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Abstract

Keypoint detection represents the first stage in the major-

ity of modern computer vision pipelines based on automat-

ically established correspondences between local descrip-

tors. However, no standard solution has emerged yet in the

case of 3D data such as point clouds or meshes, which ex-

hibit high variability in level of detail and noise. More im-

portantly, existing proposals for 3D keypoint detection rely

on geometric saliency functions that attempt to maximize

repeatability rather than distinctiveness of the selected re-

gions, which may lead to sub-optimal performance of the

overall pipeline. To overcome these shortcomings, we cast

3D keypoint detection as a binary classification between

points whose support can be correctly matched by a pre-

defined 3D descriptor or not, thereby learning a descriptor-

specific detector that adapts seamlessly to different scenar-

ios. Through experiments on several public datasets, we

show that this novel approach to the design of a keypoint

detector represents a flexible solution that, nonetheless, can

provide state-of-the-art descriptor matching performance.

1. Introduction

Detection of repeatable and distinctive keypoints is a

fundamental task in modern computer vision when dealing

with both images as well as 3D data. Keypoint detection

in images finds applications in image retrieval, object de-

tection and recognition, object and camera tracking, camera

calibration and image registration, among the others. Key-

points from 3D data are useful to deal with several shape

matching tasks, such as point cloud registration, 3D object

recognition and pose estimation, shape retrieval and shape

classification.

The standard approach in 2D and 3D computer vision

involves defining keypoints by maximization of a hand-

crafted local saliency function [25, 13, 24]. Popular ap-

proaches for 3D keypoint detection based on such func-

tions can be categorized into fixed-scale and adaptive-scale,

some of these methods exhibiting good repeatability as well

as the ability to identify regions that may be matched cor-

rectly by 3D descriptors [24]. For instance, among fixed-

scale approaches, Intrinsic Shape Signatures (ISS) [29] is

a widely used fast and effective proposal; the fixed-scale

detector proposed by Mian et al. [15] is a slower alterna-

tive, particularly robust to point density variations. Among

adaptive-scale detectors, MeshDoG [28] is an extension of

the popular Difference of Gaussian detector [14] to scalar

functions defined over a manifold approximated by a mesh;

the adaptive-scale variant proposed in [15] maximizes the

saliency function across scales to adaptively define the point

neighborhood size; [4] is also aimed at extending the DoG

operator to meshes.

However, when deploying such detectors, the saliency is

unrelated to the quality of the description to be later com-

puted at the point. Indeed, detectors are usually designed

to maximize repeatability rather than distinctiveness of the

regions, this possibly resulting in sub-optimal matching per-

formance that yield a reduced number of correct correspon-

dences. However, identification of correct correspondences

is the ultimate goal of the overall detection/description pro-

cess, and the importance and effectiveness of pursuing di-

rectly such goal already in the detection stage is shown,

in video tracking, by the popular work of Shi and Tomasi

[20], where ”good” features to detect are defined as those

likely to yield correct matches between consecutive frames.

Moreover, in the realm of 3D vision, diverse data acquisi-

tion modalities provide quite different levels of detail and

noise, which may require careful tuning of the detector

parameters to obtain meaningful keypoints across diverse

datasets, or may even render a detector useless when applied

to data that differ from those it was originally conceived for

(e.g. curvature based detectors are largely affected by the

amount of noise in the data).
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In this work, we propose to cast detection of 3D key-

points as a binary classification problem between the classes

of those points that can or cannot be effectively encoded

by a pre-defined 3D descriptor, and also present an effec-

tive algorithm to define the required training set. Automatic

learning of such classification function holds the potential

to adaptively identify those points which are more likely

to provide correct correspondences for a particular dataset

without being bound to the specific structures found by a

hand-crafted detector.

A few researchers investigated the use of machine learn-

ing techniques in works related to the problem of keypoint

detection. As far as images are concerned, the most im-

portant contribution is arguably FAST [16], which is based

on the Accelerated Segment Tests to detect corner-like fea-

tures: the order of the tests is learned in a tree from a train-

ing set to speed-up detection time. This approach lays at

the core of several recent and successful keypoint detectors,

such those used in BRISK [12] and ORB [17]. Another

line of research has been focused on pruning the keypoints

extracted by a standard keypoint detector so to improve the

overall performance in a particular task. In [9], Hartmann et

al. apply machine learning algorithms to learn which key-

points are likely to be discarded in the descriptor match-

ing stage among those extracted by a standard keypoint de-

tection algorithm, namely DoG. By using a Random For-

est [3] to learn such ”matchability”, they show that the ap-

proach can improve and speed-up considerably the feature

matching stage of a Structure-from-Motion pipeline. Simi-

larly, in [22], the authors show that higher repeatability can

be achieved by instructing a WaldBoost classifier to keep,

among those extracted by a standard detector, only those

points that are known to be useful in a given scenario. As an

exemplar application of the method, they demonstrate im-

proved image matching in an urban environment, the clas-

sifier learning to focus on stable man-made structures and

ignore objects that undergo natural changes such as vegeta-

tion and clouds. A different approach is proposed in [26],

where the most repeatable DoG keypoints across a set of

training images are deployed to define the positive samples

used to train a regressor which learns a saliency function

able to highlight the same image points under drastic illumi-

nation changes caused by changes in weather, season, and

time of day.

In 3D computer vision, casting keypoint detection as a

binary classification problem has been proposed only when

dealing with datasets that already include the definition of

the points of interest, such as e.g. facial landmarks [5].

Similarly, the authors of [23] proposed to learn a detector

from training data instead of hand-engineering a geomet-

ric saliency in order to cope with the high variability of

structures selected as salient by human users in the bench-

mark proposed in [7], where the task is indeed not to de-

fine generic and repeatable keypoints, but to find exactly

the keypoints indicated as salient by human users during

the creation of the benchmark. Differently, Holzer et al.

[10] proposed to speed up and improve the repeatability of

curvature-based detectors by learning the saliency function

with a Regression Forest that uses, as features, binary depth

comparisons.

In this paper, instead, we propose to learn a classification

function that acts as a keypoint detector aimed at identify-

ing points likely to generate correct matches when encoded

by a given descriptor and, accordingly, define a method to

automatically generate the data required to train the classi-

fier. Therefore, the definition of the interest points needs not

to be available together with the dataset, as in [23, 5], but,

peculiarly, it is data-driven and attained automatically based

on the ability to match specific descriptors, thereby gener-

ating a descriptor-specific keypoint detector. The ability to

learn a descriptor-specific detector is particularly relevant

in the 3D vision realm, wherein, unlike prominent 2D ap-

proaches such as SIFT or SURF, state-of-the-art descriptors

[8] [19], [18], [11] still lack a companion detector.

We also point out that, in contrast with the pruning ap-

proaches proposed so far for 2D detectors [22, 9], we di-

rectly use our classifier as a keypoint detector, thus avoid-

ing the need to select a specific hand-crafted detector as a

pre-processor. This holds the potential to yield higher adap-

tiveness to diverse input data, which otherwise may be lim-

ited by the suitability to the specific dataset of the geometric

structures highlighted by the saliency function employed by

the selected detector. Moreover, the choice of such basic 3D

detector would also turn out problematic as there is not yet

an established and generally applicable algorithm for 3D

data as it may be considered DoG for 2D images.

The paper is structured as follows. Section 2 provides an

overview of the proposed framework to learn a descriptor-

specific detector and defines how to create the training set

and the experiment that we performed to validate its effec-

tiveness before using it to learn a classification function.

Section 3 presents the design of the features extracted to

train our classifier and how we use at test-time to extract

keypoints on a given cloud. Section 4 presents results on

three publicly available datasets and compares our proposal

to several state-of-the-art detectors. Section 5 reports on the

insights gained while attempting to implement this novel

idea for the design of a keypoint detector

2. Training a Descriptor-specific Detector

The main aim of our approach is to learn to detect 3D

keypoints that yield highly distinctive 3D descriptors. The

definition of the ground-truth for training, and, in particular,

of the positive examples, is therefore crucial. We exploit a

set of partially overlapping 2.5D views of 3D objects that

are of interest in a particular dataset so to define both posi-
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Figure 1. Overview of the definition of positive samples, from left to right: if not available, a set of 2.5D views is generated by simulating

a sensor in N uniformly distributed views; for each view V i, its overlapping views are selected; for each overlapping view, matches are

established by selecting the nearest neighbor in the descriptor space for each point in V i; matches are removed if they are wrong matches

(point e) or close to a match with more similar descriptors (point c); by using every other overlapping view V k, the positive set is refined

by removing points that do not yield correct matches (point b), because their distinctiveness is not robust enough to changes in viewpoint.

tive and negative samples.

Although our framework is general and, in principle,

may be applied to any 3D descriptor, in the following we

rely on the SHOT descriptor, given its availability in the

open source Point Cloud Library (PCL)1 and its overall

good performance [19]. Moreover, we fix the support of

the descriptor and derive a fixed-scale detector that identi-

fies distinctive points at that scale.

2.1. Definition of the training set

Given an object from a 3D dataset, let {V i}, i =
1, . . . , N be the set of its N 2.5D views (see Fig. 1). Should

the object be provided in the dataset as a full 3D model,

we would obtain 2.5D views by performing synthetic ren-

derings, as done e.g. in [2, 1]. For instance, we deploy the

method adopted in [1], where views are rendered from the

nodes of an icosahedron centered at the centroid of the 3D

model.

As illustrated in Fig.1, to identify those points that may

be matched most robustly and use them as positive exam-

ples of keypoints, we seek the points of the object whose

SHOT descriptors computed on different partially overlap-

ping views turn out highly similar.

Algorithmically, we proceed as follows. For each view

V i, we compute the SHOT descriptor at each point p ∈ V i,

SHOT i
p. Then, for each view V i, we select the subset of

views

Vi = {V j |V i ∩ V j ≥ τ, j = 1, . . . , N, j 6= i} (1)

i.e. the set of views partially overlapping with V i according

to a threshold τ . For each partially overlapping view V j ,

we perform a two-step selection of points. First, for each

descriptor SHOT i
p we find the point q ∈ V j that yields the

1www.pointclouds.org

nearest neighbor SHOT descriptor, i.e. SHOT j
q . We then

sort ascendantly the pairs of matching points (p, q) accord-

ing to the Euclidean distance between the corresponding de-

scriptors dpq = ||SHOT i
p − SHOT j

q ||2. Starting from the

first pair of this list of candidate positive samples Cj
i , we

check whether the match is correct or not, i.e. if the points

in the two views correspond to the same point in the 3D

model. To make the learned detector robust to small shifts

in the detection response, we consider a match to be correct

if the distance between point p and q expressed in the same

reference frame, i.e. transformed with the known ground-

truth rotation and translation between the views, is smaller

than a threshold ǫ. This check also discards points that are

not in the overlapping part of the two views.

If the match is correct, we add it to the list of positive

samples for this pair of views, P j
i . We then exclude from

the list of candidates Cj
i the point p as well as all the pairs

of matching points that include neighbors of p, to simulate

the effect of spatial non-maxima suppression that is usually

performed over saliency values to obtain keypoints as local

extrema. For each point p′ in V i that is close to p, i.e. whose

3D distance from p is smaller than a threshold ǫNMS , we

remove its pair from the sorted list of matches. We then

repeat the algorithm for the top entry of the list. If the match

is not correct, we remove the pair from the list and repeat.

At the end of the first step, thus, we obtain a list of pos-

itive examples P j
i for V i when V j is used to match SHOT

descriptors. To obtain a positive set that is not influenced

by the specific viewpoint change between V i and V j , in

the second step we refine the list of positive samples by

checking if such points can be robustly matched by SHOT

also in those other views overlapping with V i that we did

not use for the definition of P j
i . More precisely, for each

Vk ∈ Vi \ {V j}, i.e. every view partially overlapping with

V i other than the already used V j , we perform the second

2320
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Figure 2. Example of negative (in red) and positive (in green) train-

ing samples obtained with the proposed method on two model

views.

step as follows. First, we compute the positive points that

are in the common part of the views, by transforming each

positive sample from P j
i with the ground-truth rotation and

translation and checking if it has any neighbor in V k within

a distance ǫ. For every positive point that is in the com-

mon area, we select the nearest neighbor in the descriptor

space between the descriptors from V k and we check if it is

a correct match with the test on the 3D distance between the

points with respect to the threshold ǫ. Specifically, a point

is required to have a correct match from just one of the V k

views in order to be considered as a positive sample. In this

way, we obtain a refined set of positive samples for each

view V k, P jk
i .

The final set of positive samples associated with V i is

the union of the refined positive lists across all overlapping

views,

Pi =

|Vi|⋃

j=1

j 6=i

|Vi|⋃

k=1

k 6=i,j

P jk
i (2)

Finally, the set P of positive samples is given by the

union of all the positive samples P i from the views. To

obtain the negative samples, several alternatives are viable:

i) implement a mechanism similar to that described

above, but using now the list sorted in descending order,

so that the points producing the most dissimilar descriptors

become the negative samples;

ii) include in the negative set all the incorrect matches

found when scrolling the original list, up to a predefined

number, so that the classifier learns to avoid wrong matches

producing highly similar descriptors;

iii) randomly sample the negatives from the points which

are not included in the positive set, so to obtain a uniform

coverage of the non-distinctive parts of the cloud.

We started with the last strategy, which is the simplest to

implement, and found it to work very well. Therefore, we

leave to future investigation the implementation and test-

ing of the alternatives presented above. To enforce points

to be scattered across all the non-informative parts of the

view, we also remove, upon sampling a new negative sam-

ple, all its neighbors within a threshold ǫneg from the list

of possible negatives. Two examples of positive and nega-

tive sample sets extracted from a model view are shown in

Fig. 2. As witnessed by the Figure, positive points are un-

evenly distributed on the surface and do not necessarily ap-

pear on prominent, geometrically well defined points such

as the right model knees and elbows or the right model tail,

which would be extracted by most standard detectors.
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Figure 3. Correct matches obtained from the regions selected by

Harris3D, ISS and the proposed training set creation (KPL).

2.2. Validation of the training set

Before defining the features to train a specific classi-

fier, we investigate on the effectiveness of the proposed

approach in defining good regions to be encoded through

SHOT descriptors. In other words, we want first to find out

whether, should a perfect classifier be available, the clas-

sification function defined by our training set would select

regions more suitable to be matched by SHOT than those

detected by standard descriptor-agnostic detectors based

on geometric saliency. Purposely, we compare the num-

ber of correct correspondences attained by matching SHOT

descriptors from the reference view Vi with their nearest

neighbor in the partially overlapping views V k used in the

second selection step. In particular, we compare the match-

ing performance of the SHOT descriptors computed at the

points in the positive set P j
i achieved after the first selec-

tion step and at the keypoints extracted by the ISS [29] and

Harris3D detector available in PCL. To evaluate only the de-

scriptiveness of the regions regardless of their repeatability,

we rigidly move the keypoints from Vi to Vk and check if

the nearest neighbor in the SHOT space is within ǫ distance

from the transformed keypoint. Fig. 3 reports an exem-

plar result from view 7 of the Mario model from the Kinect

dataset [19], which partially overlaps with view 6 and 8. We

select the positive points performing the first step between

view 7 and 6, then check how many correct matches we get

between view 7 and 8 (left-most histogram), and then we

switch roles between view 6 and 8. We can clearly see that
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our points are able to identify regions more suitable for the

selected descriptor, even if they are learned from a differ-

ent pair of views. We can therefore address the problem of

defining a proper classifier aimed at learning to detect 3D

keypoints yielding distinctive SHOT descriptors by using

the proposed training set.

3. Design of the Classifier

We select the Random Forest [3] as the classifier to learn

the keypoint detection function from our training set due to

several reasons. First, it has been applied successfully to

several problems in computer vision [6] and also, recently,

to the problem of 3D keypoint detection [23]. Moreover,

Random Forests are among the fastest classifiers to test at

run-time, even when learning complex classification func-

tions, as opposed e.g. to SVM with non-linear kernels. This

is particularly important when using a classifier as a detec-

tor, because it has to be applied to every point of the input

cloud. Finally, a Random Forest naturally enables multi-

class classification and is therefore amenable to extend our

framework to multiple support size so to possibly devise an

adaptive-scale descriptor-specific detector.

The definition of the features used to capture the geo-

metric structure around the points in a cloud is a crucial

step in the design of the classifier. The usual features pro-

posed when applying Random Forests to images have been

simple binary features such as random intensity differences

[6, 10]. However, to apply random differences to 3D neigh-

borhoods while preserving rotation invariance requires the

definition of a local Reference Frame, such as e.g. that used

by SHOT [19] or MeshHoG [28], to correctly associate ev-

ery binary test to the same points. Differently from the case

of 3D descriptors, though, which are computed for a sparse

subset of points of a cloud, such a costly reference frame

computation would need to be performed at every point of

the cloud. Moreover, point differences require interpolation

to deal with views showing different points density.

Based on the above considerations, we opted for a differ-

ent, rotation invariant feature, that does not require the def-

inition of a local Reference Frame. Inspired by the robust-

ness and descriptiveness of the SHOT descriptor, we rely on

histograms of normal orientations, i.e. for each reference

point p for which we have to compute the feature vector

and for everyone of its neighbor points q within the radius

rfeat, the angle between the normal at p and the normal at q
is computed and quantized into the histogram correspond-

ing to the sector of the sphere q belongs to. In SHOT, the

sectors are obtained by dividing the sphere along the radial,

elevation, and azimuth polar coordinates of points. To avoid

the computation of the local Reference Frame, we change

the shape of the divisions of the spherical support so to con-

sider only Nr subdivisions along the radial dimension and

compute a histogram with Nb bins for each spherical shell

thus obtained. As the histograms are computed for spheri-

cal shells, they are inherently rotation invariant so that the

calculation of a local RF is not needed. As discussed in

[19], to speed up the computation and make it more robust,

we do not quantize the angle between the normal at the ref-

erence point and the normal at the considered point but just

their scalar product, which correspond to the cosine of the

angle between the normals. To avoid quantization artifacts,

bilinear interpolation is performed upon casting a vote into

a histogram. Finally, the feature vector is normalized by

dividing it for its Euclidean norm to limit the effect of vary-

ing point density. Fig. 4 provides a graphical overview of

the feature computation process.

Given all the models of a dataset, we construct the train-

ing set and extract the histogram of orientations features at

each point, setting ǫneg to obtained a balanced training set.

We then train a Random Forest with T trees. When detect-

ing keypoints on an unseen input point cloud, we apply the

classifier at each point and count the number of trees Tp that

classify it as keypoint. The score associated at the point is

Tp/T and the point is detected as a keypoint if its score is

higher then a minimum score smin ≥ 0.5 and it is a local

maximum of the scores in a neighborhood of radius rnms.

4. Experimental results

To experimentally validate our proposal, we measure

the improvements in descriptor matching performance that

can be obtained by replacing hand-crafted saliency-based

detectors with our Random Forest in a standard matching

pipeline.

To implement our proposal, we used the Random For-

est implementation provided by OpenCV2 and the imple-

mentation of SHOT included in PCL. As for saliency-based

detectors, we selected those available in PCL, namely ISS,

Harris3D and NARF [21], together with the detector pro-

posed by Mian et al. [15], referred to as KPQ in the evalu-

ation in [24], as it turned out, similarly to ISS, among the

best algorithms between fixed-scale detectors. We also con-

sider uniform sampling of points as a baseline 3D detector,

given that it is normally deployed by the 3D community as

a fast, albeit poorly performing, alternative. In the legends,

we refer to our proposal as to KeyPoint Learning (KPL).

We tested all the detectors on three publicly available

datasets already used in [24] to compare detectors: the

Laser Scanner dataset introduced by Mian et al. [15]; the

Random Views dataset, based on the Stanford 3D scanning

repository3, originally proposed in the detector evaluation

[24]; the Kinect dataset introduced in [19]. Each dataset in-

cludes a list of models of interest, which we used to train our

detector, and several scenes, where we performed keypoint

2opencv.org
3http://graphics.stanford.edu/data/3Dscanrep/
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Figure 4. Overview of the feature computation. In the example, Nr = 4 radial subdivision are used (for ease of visualization, a 2D repre-

sentation of the 3D spherical support is portrayed). Each subdivision is associated with a spherical volume and a histogram comprising Nb

bins, which accumulates the cosine of the angle between the normal of p (central point) and that of each point q falling in the corresponding

spherical volume.

detection. When the models are full 3D, as it is the case

of Laser Scanner and Random Views, to apply our learning

algorithm we sampled 42 equally spaced 2.5D views as the

vertices of an icosahedron, following the methodology pro-

posed in [1] whose implementation is also available in PCL.

The scenes are 2.5D views acquired independently from the

models and depicting arrangements of models and other ob-

jects (clutter). Therefore, the views extracted from the mod-

els to train the detector are unrelated to the views of the

models appearing in the scenes. Moreover, this evaluation

methodology mimics the likely use of the technique in a real

application, where models are either generally known be-

forehand or acquired at initialization time, whereas scenes

are unseen data.

The parameters used at test and training time on each

dataset are reported in Table 1. As it can be seen from

the Table, we used the same support size for SHOT across

all the datasets, scaled to the unit of measurement of each

dataset(i.e. meters in Kinect and Random Views, mm in

Laser Scanner). Similarly, we used the same support size

to compute both the features for our detector as well as the

saliency function of the other methods.

4.1. Random Forest tuning

Random Forests are able to learn complex functions

while using only a few self-explanatory parameters. How-

ever, the effect on performance and generalization ability of

some of its parameters such as the tree depth and the max-

imum number of samples at a node to stop splitting is not

clear: e.g. Breiman [3] suggests to let the tree grows until

just 1 sample remains in a node, whereas Criminisi et al. [6]

generally use a higher number of samples, which are used

to estimate the posterior at the node.

Therefore, we investigated on the effect of the number of

trees, the maximum tree depth, and the number of samples

to stop splitting. To evaluate the effect on the generalization
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Figure 5. Random Forest parameters tuning over the Kinect

dataset.

abilities of the classifier, we perform three fold cross vali-

dation at the view level, i.e. we used 2/3 of the N views of
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Table 1. Parameters used for each dataset. On Random Views we did not train a new forest, so some parameters are not specified.

Dataset rSHOT rfeat τ ǫ ǫnms ǫneg rnms smin Nb Nr

Laser Scanner 40 20 0.85 7 4 2 4 0.8 10 5

Random Views 0.040 0.020 - 0.007 - - 0.004 0.8 10 5

Kinect 0.040 0.020 0.24 0.01 0.02 0.015 0.02 0.8 10 5

a model to define the training set and the remaining views

to test it, and we consider the training and test error.

As far as the number of trees is concerned, we vary it

from 10 to 100, we checked the effect of the depth when

varying it from 10 to 40 and we also let the number of sam-

ples to stop splitting vary from 1% of the points of the train-

ing set, down to 1. Fig. 5 shows that performance of the

classifier does not improve when we consider more than 50

trees. Even more evidently, there is no advantage in letting

the tree grow deeper than 25 levels and we get the best gen-

eralization results by stopping to split when 5 or less sam-

ples are left at a node, as limited over-fitting can be observed

with smaller values, i.e. the test error increases although

the training error decreases. For the Laser Scanner dataset,

which features more training data (100K positive samples

versus 8000 positive samples of the Kinect dataset), we in-

stead found that the best performance are obtained with 100

trees, the same depth and 1 node per sample to stop split-

ting.

4.2. Laser Scanner dataset

This dataset comprises 4 full 3D models and 50 scenes,

where the models occlude each other and there is also the

presence of an object which is not included in the model

list, so to create some clutter.
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Figure 6. Results on the Laser Scanner dataset.

To perform the descriptor matching experiment, we first

detect keypoints on all the views of all the models, compute

the corresponding SHOT descriptors, and create only one

kd-tree on the set of all the model descriptors. We then run

the detectors on the scenes, and for each scene keypoint we

establish a match with the nearest neighbor of its SHOT de-

scriptor in the kd-tree. For each match, we check if it is a

correct match and increment the true positives or false pos-

itives, accordingly. By varying the threshold on the maxi-

mum distance between SHOT descriptors to accept a match,

we plot the Precision-Recall curve for the detectors, shown

in Fig. 6.

The best detector among the saliency-based proposals is

KPQ. This is somewhat not surprising, as the detector was

originally proposed for the Laser Scanner dataset. ISS of-

fers also reasonable results, whereas NARF and Harris3D

perform similar to the baseline uniform sampling. Our pro-

posal is able to identify the best regions for SHOT descrip-

tion, even better than the detector specifically tuned for this

kind of data, which confirms our intuition that saliency-

based detectors cannot select the best regions to optimize

the performance of the overall detector-descriptor pipeline.

4.3. Transfer Learning On Random Views

This dataset comprises 6 full 3D models and 36 scenes,

where the models occlude each other but there is not clut-

ter. The models and scenes are highly detailed, but synthetic

random noise has been added to the scenes. Here we con-

sider the scenes with Gaussian noise with σ = 0.1 mesh

resolution units.

The testing protocol is the same used on the Laser Scan-

ner dataset. Remarkably, since the dataset presents a level

of detail and noise comparable to that of the Laser Scan-

ner dataset, we do not train a new Random Forest for this

dataset, but used the one already learned on the previous

data. This allows to test the generalization ability to unseen

objects of our method.

Results are reported in Fig. 7. Overall, the relative or-

der of the detectors is comparable with the previous dataset.

However, the gap between our proposal and KPQ widens:

saliency-based detectors have more difficulties in maintain-

ing a similar performance level across different datasets.

Moreover, this result shows that the way we select the train-

ing set, the feature we propose, and the selected parame-

ters for the classifier are effective in learning a classification

function with high generalization abilities.

4.4. Kinect dataset

This dataset comprises 7 models given as 2.5D views,

as well as 17 scenes where the models are acquired under
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Figure 7. Results on the Random Views dataset.
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Figure 8. Results on the Kinect dataset.

heavy clutter and occlusions. The data is low-quality, as it

has been acquired with a low-cost consumer depth camera.

To compare the evaluated detectors on this dataset, we

followed the protocol already proposed in the original

SHOT paper [19]. In particular, keypoints are extracted and

described on each of the model present in the scene. De-

scriptors are then extracted on the scene, both at the location

of the model keypoints and at additional keypoints extracted

from clutter. Every descriptor of the scene is then matched

against the set of model descriptors with the ratio criterion

[14] and check for geometric correctness. By varying the

threshold of the ratio test, we obtain Precision-Recall curves

as in Fig. 8.

The dataset is very challenging. Results are largely

worse than those obtained on the previous datasets. It is

important to note how the relative order of the hand-crafted

detectors changes: on the one hand, the baseline uniform

sampling performs even better than KPQ, ISS, and Har-

ris3D; on the other hand, NARF, whose performance was

quite unsatisfactory on previous datasets turns out the best

of the saliency-based detectors. Our KPL detector has def-

initely the better performance, showing the ability to adapt

to different sensing modalities and the robustness of the pro-

posed rotation-invariant features.

5. Conclusions and Future Work

The problem of detecting keypoints amenable to pro-

vide distinctive regions according to a 3D description algo-

rithm so to improve the performance of the overall matching

pipeline can be successfully solved by deploying automatic

learning. The definition of positive training samples from

the nearest neighbors in the descriptor space that correspond

to correct 3D matches yields a classification function that

identifies regions more suited to be distinctively encoded by

the descriptor compared to standard hand-crafted saliences.

A properly tuned Random Forest can learn such function

robustly from training data by using the proposed rotation

invariant geometric features. Our descriptor-specific detec-

tor adapts seamlessly to data sensed by different acquisition

modality. When used on data sensed with the same modal-

ity, it also exhibits good transfer learning capacities from

one dataset to another, so that the effort of training a new

classifier may not be required.

Therefore, it may be possible, in future developments of

this work, to learn generic detectors for specific 3D data.

Moreover, the ability of the Random Forest to seamlessly

handle multi-class classification enables the possibility to

learn an adaptive-scale detector, that may further boost the

matching performance of the pipeline. A cascade approach

[27] may also be designed to quickly reject areas of the in-

put cloud unlikely to yield good keypoints using just a few

trees, thereby improving run-time performance at test time.

Finally, as the underlying principle and methodology is gen-

eral, we plan to apply our learning framework so to obtain

detectors capable of identifying good keypoints according

to other state-of-the-art 3D descriptors, e.g. [8, 18, 11].
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