an intermediate output layer in a CNN and µi,p

is determined by calculating the activation map of channel p
for input image i and locating the maximum response. If the

activation map of a channel is equal to 0, the part proposal

is considered hidden. This sparsity naturally occurs due to

the rectified linear unit used as a nonlinear activation.

4.1. Random selection of parts

A simple method to build a part model with multiple

parts is to select M random parts from all P proposals. For

all training images, we then extract M feature vectors de-

scribing the image region around the part location. The fea-

tures are stacked and a linear SVM is learned using image

labels. This can even be combined with fine-tuning of the

CNN used to extract the part features. Further details about

part feature representations are given in Sect. 5.

In our experiments, we show that for generic object

recognition random selection is indeed a valid technique.

However, for fine-grained recognition, we need to select the

parts that likely correspond to the same object and not a

background artifact. Furthermore, using all proposals is not

an option since the feature representation increases dramat-

ically rendering training impractical. Therefore, we show in

the following how to select only a few parts with a constel-

lation model to boost classification performance and reduce

computation time for feature calculation significantly.

4.2. Constellations of neural activations

The goal is to estimate a star shape model for a subset

of selected proposals using the 2D locations of all part pro-

posals of all training images. Similar to other popular part

models like DPM [15], our model also incorporates multi-

ple views v = 1, . . . , V of the object of interest. For ex-

ample, the front and the side view of a car is different and

different parts are required to describe each view.

Each view consists of a selection of M part proposals de-

noted by the indicator variables bv,p ∈ {0, 1} and we refer

to them as parts. In addition, there is a set of corresponding

shift vectors dv,p ∈ [−1, 1]
2
. The shift vectors are the ideal

relative offset of part p to the common root location ai of

the object in image i. The ai are latent variables since no

object annotations are given during learning.

Another set of latent variables si,v ∈ {0, 1} denotes the

view selection for each training image. We assume that

there is only one target object visible in each image and

hence only one view is selected for each image. Finally,

hi,p ∈ {0, 1} denotes if part p is visible in image i. In our

case, the visibility of a part is provided by the part proposals

and not estimated during learning.

Learning objective We identify the best model for the

given training images by maximum a-posteriori estimation

of all model and latent parameters Γ = (b,d, s,a) from

provided part proposal locations µ:

Γ̂ = argmax
Γ

p (Γ | µ) . (3)

In contrast to a marginalization of the latent variables, we
obtain a very efficient learning algorithm. We apply Bayes’

rule, use the typical assumption that training images and

part proposals are independent given the model parame-

ters [1], assume flat priors for a (no prior preference for the

object’s center) and d (no prior preference for part offsets),

and independent priors for b and s:

argmax
Γ

p (µ | b,d, s,a) · p(b) · p(s)

= argmax
Γ

N∏

i=1

(
P∏

p=1

p (µi,p | b,d, s,a)
)

p(b) · p(s) (4)

The term p (µi,p | b,d, s,a) is the distribution of the pre-
dicted part locations given the model. If the part p is used

in view v of image i, we assume that the part location is

normally distribution around the root location plus the shift

vector, i.e. µi,p ∼ N (dv,p + ai, σ
2
v,pE) with E denoting

the identity matrix. If the part is not used, there is no prior

information about the location and we assume it to be uni-

formly distributed over all possible image locations in Ii.

Hence, the distribution is given by

p (µi,p | b,d, s,a) = (5)

V∏

v=1

N
(
µi,p |ai + dv,p, σ

2
v,pE

)ti,v,p ·
(

1

|Ii|

)1−ti,v,p

,

where ti,v,p = si,vbv,phi,p ∈ {0, 1} indicates whether part

p is used and visible in view v which is itself active in im-

age i. The prior distribution for the part selection b only
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captures the constraint that M parts need to be selected, i.e.

∀v : M =
∑P

p=1 bv,p. The prior for the view selection s in-

corporates our assumption that only a single view is active

in training image i, i.e. ∀i : 1 =
∑V

v=1 si,v . In general, we

denote the feasible set of variables as M. Exploiting this

and applying log simplifies Eq. (4) further:

argmin
Γ∈M

−
N∑

i=1

P∑

p=1

V∑

v=1

ti,v,p logN
(
µi,p |ai + dv,p, σ

2
v,p

)

In addition, we assume the variance σ2
v,p to be constant for

all parts of all views. Hence, the final formulation of the

optimization problem becomes

argmin
Γ∈M

N∑

i=1

P∑

p=1

V∑

v=1

si,vbv,phi,p ‖µi,p − ai − dv,p‖2 (6)

Optimization Eq. (6) is solved by alternately optimizing

each of the model variables b and d, as well as the latent

variables a and s, independently, similar to the standard

EM algorithm. For each of the variables b and s, we can

calculate the optimal value by sorting error terms. For ex-

ample, bv,p is calculated by analyzing

argmin
b∈Γb

P∑

p=1

V∑

v=1

bv,p

( N∑

i=1

si,vhi,p ‖µp
i − ai − dv,p‖2

)

︸ ︷︷ ︸

E(v,p)

(7)

This optimization can be intuitively solved. First, each
view is considered independently, as we select a fixed num-

ber of parts for each view without considering the others.

For each part proposal, we calculate E (v, p). This term

describes, how well the part proposal p fits to the view v.

If its value is small, then the part proposal fits well to the

view and should be selected. We now calculate E (v, p) for

all parts of view v and select the M parts with the small-

est value. In a similar manner, the view selection s can be

determined.

The root points a are obtained for fixed b, s, and d by

âi =
∑

v,p

ti,v,p (µ
p
i − dv,p) /

(∑

v′,p′

ti,v′,p′

)
. (8)

Similarly, we obtain the shift vectors d̂v,p:

d̂v,p =

N∑

i=1

ti′,v,p · (µi,p − ai) /
(

N∑

i′=1

ti′,v,p
)
. (9)

The formulas are intuitive as, for example, the shift vectors
dv,p are assigned the mean offset between root point ai and

predicted part location µi,p. The mean, however, is only

calculated for images in which part p is used.

This kind of optimization is comparable to the EM-

algorithm and thus shares the same challenges. Especially

the initialization of the variables is crucial. We initialize a

to be the center of the image and s as well as b randomly to

an assignment of views and selection of parts for each view,

respectively. The initialization of d is avoided by calculat-

ing it first. The value of b is used to determine convergence.

This optimization is repeated with different initializations

and the result with the best objective value is used.

Inference The inference step for an unseen test image is

similar to the calculations during training. The parameters

s and a are iteratively estimated by solving Eq. (7) and (8)

for fixed learned model parameters b and d. The visibility

is again provided directly by the neural activation maps.

5. Experiments

The experiments cover three main aspects and applica-

tions of our approach. First, we present a data augmenta-

tion technique based on the part models of our approach

for fine-tuning, which outperforms fine-tuning on bounding

boxes. Second, we apply our approach to fine-grained clas-

sification, a task in which most current approaches rely on

ground-truth part annotations [7, 37, 29]. Finally, we show

how to use the same approach for generic image classifica-

tion, too, and present the benefits in this area. Code for our

method will be made available.

5.1. Experimental setup

Datasets We use five different datasets in the experi-

ments. For fine-grained classification, we evaluate our ap-

proach on CUB200-2011 [33] (200 classes, 11788 images),

Stanford dogs [20] (120 classes, 20580 images), Oxford

flowers 102 [24] (102 classes, 8189 images), and Oxford-

IIIT Pets [25] (37 classes, 7349 images). We use the pro-

vided split into training and test and follow the evaluation

protocol of the corresponding papers. Hence we report the

overall accuracy on CUB200-2001 and the mean class-wise

accuracy on all other datasets. For the task of generic object

recognition, we evaluate on Caltech 256 [19], which con-

tains 30607 images of a diverse set of 256 common objects.

We follow the evaluation protocol of [31] and randomly se-

lect 60 training images and use the rest for testing.

CNNs and parameters Two different CNN architectures

were used in our experiments: the widely used architecture

of Krizhevsky et al. [22] (AlexNet) and the more accurate

one of Simonyan et al. [31] (VGG19). For details about the

architecture, we kindly refer the reader to the corresponding

papers. It is important to note that our approach can be used

with any CNN. Features were calculated using the relu6 and

relu7 layer, respectively. For the localization of parts, the

pool5 layer was used. This layer consists of 256 and 512

channels resulting in 256 and 512 part proposals, respec-

tively. In case of the CUB200-2011, Oxford dogs, pets and

flowers datasets, fine-tuning with our proposed data aug-

mentation technique is used. We use two-step fine-tuning
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[7] starting with a learning rate of 0.001 and decrease it to

0.0001 when there is no change in the loss anymore. In case

of Stanford dogs, the evaluation with CNNs pre-trained on

ILSVRC 2012 images is biased as the complete dataset is a

subset of the ILSVRC 2012 training image set. Hence, we

remove the testing images of Stanford dogs from the train-

ing set of ILSVRC 2012 and learned a CNN from scratch

on this modified dataset. The trained model is available on

our website for easy comparison with this work.

If not mentioned otherwise, the learned part models use

5 views and 10 parts per view. A model is learned for each

class separately. The part model learning is repeated 5 times

and the model with the best objective value was taken. We

count in how many images each part is used and select the

10 most often selected parts for use in classification.

Classification framework We use the part-based classi-

fication approach presented by Simon et al. [29]. Given the

predicted localization of all selected parts, we crop square

boxes centered at each part and calculate features for all

of them. The size of these boxes is given by
√
λ ·W ·H ,

λ ∈
{

1
5 ,

1
16

}
, where W and H are the width and height

of the uncropped image, respectively. If a part is not vis-

ible, the features calculated on a mean image are used in-

stead. This kind of imputation has comparable performance

to zero imputation, but yields in a slight performance gain

in some cases. In case of CUB200-2011, we also estimate

a bounding box for each image. Selective Search [32] is

applied to each image to generate bounding box propos-

als. Each proposal is classified by the CNN and the pro-

posal with the highest classification confidence is used as

estimated bounding box.

The features of each part, the uncropped image and the

estimated bounding box are stacked and classified using a

linear SVM. In case of CUB200-2011, flipped training im-

ages were used as well. Hyperparameters were optimized

using cross-validation on the training data of CUB200-2011

and used for the other datasets as well.

5.2. Data augmentation using part proposals

Fine-tuning is the adaption of a pre-learned CNN to a

domain specific dataset. It significantly boosts the perfor-

mance in many tasks [3]. Since the domain specific datasets

are often small and thus the training of a CNN is prone to

overfitting, the training set is artificially enlarged by using

“data augmentation”. A common technique used for exam-

ple by [22, 31] is random cropping of a large fixed sized

image patch. This is especially effective if the training im-

ages are cropped to the object of interest. If the images

are not cropped and no ground-truth bounding box is avail-

able, uncropped images can be used instead. However, fine-

tuning is less effective as shown in Tab. 1. Since ground-

truth bounding box annotations are often not available or

expensive to obtain, we propose to fine-tune on object pro-

posals filtered by a novel selection scheme instead.

Unrelated

proposals

Foreground 

proposals

Object proposal

generation

Part-based 

filter

Training

image

* *

Figure 3. Overview of our approach to filter object proposals for

fine-tuning of CNNs. Best viewed in color.

Train. Anno. Method Accuracy

Bbox Fine-tuning on cropped images 67.24%

None No fine-tuning 63.77%

None Fine-tuning on uncropped images 66.10%

None Fine-tuning on filtered part proposals 67.97%

Table 1. Influence of the augmentation technique used for fine-

tuning in case of AlexNet on CUB200-2011. Classification ac-

curacies were obtained by using 8 parts as described in Sect. 5.3.

An overview of our approach is shown in Fig. 3.

First, we select for each training image the five parts

of the corresponding view, which fit the model best. Sec-

ond, numerous object proposals are generated using Selec-

tive Search [32]. These proposals are very noisy, i.e. many

only contain background and not the object of interest. We

count how many of the predicted parts are inside of each

proposal and select only proposals containing at least three

parts. The remaining patches, ≈ 48 on average in case of

CUB200-2011, are high quality image regions containing

the object of interest. Finally, fine-tuning is performed us-

ing the filtered proposals of all training images.

The result of this approach is shown in Tab. 1. Fine-

tuning on these patches provides not only a gain even com-

pared to fine-tuning on cropped images, it also eliminates

the need for ground-truth bonding box annotations.

5.3. Fine­grained recognition without annotations

Most approaches in the area of fine-grained recognition

rely on additional annotation like ground-truth part loca-

tions or bounding boxes. Recent works distinguish be-

tween several settings based on the amount of annotations

required. The approaches either use part annotations, only

bounding box annotations, or no annotation at all. In ad-

dition, the required annotation in training is distinguished

from the annotation required at test time. Our approach

only uses the class labels of the training images without ad-
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Train. Test Method Accuracy

Anno. Anno.

Parts Bbox Bbox CNN features 56.00%

Parts Bbox Berg et al. [4] 56.78%

Parts Bbox Goering et al. [18] 57.84%

Parts Bbox Chai et al. [8] 59.40%

Parts Bbox Simon et al. [29] 62.53%

Parts Bbox Donahue et al. [12] 64.96%

Parts None Simon et al. [29] 60.55%

Parts None Zhang et al. [37] 73.50%

Parts None Branson et al. [7] 75.70%

Bbox None Simon et al. [29] 53.75%

None None Xaio et al. [34] (AlexNet) 69.70%

None None Xaio et al. [34] (VGG19) 77.90%

None None No parts (AlexNet) 52.20%

None None Ours, rand., Sect. 4.1 (AlexNet) 60.30± 0.74%
None None Ours, const., Sect. 4.2 (AlexNet) 68.50%

None None No parts (VGG19) 71.94%

None None Ours, rand., Sect. 4.1 (VGG19) 79.44± 0.56%
None None Ours, const., Sect. 4.2 (VGG19) 81.01%

Table 2. Species categorization performance on CUB200-2011.

ditional annotation.

CUB200-2001 The results of fine-grained recognition on

CUB200-2011 are shown in Tab. 2. We present three dif-

ferent results for every CNN architecture. “No parts” cor-

responds to global image features only. “Ours, rand.” and

“Ours, const.” are the approaches presented in Sect. 4.1 and

4.2. As can be seen in the table, our approach improves

the work of Xiao et al. [34] by 3.1%, an error decrease

of more than 16%. It is important to note that their work

requires a pre-trained classifier for birds in order to select

useful patches for fine-tuning. In addition, the authors con-

firmed that they used a much larger bird subset of ImageNet

for pre-training of their CNN. In contrast, our work is easier

to adapt to other datasets as we only require a generic pre-

trained CNN and no domain specific outside training data.

The gap between our approach and the third best result in

this setting by Simon et al. [29] is even higher with more

than 27% difference. The table also shows results for the

use of no parts and random part selection. As can be seen,

even random part selection improves the accuracy by 8%

on average compared to the use of no parts. The presented

part selection scheme boosts the performance even further

to 68.5% using AlexNet and 81.01% using VGG19.

Stanford dogs The accuracy on Stanford dogs is given

in Tab. 3. To the best of our knowledge, there is only one

work showing results for a CNN trained from scratch ex-

cluding the testing images of Stanford dogs. Sermanent et

al. [28] fine-tuned the architecture of their very deep Google

LeNet to obtain 75% accuracy. In our experiments, we used

the much weaker architecture of Krizhevsky et al. and still

reached 68.61%. Compared to the other non-deep architec-

tures, this means an improvement of more than 16%.

Method Accuracy

Chai et al. [8] 45.60%

Gavves et al. [17] 50.10%

Chen et al. [10] 52.00%

Google LeNet ft [28] 75.00%

No parts (AlexNet) 55.90%

Ours, rand., Sect. 4.1 (AlexNet) 63.29± 0.97%
Ours, const., Sect. 4.2 (AlexNet) 68.61%

Table 3. Species categorization performance on Stanford dogs.

Method Accuracy

Angelova et al. [2] 80.66%

Murray et al. [23] 84.60%

Razavian et al. [26] 86.80%

Azizpour et al. [3] 91.30%

No parts (AlexNet) 90.35%

Ours, rand., Sect. 4.1 (AlexNet) 90.32± 0.18%
Ours, const., Sect. 4.2 (AlexNet) 91.74%

No parts (VGG19) 93.07%

Ours, rand., Sect. 4.1 (VGG19) 94.20± 0.23%
Ours, const., Sect. 4.2 (VGG19) 95.34%

Table 4. Classification performance on Oxford 102 flowers.

Method Accuracy

Bo et al. [5]. 53.40%

Angelova et al. [2]. 54.30%

Murray et al. [23]. 56.80%

Azizpour et al. [3]. 88.10%

No parts (AlexNet) 78.55%

Ours, rand., Sect. 4.1 (AlexNet) 82.70± 1.64%
Ours, const., Sect. 4.2 (AlexNet) 85.20%

No parts (VGG19) 88.76%

Ours, rand., Sect. 4.1 (VGG19) 90.42± 0.94%
Ours, const., Sect. 4.2 (VGG19) 91.60%

Table 5. Species categorization performance on Oxford-IIIT Pets.

Oxford pets and flowers The results for the Oxford

flowers and pets dataset are shown in Tab. 4 and 5. Our ap-

proach consistently outperforms previous work by a large

margin on both datasets. Similar to the other datasets, ran-

domly selected parts already improve the accuracy by up to

4%. Our approach significantly improves this even further

and achieves 95.35% and 91.60%, respectively.

Influence of the number of parts Fig. 6 provides insight

into the influence of the number of parts used in classifica-

tion. We compare to random part to the part constellation

model based selection. In contrast to the previous experi-

ments, one patch is extracted per part using λ = 1
10 . While

random parts increase the accuracy for any amount of parts,

the presented scheme clearly selects more relevant parts and
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Table 6. Influence of the number of parts on the accuracy on

CUB200-2011. One patch was extracted for each part proposal.

Method Accuracy

Zeiler et al. [36] 74.20%

Chatfield et al. [9] 78.82%

Simonyan et al. [31] + VGG19 85.10%

No parts (AlexNet) 71.44%

Ours, rand., Sect. 4.1 (AlexNet) 72.39%
Ours, const., Sect. 4.2 (AlexNet) 72.57%
No parts (VGG19) 82.44%
Ours, const., Sect. 4.2 (VGG19) 84.10%

Table 7. Accuracy on the Caltech 256 dataset with 60 training im-

ages per category.

helps to greatly improve the accuracy.

5.4. From fine­grained to generic classification

Almost all current approaches in fine-grained recogni-

tion are specialized algorithms and it is hardly possible to

apply them to generic classification tasks. The main reason

is the common assumption in fine-grained recognition that

there are shared semantic parts for all objects. Does that

mean that all the rich knowledge in the area of fine-grained

recognition will never be useful for other areas? Are fine-

grained and generic classification so different? In our opin-

ion, the answer is a clear no and the proposed approach is a

good example for that.

There are two main challenges for applying fine-grained

classification approaches to other tasks. First, the semantic

part detectors need to be replaced by more abstract interest

point detectors. Second, the selection or training of useful

interest point detectors needs to consider that each object

class has its own unique shape and set of semantic parts.

Our approach can be applied to generic classification tasks

in a natural way. The first challenge is already solved by us-

ing the part detectors of a CNN trained to distinguish a huge

number of classes. Because of these properties, part propos-

als can be seen as generic interest point detectors with a fo-

cus on a special pattern. In contrast to semantic parts, they

are not necessarily only recognizing a specific part of a spe-

cific object. Instead, they capture interesting points of many

different kinds of objects. The second challenge is tackled

by building class-wise part models and selecting part pro-

posals that are shared among most classes. However, even a

random selection of part detectors turns out to increase the

classification accuracy already.

Caltech 256 The results of our approach on Caltech 256

are shown in Tab. 7. The proposed methods improves the

baseline of global features without oversampling by 1% in

case of AlexNet and 1.6% in case of VGG19. While Si-

monyan et al. achieves slightly higher performance, their

approach is also much more expensive due to dense evalua-

tion of the whole CNN over all possible crops at three differ-

ent scales. Their best result of 86.2% is achieved by using

a fusion of two CNN models, which is not done in our case

and consequently not comparable. The results clearly shows

that replacing semantic part detectors by more generic de-

tectors can be enough to apply fine-grained classification

approaches in other areas. Many current approaches in

generic image classification rely on “blind” parts. For ex-

ample, spatial pyramids or other oversampling methods are

equivalent to part detectors that always detect something at

a fixed position in the image. Replacing these “blind” detec-

tions by more sophisticated ones in combination with class-

wise part models is a natural improvement.

6. Conclusions

This paper presents an unsupervised approach for the se-

lection of generic parts for fine-grained and generic image

classification. Given a CNN pre-trained for classification,

we exploit the learned inherit part detectors for generic part

detection. A part constellation model is estimated by ana-

lyzing the predicted part locations for all training images.

The resulting model contains a selection of useful part pro-

posals as well as their spatial relationship in different views

of the object of interest.

We use this part model for part-based image classifica-

tion in fine-grained and generic object recognition. In con-

trast to many recent fine-grained works, our approach sur-

passes the state-of-the-art in this area and is beneficial for

other tasks like data augmentation and generic object clas-

sification as well. This is supported by, among other results,

a recognition rate of 81.0% on CUB200-2011 without addi-

tional annotation and 84.1% accuracy on Caltech 256.

In our future work, we plan to use the deep neural acti-

vation maps directly as probability maps while maintaining

the speed of our current approach. The estimation of object

scale would allow for applying our approach to datasets in

which objects only cover a small part of the image. Our

current limitation is the assumption that a single channel

corresponds to a object part. A combination of channels

can be considered to improve localization accuracy. In ad-

dition, we plan to learn the constellation models and the

subsequent classification jointly in a common framework.
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