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Abstract

Pose invariant matching is a very important and chal-

lenging problem with various applications like recogniz-

ing faces in uncontrolled scenarios, matching objects taken

from different view points, etc. In this paper, we propose a

discriminative pose-free descriptor (DPFD) which can be

used to match faces/objects across pose variations. Train-

ing examples at very few representative poses are used to

generate virtual intermediate pose subspaces. An image or

image region is then represented by a feature set obtained

by projecting it on all these subspaces and a discrimina-

tive transform is applied on this feature set to make it suit-

able for classification tasks. Finally, this discriminative fea-

ture set is represented by a single feature vector, termed

as DPFD. The DPFD of images taken from different view-

points can be directly compared for matching. Extensive ex-

periments on recognizing faces across pose, pose and res-

olution on the Multi-PIE and Surveillance Cameras Face

datasets and comparisons with state-of-the-art approaches

show the effectiveness of the proposed approach. Experi-

ments on matching general objects across viewpoints show

the generalizability of the proposed approach beyond faces.

1. Introduction

Matching objects across pose is a very important area of

research in the field of computer vision with many appli-

cations. For example, in surveillance setting, the face of a

person captured by the overhead cameras may be in any un-

controlled pose and resolution as opposed to the frontal im-

age under high resolution that is typically captured during

enrolment (Figure 1 left). For object matching, the images

captured during testing can be taken from a different view-

point compared to the images stored in the database which

again requires comparing objects present in different poses

(Figure 1 right).

In this paper, we propose a discriminative pose-free

descriptor (DPFD) for matching objects across different

poses. In the training phase, training images from few poses

Figure 1. Applications of pose invariant matching. (Left) Face

recognition in uncontrolled setting; (Right) Object recognition

across viewpoint.

(two/three) are used to generate virtual subspaces for the in-

termediate poses. Treating the subspaces generated by the

training data as points on the Grassmann manifold, inter-

mediate subspaces are generated by sampling the shortest

geodesic path between those points. An image or image re-

gion is then represented by a set of features, computed by

projecting its feature vector onto all the intermediate sub-

spaces. This will ensure that at least one or more of the

features from the entire feature set will match when we try

to match images with different poses. Since the final goal

is recognition, a discriminative transform learned using the

class labels of the training data is used to transform the

feature set. Then a single compact discriminative feature

vector termed discriminative pose-free descriptor (DPFD)

is computed from the feature set which can be directly used

for matching.

In this paper, we focus on the face recognition applica-

tion where the gallery consists of frontal images captured

during enrolment and the probe images can be in any un-

controlled pose. We also extend the approach when in ad-

dition to non-frontal pose, the probe images also have low-

resolution as is usually the case in surveillance setting when

the images are taken from a large distance from the subject.

We perform extensive experiments on the CMU PIE, Multi-

PIE and the Surveillance Cameras Face Database. Com-

parisons with state-of-the-art metric learning, cross-pose

methods, domain adaptation and coupled dictionary learn-

ing approaches show the effectiveness of the proposed ap-

proach. We also show the usefulness of the proposed ap-

proach for matching general objects across pose. The nov-
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elty/contribution of the proposed approach is as follows:

• A novel discriminative pose-free descriptor (DPFD)

for matching objects across different poses.

• The approach does not require separate training for dif-

ferent probe poses/viewpoints. This is an advantage

over many other approaches which work well when

separate training is performed for different poses en-

countered during testing.

• Very few poses (as little as two/three) are required dur-

ing the training phase and the method can generalize

to unseen poses.

The rest of the paper is organized as follows. Section 2

describes the related literature. Details of the proposed ap-

proach is given in Section 3 and the experimental results

are reported in Section 4. The paper concludes with a brief

discussion section.

2. Related Work

In this section, we provide pointers to some of the re-

lated work in the area of recognizing faces and objects

across pose. Handling pose variations is a commonly ad-

dressed issue in matching facial images [22][37][20][24].

Kan et al. [19] learn a model to transform the complex non-

linearity of the non-frontal facial images to frontal ones with

a deep network. Xiong and Torre [36] propose a face align-

ment algorithm that uses supervised descent method which

learns a sequence of descent directions required to mini-

mize the mean of the non-linear least squares function. An

automatic 3D pose normalization approach that can synthe-

size frontal view of every gallery and pose images by fitting

a 3D face model to a 2D input facial image is described

in [3]. Ashraf et al. [2] propose a framework to align fa-

cial images of different views at patch level and matching is

performed by using the discriminative power of the corre-

sponding gallery and probe patches. Castillo and Jacobs [8]

propose a method to compute stereo matching cost between

two facial images by using epipolar geometry.

Recently, matching of low resolution facial images

has gained considerable attention [16][25][23][31][27].

Biswas et al. [7] suggest a method of using multidimen-

sional scaling to transform the features from low resolution

(LR) non-frontal probe images and the high resolution (HR)

frontal gallery images to a common space. A piecewise lin-

ear regression model is developed to learn the relationship

between the HR image space and the LR image space for

face super resolution in [38] . Jiang et al. [18] propose

to super-resolve the HR version of a LR probe image by

manifold learning and discriminant analysis and then per-

form recognition. A framework of co-transfer learning as a

mixture of transfer learning and co-training paradigms for

matching faces can be found in [6].

Metric learning approaches have shown a lot of

promise for matching faces in unconstrained environments.

Kostinger et al. [21] propose a method that learns a dis-

tance metric from the co-variance matrices of similar and

dissimilar pairs. Moutafis and Kakadiaris [27] propose an

algorithm that can match HR and LR facial images by learn-

ing individual basis for optimal representation and cou-

pled distance metrics to enhance the classification. Domain

adaptation techniques have also been successfully used for

matching face images across pose, pose and blur, etc. [11].

In [29], dictionary learning is used to interpolate subspaces

to link the source and target domains.

There has also been a lot of research in the area of

general object recognition across different viewpoints [32].

Ozay et al. [30] propose a joint object pose estimation and

categorization approach by constructing a hierarchical ob-

ject representation and extracting information from the ob-

ject parts and compositions from different layers of the hi-

erarchy. A model that separates a view-invariant category

representation from category-invariant pose representation

is proposed in [5]. Aytar and Zisserman [4] propose a con-

vex optimization based model transfer learning algorithm to

categorize the objects.

Our work is inspired by [15] in which images are

matched across varying scales. Features at different scales

can be computed from the same image itself, unlike features

at different poses which is the focus of our work. Gener-

ating intermediate subspaces by sampling the Grassmann

manifold has also been exploited by [11], and then the pro-

jections on these subspaces are used to train discriminative

classifiers for each object. Instead, using the intermediate

subspaces, we form a discriminative feature vector which

can directly be used for matching. Our approach is more

suitable for applications like face recognition, where there

may not be any overlap between the training and testing

subjects.

3. Proposed Approach

Here we describe in detail how to construct the discrim-

inative pose-free descriptor (DPFD). In the training phase,

given training examples from a few pose regions, virtual in-

termediate subspaces are created. The feature vector from

the input image (or image region) is projected onto all the

subspaces to form a feature set. A discriminative transform

is then learnt from the training class labels. In the testing

phase, after computing the feature set for a given image by

projecting onto all the subspaces, they are transformed us-

ing the discriminative transform learnt in the training phase.

A single feature vector is finally constructed from the fea-

ture set which is the discriminative pose-free descriptor

(DPFD) for the image. The flowchart of the proposed ap-

proach is shown in Figure 2. We describe each of the steps

in detail in the following subsections.
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Figure 2. Flow chart of the proposed algorithm showing the training stage and construction of the DPFD.

3.1. Feature Representation using Intermediate
Subspaces

Suppose we have training images from some parts of the

pose space, say, P1, P2 to PK , (K is as small as two/three)

(Figure 4). The goal is to compute a descriptor for an image

with any unknown pose so that it can be used for match-

ing across poses. Let the feature descriptor of an image (or

image region) be denoted as f . Since the actual image to

be matched can be in any pose, instead of representing the

image by f , we propose to represent it using a collection

of features {f1, f2, . . .}, which are the feature vectors com-

puted if we have the image at different poses. If we now

compare the feature sets from two images of the same ob-

ject which differ by pose, it is more likely that one or more

of the features from the sets will match, as compared to if

we had represented the images with only f .

In order to generate the features at different poses, we

compute virtual poses by learning the path between Pk and

Pk+1. To do so, we exploit the idea of sampling on the

Grassmann manifold [11][9]. Let the features correspond-

ing to the images in Pk be denoted as fk,i ∈ R
D, where

i = 1, 2, . . . N denote the training images in pose Pk and

similarly for pose Pk+1 Thus, we have a data matrix of di-

mension D × N for pose Pk as well as Pk+1. Let P̄k and

P̄k+1 ∈ R
(D×d) be the corresponding generative subspaces

obtained by applying Principal Component Analysis (PCA)

on the data matrix Pk and Pk+1 respectively. The space

of d-dimensional subspaces in R
D can be identified with

the Grassmann manifold Gd,D and thus, P̄k and P̄k+1 are

points on Gd,D. Our goal is to obtain the intermediate sub-

spaces between P̄k and P̄k+1 and generate the virtual fea-

tures corresponding to those subspaces.

Let Rk ∈ R
D×(D−d) represent the orthogonal comple-

ment of P̄k, which implies RT
k P̄k = 0. The geodesic flow

between P̄k and P̄k+1 is given by Ψ(t) : t ∈ [0, 1], such

that Ψ(t) ∈ Gd,D and Ψ(0) = P̄k and Ψ(1) = P̄k+1, i.e.,

the geodesic flow starts from P̄k and reaches P̄k+1 in unit

time. The expression for the flow at any time t is given by

Ψ(t) = P̄kU1Γ(t)−RkU2Σ(t) (1)

where U1 ∈ R
d×d and U2 ∈ R

(D−d)×d are orthonormal

matrices given by P̄T
k P̄k+1 = U1ΓV

T and RT
k P̄k+1 =

−U2ΣV
T . Γ and Σ are d × d diagonal matrices whose di-

agonal elements are cosθi and sinθi for i = 1, 2, , . . . d. θi
are known as the principal angles between P̄k and P̄k+1.

Γ(t) and Σ(t) are diagonal matrices whose elements are

cos(tθi) and sin(tθi) respectively. The different interme-

diate subspaces are obtained for different values of t. The

idea behind our approach is that, if we project an image

in any unknown pose on any of the interpolated subspaces,

the reconstructed image will have a pose similar to that of

the interpolated pose. We have projected original images

(Figure 3a) of frontal (top row) and 30◦ pose (bottom row)

onto an interpolated pose (15◦). We observe that the recon-

structed images (b) are close to the actual 15◦ pose (c) in

both cases thus justifying the subspace interpolation.

Figure 3. Illustration of Pose reconstruction on Geodesic flow

curve for two subjects. a: unknown pose; b: synthesized from

interpolated subspace; c: actual image at interpolated pose.
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Figure 4. Top: Training images from 3 different parts of the pose space (left pose, frontal, right pose) denoted by P1, P2 and P3 respectively.

Bottom: Virtual subspaces generated from training data, the two rows indicating the second and fourth eigenvectors of the subspaces.

After getting the intermediate subspaces Ψ(t), the fea-

ture vector f is projected onto all the subspaces obtaining

the enhanced feature set for each image {f1, f2, . . . fN}.

Here N is the total number of subspaces, out of which K
subspaces are computed from the actual training data and

(N −K) are the intermediate virtual subspaces.

Figure 4 (bottom) shows virtual subspaces generated

from training data from three parts of the pose space (Fig-

ure 4 (top)), the two rows indicating the second and fourth

eigenvectors of the subspaces.

To illustrate the effectiveness of the proposed feature set

representation over the standard feature vector representa-

tion for matching across poses, we perform an experiment

on the Multi-PIE dataset [14] using images of 100 subjects,

under frontal illumination condition and five different poses

including the frontal pose (Figure 5). The corner of the right

eye is represented using the SIFT descriptor and also using

the proposed feature set representation. Each point in the

Figure 5 shows the difference between the descriptor at that

pose from the frontal image, averaged over all the 100 sub-

jects. For computing the difference between two feature

sets for our descriptor, we computed the distances between

all the features and took the minimum. We see that the dif-

ference increases as the difference in pose increases, but the

difference is much less for the proposed descriptor as op-

posed to the baseline SIFT descriptor, indicating that the

proposed descriptor is more robust to change in pose.

But there are two issues that need to be addressed be-

fore such a feature set can be used for matching across pose

variations

1. The feature sets have been computed from generative

subspaces, so they may not be discriminative enough

for recognition/classification task.

2. If two feature sets are matched using some measure

like minimum distance, then N × N comparisons are

required to compute the distance between two feature

sets, which is computationally expensive.

We address both the issues in the following subsections.

Figure 5. Proposed feature set representation generated using pro-

jections on all intermediate virtual subspaces vs. the SIFT descrip-

tor. Each point in the curves indicate the difference of the feature

vector for that pose from that computed from the frontal image.

3.2. Discriminative Features

In this section, we describe how to construct a discrim-

inative feature set for a given input image from the fea-

ture set that is computed from generative subspaces to ap-

ply for the task of recognition, which is our final objective.

The class labels of the training data are utilized to learn

a transformation such that transformed feature sets of the

same class come closer to one another and those of differ-

ent classes are moved further away. In our work, we use

the framework of Mahalanobis distance metric learning to

make features discriminative. In general, the squared dis-

tance between two features xi, xj can be defined as

d2(xi, xj) = (xi − xj)
TM(xi − xj) (2)

where M � 0 is the positive semi-definite matrix that we

want to learn. Since the difference in pose between the im-

ages to be matched may be significant (considering the two

extremes of the pose space as in Figure 4), one metric may

not be sufficient. So, the whole pose space is divided into

say T regions and we propose to learn a metric for each of

these regions. For example, if there are 12 subspaces and 4
regions, each region will constitute of 3 subspaces. For each
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region, the features for the constituent subspaces are con-

catenated and used as input feature vector for Mahalanobis

metric learning. Here, we have utilized a formulation sim-

ilar to the Large Scale Metric Learning (LSML) [21] for

learning the metrics for each of these T regions. We pro-

vide some details of the LSML algorithm for completeness.

The approach considers two independent generation pro-

cesses for match and non-match pairs. The features that are

from same subject which has variations in pose, illumina-

tion and resolution are the match pairs. The features that

are from different subjects are the non-match pairs. For any

given pair of features xi and xj of a region, the decision on

whether they belong to same class or not can be obtained

from likelihood ratio test as formulated below

δ(xi, xj) = log

(

p(xi, xj)|H0)

p(xi, xj)|H1

)

(3)

where, H0 and H1 are the hypotheses that a pair is non-

match and match respectively. If a pair of features belong

to the same class, the value of δ(xi, xj) is small, otherwise

it is large.

The problem in (3) can be reformulated by assuming a

Gaussian structure for the difference space of features as

δ(xij) = log









1√
2π|Σnij=0|

exp

(

−1

2
xT
ijΣ

−1
nij=0xij

)

1√
2π|Σnij=1|

exp

(

−1

2
xT
ijΣ

−1
nij=1xij

)









(4)

where, xij = xi − xj is a vector in the difference space;

nij = 1 for a match pair and its value is 0 for a non-match

pair. Σnij=1 and Σnij=0 are the corresponding covariance

matrices. The above equation can be simplified as

δ(xij) = xT
ij

(

Σ−1
nij=1 − Σ−1

nij=0

)

xij (5)

Analyzing (2) and (5), the Mahalanobis Metric can be given

by M =
(

Σ−1
nij=1 − Σ−1

nij=0

)

. Please refer to [21] for fur-

ther details.

Figure 6 shows the match and non-match scores distri-

butions before (top) and after (bottom) the discriminative

transform for 2000 test image pairs of the Multi-PIE dataset.

We see that the discriminative transform leads to better sep-

aration of the two distributions which results in better recog-

nition performance.

3.3. DPFD Computation

The discriminative feature sets from two images can po-

tentially be compared using a suitable set comparison met-

ric to compute the distance between them. But as dis-

cussed before, this is computationally inefficient. Here

we describe how to generate DPFD vector from the dis-

criminative feature set which can be used to efficiently

match two feature sets. Since we have generated virtual

views between the different poses, the feature vectors at

the different poses change gradually. So the set of de-

scriptors corresponding to each region in pose space can

be approximated to lie on a linear subspace. Suppose the

basis vectors for region t spanning the space of the fea-

tures is given by gt,1, gt,2, . . . , gt,Ns
. The D × Ns matrix

Gt = [gt,1, gt,2, . . . , gt,Ns
] represents the subspace for re-

gion t, where Ns is the number of basis vectors of the sub-

space, and the dimension of each feature vector is D. Now

we compute the subspace to vector representation for each

region.

The vector representation can be achieved by rearrang-

ing the elements of the D×D matrix L = GtG
T
t using the

following operator (considering only the elements of the up-

per triangular matrix with the diagonal elements scaled by

1/
√
2) [15]

DPFDt =
( l11√

2
, l12, ..., l1D,

l22√
2
, l23, ...,

lDD√
2

)T
(6)

Here D = 128, since we have used SIFT descriptor as the

input feature. Finally, the vector representation for all the T
regions are concatenated into a single vector termed as the

DPFD given by

DPFD = [DPFD1;DPFD2; . . . ;DPFDT] (7)

4. Experimental Evaluation

In this section, we report the results of extensive exper-

iments performed to evaluate the effectiveness of the pro-

posed approach. Specifically, we perform experiments on

face recognition across pose, face recognition across pose

and resolution, and object recognition across pose.

4.1. Face Recognition Across Pose

We have represented the facial images by local feature

descriptors (SIFT in this paper) computed at 15 fudicial lo-

cations of face images. A freely available C++ software li-

brary based on active shape models known as STASM [26]

is used to detect the fiducial locations automatically. The

locations are manually verified and incorrect ones are cor-

rected. Here, we present experiments on recognizing faces

across pose variations on the CMU-PIE dataset [34]. We

followed the same protocol as in [29] and used all the 68
subjects under 5 different poses and frontal illumination for

this experiment. For this experiment, we have used 100 sub-

jects from the Multi-PIE data [14] whose images have been

captured under very similar conditions as the PIE data for

training. We have constructed subspaces for each fiducial

point separately and have used frontal and extreme poses

(c11 and c37) for representing the entire pose space during

training. We have computed 12 subspaces in between pose
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Table 1. Rank-1 recognition accuracies (%) for face recognition across pose variations on the PIE dataset [34].

Method c11 c29 c05 c37 Average

K-SVD [1] 48.5 76.5 80.9 57.4 65.8
Eigen Light-field [13] 78.0 91.0 93.0 89.0 87.8

SGF [11] 58.8 89.7 89.7 72.1 77.6
GFK [10] 63.2 92.7 92.7 76.5 81.3

Subspace Interp. via DL [29] 76.5 98.5 98.5 88.2 90.4
Proposed Approach (DPFD) 98.5 100 100 98.5 99.3

Figure 6. Match (also termed genuine) and non-match (also termed

imposter) scores distributions before (top) and after (bottom) the

discriminative transform. The distributions are better separated af-

ter the transformation resulting in better recognition performance.

c11 to frontal and frontal to pose c37 and the entire pose

space is subdivided into 4 regions for computing the dis-

criminative feature sets.

The frontal images are used as the gallery and the non-

frontal images under the different poses are used as the

probe images. There is no overlap between the subjects

used in the training and testing set. Thus, there is no need

for retraining even if the test subjects change. The sub-

spaces and the transformation matrices can be learnt once

offline, which can then be used for any test subject. During

testing, both the gallery and the probe images are projected

onto all the subspaces, their discriminative features sets are

computed using the learnt metric and then the DPFDs are

constructed. The DPFDs are constructed in the same way

for both gallery and probe images of every pose, i.e. we do

not need to learn a classifier separately for each pose.

The results of the proposed approach for this experiment

is reported in Table 1. Comparison with several other ap-

proaches are shown, namely (1) K-SVD [1]: here the dic-

tionary is learnt from the frontal images and the same dictio-

nary is used to get the sparse coefficients for the non-frontal

images; (2) SGF [11] and GFK [10]: here subspace interpo-

lation is done on the Grassmann manifold; (3) Eigen-field

approach [13] which is designed specifically to recognize

faces across pose; (4) Subspace Interpolation via Dictionary

Learning [29] where dictionary learning is used to interpo-

late subspaces to link the frontal and non-frontal domains.

The recognition accuracies of all the other approaches are

taken directly from [29]. We see that the proposed approach

performs significantly better than all the other approaches

for the task of recognizing faces across pose variations, even

with no separate training for each of the different probe

poses.

4.2. Face Recognition Across Pose and Resolution

The proposed approach can also be extended to rec-

ognize objects across multiple variations simultaneously.

Here we show results on face recognition where the gallery

is of frontal and high resolution (HR) images, while the

probe images are non-frontal and of low-resolution (LR),

as usually obtained from surveillance cameras.

Results on MultiPIE dataset: We report results on the

Multi-PIE dataset [14] which contains images of 337 sub-

jects from four different recording sessions captured under

different poses, illumination conditions and expressions.

For our experiments, we use HR images under frontal pose

and frontal illumination condition as gallery. LR images

taken under pose 04 1, 05 0, 13 0 and 14 0 (named as in-

dicated in the dataset) under all the 20 different illumina-

tion conditions and neutral expression are used as the probe

images. Figure 7 (a) shows some sample HR gallery and

(b,c,d,e) shows the probe images under the four different

probe poses. HR images of size 60× 50 and LR images of
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Table 2. Rank-1 recognition performance (%) for four different probe poses, averaged over the different gallery illuminations on the

Multi-PIE dataset [14].

Method Pose 13 0 Pose 14 0 Pose 05 0 Pose 04 1

MDS Learning [7] 32.8 44.8 47.0 48.5
LSML [21] 46.9 53.9 55.2 54.3
GMA [33] 65.0 70.1 70.3 64.2
SCDL [35] 66.3 73.0 72.7 64.1
CFDL [17] 65.9 72.0 72.8 64.7

Proposed (PFD) 65.9 71.2 64.2 56.4
Proposed (DPFD) 74.5 78.0 74.0 70.1

Figure 7. Example images from the Multi-PIE data [14]. (a)

Frontal high-resolution images used as gallery; (b,c,d,e) low-

resolution images under non-frontal pose (pose 13 0, 14 0, 05 0

and 04 1 as given in the dataset) used as probe images.

size 20×17 (i.e. scale factor of 3) are used for all the exper-

iments. The LR images are obtained by down-sampling the

original resolution images to lower resolutions using stan-

dard bi-cubic interpolation technique. We have used 100
randomly chosen subjects with frontal, 13 0 (left extreme)

and 04 1 (right extreme) poses for generating the subspaces

and metric learning, and the remaining subjects for test-

ing. During subspace generation, the frontal images were of

high resolution and the images for the extreme poses were

of low resolution. There is no overlap between the train and

test subjects. The parameters for the proposed approach are

the same as used in the PIE experiment.

The results for the proposed approach are shown in Ta-

ble 2. We have also compared with several state-of-the-

art approaches; namely (1) MDS Transformation Learn-

ing [7] which learns a transformation between the HR

frontal gallery and LR non-frontal probe; (2) Metric Learn-

ing approaches: Large Scale Metric Learning (LSML) [21]

learns a metric from equivalence constraints based on the

statistical inference perspective; (3) Semi-coupled and Cou-

pled Dictionary Learning [35][17] learns the dictionaries

jointly for matching objects from different domains, and

(4) Generalized Multiview Analysis (GMA) [33] computes

a single linear subspace by solving a joint, quadratic pro-

gram over different feature spaces. PFD refers to our algo-

rithm without the discriminative transform, i.e. the feature

set computed by projecting onto all the virtual intermedi-

ate subspaces is directly converted to a single feature vec-

tor. For all the algorithms, the same input features have

been given, and we have learnt one transformation for all

the probe poses. The codes for the other approaches have

been taken from the respective author’s websites. We ob-

serve that for all the poses, the proposed approach performs

significantly better than the other approaches. The obser-

vation that DPFD performs much better than PFD indicates

the usefulness of the discriminative learning step in the pro-

posed approach.

Results on Surveillance Cameras Face Database:

Now we evaluate the proposed approach on real surveil-

lance quality data obtained from the Surveillance Cameras

Face Database [12]. The dataset contains images of 130
subjects captured in uncontrolled environment using five

different video surveillance cameras, and the gallery images

were taken using high-quality camera. We use the same ex-

perimental setup as used in [7], in which all the images from

the five surveillance cameras i.e. a total of 650 images are

used for the experiment. Figure 8 shows some gallery (top

row) and probe images (bottom row).

Figure 8. Example facial images of Surveillance Cameras Face

Database [12]. Top row: frontal gallery images, second row: cor-

responding probe images captured by surveillance cameras.

As in [7], we randomly pick 50 subjects for training and

use the remaining 80 subjects for testing (thus there are a to-

tal of 400 probe images) with no overlap between the train

and test subjects. The experiment is repeated 10 times with

different random sampling of the subjects. The Rank-1 ac-

curacy of the proposed approach and comparisons with sev-

eral other approaches for this experiment are shown in Ta-

ble 3. For our approach, we have used HR frontal images
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Table 3. Rank-1 accuracy (%) of the proposed approach and com-

parison with state-of-the-art approaches on the Surveillance Cam-

eras Face Database [12]. The two columns indicate two different

training setups using data from only one camera and five cameras

for training. The proposed approach trained using data from just

one camera performs better than all the compared approaches even

when they are trained using data from all five cameras.

Method Rank-1 Rank-1

1 Cam 5 Cam

MDS Learning [7] 30.0 61.1
LSML [21] 64.7 67.2
GMA [33] 38.2 50.5
SCDL [35] 48.2 58.5
CFDL [17] 45.7 62.2

Proposed (PFD) 46.0 −
Proposed (DPFD) 69.0 −

and LR non-frontal images from one camera to generate the

subspaces and transformation learning. For all the other ap-

proaches, we used two setups for training: (a) HR frontal

images and non-frontal images from one camera (same as

for the proposed approach) (Table 3 second column); (b)

HR frontal images and non-frontal images from all the five

cameras (Table 3 third column). We observe that when only

one camera is used for training, the proposed approach per-

forms significantly better than the other approaches. When

the training of the other approaches uses images from all the

cameras, their performance improves, but it is still worse

than that of the proposed approach. This shows that our

approach can generalize better across unseen poses.

4.3. Object Recognition Across Pose

Though all the experiments so far has been performed on

facial images, the proposed approach is general can be used

to recognize general objects across variations in viewpoint.

Here we perform experiments on Columbia Object Image

Library 20 (COIL 20) database [28]. The dataset contains

20 objects and each object is captured by rotating it about

its vertical axis at a regular interval of 5◦. We selected 50
images of each object that has pose variations from left ex-

treme to right extreme including the frontal pose for our

experiments. A few sample images are shown in Figure 9.

Five images per object around the frontal pose and extreme

pose are used for training and the remaining images are used

for testing. All the images are grayscale and are resized to

32 × 32 and the image intensity values are used as the input

features. A total of 12 subspaces with four regions in pose

space are used in this experiment.

During testing, images of frontal pose are taken as

gallery data and the remaining images that differ in pose

are used as probe images. The images and the poses used

for testing is different from the ones used for generating

the subspaces and metric learning. Note that the proto-

Figure 9. Sample images from the COIL 20 dataset [28]. The first

column shows the gallery images and the second to fifth columns

shows some probe images for the same objects.

col used in our experiment is different from the ones nor-

mally used for testing object categorization algorithms. Our

protocol is designed to see whether the proposed descrip-

tor can be used for describing general objects across pose.

So the performance reported cannot be directly compared

with other published papers which have reported results on

this dataset. Table 4 shows the Rank-1 recognition accu-

racy of the proposed approach and comparisons with other

approaches. We see that the proposed approach performs

better than all the other approaches.

Table 4. Rank-1 accuracy (%) of the proposed approach and com-

parison with other approaches on COIL 20 Database [28].

Method Rank-1 Accuracy

MDS Learning [7] 75.6
LSML [21] 80.3
GMA [33] 66.1
SCDL [35] 79.2
CFDL [17] 78.7

Proposed (PFD) 67.4
Proposed (DPFD) 82.2

5. Discussion

In this work, we proposed a novel discriminative pose-

free descriptor (DPFD) for matching objects across pose.

The proposed approach requires images from a few regions

of the pose space for training and does not require sepa-

rate training for each probe pose. Experimental evalua-

tions for various tasks like face recognition across pose, face

recognition across resolution and pose and object recogni-

tion across different viewpoints, are conducted to evaluate

the usefulness and generalizability of the approach. Supe-

rior performance of the proposed approach as compared to

several state-of-the-art approaches shows the effectiveness

of the approach.
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