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Abstract

Ferns ensembles offer an accurate and efficient multi-

class non-linear classification, commonly at the expense

of consuming a large amount of memory. We introduce a

two-fold contribution that produces large reductions in their

memory consumption. First, an efficientL0 regularised cost

optimisation finds a sparse representation of the posterior

probabilities in the ensemble by discarding elements with

zero contribution to valid responses in the training sam-

ples. As a by-product this can produce a prediction accu-

racy gain that, if required, can be traded for further reduc-

tions in memory size and prediction time. Secondly, pos-

terior probabilities are quantised and stored in a memory-

friendly sparse data structure. We reported a minimum of

75% memory reduction for different types of classification

problems using generative and discriminative ferns ensem-

bles, without increasing prediction time or classification er-

ror. For image patch recognition our proposal produced a

90%memory reduction, and improved in several percentage

points the prediction accuracy.

1. Introduction

Initially proposed in [1], random forest classifiers offered

interesting computational advantages over previous classifi-

cation techniques. A random forest basically consist of an

ensemble of random decision trees. Given an input item that

should be classified, each random tree emits a prediction

for each one of the different possible classes. The random

forest averages these predictions to aggregate them into a

single, better classification.

Several contributions improved the performance and re-

duced the computational requirements of these classifiers,

making them more suitable for a wider range of applica-

tions. In [20] the authors introduced ferns ensembles. Un-

like random trees, ferns evaluate a fixed set of binary fea-

tures on the input sample. This made unnecessary the large

tree structures of binary tests, and made more efficient the

processing of each new input sample. Ferns ensembles also

replaced the simple addition of class probabilities, used to

combine trees predictions in random forests, with the naive

Bayes aggregation, improving significantly the classifica-

tion accuracy for tasks such as image feature recognition

[19, 15]. Ferns ensembles are commonly trained using a

generative formulation. Given an input sample the classi-

fier estimates the probability for each class. The output pre-

diction will be the class with the highest probability. Ferns

can also be trained using a discriminative approach where

misclassifications are directly penalised. For example by

minimising a cost similar to the regularised Hinge loss, as it

is done for the training of support vector machines (SVM).

A ferns ensemble could be trained by optimising the mul-

ticlass version of the margin error [5, 10]. In [13] the au-

thors optimise the regularised Hinge loss producing one-vs-

all predictions for each single class, that are later averaged

to produce the aggregated prediction.

Their inherent non-linear multiclass formulation, their

efficiency, and accuracy made random forests and ferns en-

sembles specifically suited for real-time applications where

a fast, accurate classification is needed. These classifiers

achieved a significant popularity for visual recognition tasks

such as image patch classification [14] and human pose esti-

mation [24]. Once trained, evaluating the probabilities for a

thousand classes will usually take a few milliseconds using

commodity hardware. A small number of pixel-wise com-

parisons of values in regular or depth images, and a small

number of additions, are enough to recognise image patches

or features with high accuracy. These classifiers have also

been used for a large variety of problems such as object

categorisation [27], image classification [4], simultaneous

location and mapping [6, 19], unsupervised detection and

tracking [22], sensor relocalisation [11], face recognition

[8], vehicle detection and tracking [9], pedestrian detection

[18], or hand pose estimation [13].

Most of these proposals provided state-of-the-art results

for the specific problem. However, random forests and ferns

usually trade their computational advantages for the dis-

advantage of consuming a large amount of memory. The
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memory consumption of forests and fern classifiers is dom-

inated by the size of the posterior probabilities stored in

memory, which can become excessive when the number of

classes is large, or when the classifier must use a high num-

ber of ferns or binary tests to achieve a sufficient accuracy.

Furthermore, the classifier can easily deplete the CPU mem-

ory when using low-end hardware, or when the application

requires using large number of classifiers.

In this paper we exploit two different facts to obtain large

reductions in the memory consumption of ferns ensembles.

We demonstrate that ferns typically use a large number of

posterior probabilities that are non-essential to produce ac-

curate classifications. Furthermore, we also demonstrate

that a reasonable quantisation of the probabilities will usu-

ally have a neglectable effect in the prediction accuracy. Ex-

ploiting these facts we developed a method to post-process

the probabilities after the training that optimises their mem-

ory size. It is composed of the following parts, that also

summarize the main paper contributions:

• A method to quantise probabilities, reducing the mem-

ory space that they individually occupy.

• A highly efficient L0 regularised optimisation that dis-

cards elements in the ferns with a reduced contribution

to the classification margin error. Thanks to an ade-

quate linear transformation we can set to zero those

elements without degrading the prediction accuracy.

• A memory-friendly sparse container that maintains the

remaining elements in memory, so they can be used by

the classifier to emit predictions.

The optimisation is a selection procedure based on

TISP[23]. It can also be considered as a relaxation of the

multiclass margin error minimisation [10]. The L0 regular-

isation included in the proposed loss function ensures high

sparsity in the solution obtained. Commonly, costs that

include L0 regularisations tend to be difficult to optimise.

They use to be non-convex and have a large number of local

minima. However, the proposed optimisation is separable,

thanks to its simplicity. Each component of the solution can

be found using an efficient closed-form method. The opti-

misation can compress the memory size of ferns ensembles

that were trained using either generative or discriminative

procedures. In the latter case, due to the L2 regularisation

introduced in the Hinge loss function, ferns can have a cer-

tain degree of sparsity. However, as shown in the results

section our optimisation still produces large increases in the

sparsity without degrading prediction accuracy.

We evaluated the advantages and performance gain pro-

vided by the post-processing with generative and discrimi-

native ferns ensembles, performing tests for different kinds

of classification problems, and comparing the results ob-

tained with and without the compression. In these tests

we used publicly available model images and data-sets that

have been used previously in computer vision and machine

learning literature. For image patch recognition, our method

reduced the memory size in one order of magnitude. Mean-

while, it increased between 3 and 5 percentage points the

prediction accuracy. In this case the classification time re-

mained similar. The post-processing can also balance mem-

ory consumption, speed and accuracy, to provide, for ex-

ample, a classifier with a prediction accuracy equivalent to

the one obtained with the original ferns ensemble. In this

case the post-processing can decrease the prediction time

and obtain larger memory reductions. Sparse containers oc-

cupy a smaller amount of memory than regular ones when

the number of zero elements is sufficiently high. Due to

the extra indexing data that these structures have to main-

tain, the opposite can be true. If the ferns are not sparse

enough, the sparse structure can require more memory than

a regular dense container. This was the case for some clas-

sification problems in our tests where our proposal did not

provide ferns with enough sparsity. In these cases however,

the quantisation ensured a minimum memory reduction of

75%, as further discussed below.

1.1. Related work

The advantages of sparse model representations in terms

of improved performance, smaller memory footprint, and

fast access time have been exploited in different areas such

as machine learning [3] or 3D reconstruction [12]. Quan-

tisation techniques have been previously used in SVM to

speed up the training [17] and reduce the precision of the

classifier parameters in order to adequate them to specific

requirements of certain hardware architectures [2, 16]. To

the best of our knowledge this is the first proposal that pro-

vides large reductions in the memory consumption of ferns

ensembles by quantising and obtaining a sparse representa-

tion of the probabilities in the ferns for their efficient mem-

ory storage in a sparse container.

Different proposals improved and reduced memory con-

sumption of random forests and ferns ensembles. It is pos-

sible to optimise and balance memory consumption, speed,

and accuracy by adjusting the number of ferns and bi-

nary tests per fern [19]. Using more samples in the train-

ing can also improve classification time and accuracy [13].

The speed can also be optimized by selecting on demand

the number of trees that are consulted for each prediction

[21]. In [18] the authors combine random forests with sup-

port vector machines (SVM) performing a highly accurate

pedestrian detection. Each binary test is evaluated by a

SVM trained on a subset of the input features. Since the

proposed post-processing method reduces the size of ferns

in memory after the training and does not change the pre-

diction algorithm, it can be used in combination with any of

these techniques to obtain an improved performance.
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Visual recognition problems such as image patch clas-

sification have been commonly solved using image fea-

ture descriptors. Ferns combine a small prediction time

and high accuracy, that is competitive with the fastest bi-

nary descriptors[7, 25], with the invariance to rotations and

reasonable perspective deformations comparable to that of-

fered by more sophisticated descriptors such as SIFT and

SURF[26]. In [6] the authors showed that the response vec-

tor of ferns ensembles containing the predicted class prob-

abilities is usually sparse. They exploited this fact to com-

press the ferns in memory after the training using a random

projection sensing matrix. This way the ferns ensemble

does not produce a classification, but a reduced image de-

scriptor for each input image patch. However, this descrip-

tor is not invariant to certain transformations such as camera

rotations. A similar approach is proposed in [11] where the

authors introduced a variant of ferns ensembles for camera

relocalisation using RGBD images and on-line training. In

this approach the binary tests in the ferns are directly used to

produce a binary descriptor for each input key-frame. The

posterior probabilities become non-essential for the classi-

fication, and storing them in memory is not required at the

expense of sacrificing the prediction invariance. Our ap-

proach does not discard the posterior probabilities. After the

post-processing the predictions of the fern classifier will be

highly accurate and invariant to the usual transformations.

1.2. Structure of this document

Section 2 describes the generative and discriminative ap-

proaches for training ferns ensembles and introduces the

formulation that will be used in the following sections. Sec-

tion 3 describes the quantisation procedure that reduces the

individual memory size occupied by each probability value

after the training. Section 4 describes the method used to

obtain the sparse representation of the ferns probabilities.

Section 5 describes the efficient sparse storage used to take

advantage of both the sparsity and the quantisation, to store

the probabilities using a reduced amount of memory. Sec-

tion 6 provides experimental results that endorse the advan-

tages described for the algorithm. The paper concludes with

section 7 that reviews the main contributions and conclu-

sions of the paper.

2. Generative and discriminative ensembles

Each tree in a random forest typically evaluates nt binary

tests on a given input item that is presented for its classifi-

cation, being nt the depth of the tree. The combination of

binary values is used to retrieve a leaf in the tree, which is a

vector containing one estimated probability for each class.

Most implementations store the leaves of the trees in a ta-

ble L of size nf × 2nt × nc, being nf the number of trees

in the forest, and nc the number of classes predicted. The

forest can convert the binary values evaluated by each tree

into a number d and use it to index the leaves in this table.

The class c∗ for the input item is predicted using the list of

indexes d = {di}i=1..nf
generated by the trees in the forest

from the item as follows:

c∗ = argmax
k

nf
∑

i=1

Li,di,k (1)

Provided a training set of sample items labeled with their

corresponding valid classes, the training usually generates a

table A of size nf×2
nt×nc containing the number of times

each leave is associated to each class. With this matrix the

elements in L can be estimated as follows:

Li,j,k ≃
Ai,j,k

nc
∑

k=1

Ai,j,k

(2)

Each element Ai,j,k contains the number of training sam-

ples that are labeled with the k-th class, and simultaneously

have the i-th index value set to di = j.

2.1. Generative ferns training

With the naive Bayes scheme introduced by ferns ensem-

bles the class c∗ for a given input is inferred as follows:

c∗ = argmax
ck

P (ck|d1, d2, ..., dnf
) (3)

Estimating the probability P (ck|d1, d2, ..., dnf
) for each

class and possible combination of values for the indexes is

usually intractable. Assuming the statistical independence

of the indexes we can rewrite it as follows:

P (ck|d1, d2, ..., dnf
) =

P (ck)
nf
∏

i=1

P (di|ck)

P (d1, d2, ..., dnf
)

(4)

This approximation works adequately for classification

problems such as image patch recognition, and the probabil-

ities P (di|ck) and P (ck) can be computed from the matrix

of frequencies A as follows:

P (di = j|ck) ≃
Ai,j,k + δ

nc
∑

k=1

Ai,j,k + δ

, P (ck) ≃
2nt
∑

j=1

nf
∑

i=1

Ai,j,k+δ

(5)

Therefore, equation 3 becomes the naive Bayes rule:

c∗ = argmax
ck

P (ck)

nf
∏

i=1

P (di|ck) (6)

The non-zero constant value δ (normally set to δ = 1)

can be interpreted as a Dirichlet prior [20]. It should be

included to ensure that using equations 5 and 6 does not
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produce unstable results in the ferns ensemble predictions

due to the multiplicative nature of the Bayes aggregation.

To speed-up the classification of new inputs we can map the

probabilities to the logarithmic space. The evaluation of the

naive Bayes aggregation becomes identical to equation 1 by

computing matrix L as follows:

Li,j,k = logP (di = j|ck) +
1

nf

logP (ck) (7)

Commonly, matrix A will be highly sparse, as only few

classes in each leaf will be associated to training samples. In

random forests the matrices A and L will have zero values

at the same elements. Due to the δ increment in equations 5

the expression 7 will not produce zero values.

2.2. Discriminative ferns training

With the discriminative approach proposed in [13] each

fern in the ensemble is trained separately. The fern output

for each class is provided by a one-vs-all classifier, obtained

with a convex regularised Hinge loss optimisation similar to

the one used in the training of SVM. Hence the discrimina-

tive training solves nf×nk optimisations to produce matrix

L. After the training, the response of each fern for a given

training sample is close to 1 for the labeled class, and to 0
for the remaining classes. The training estimates the ele-

ments in each slice of matrix L for a given number of fern i
and class k:

li,k = (Li,1,k, Li,2,k, ..., Li,2nt ,k)

by minimising the following functional:

1

2
‖li,k‖

2 + C

ns
∑

u=1

[

1− yul
T
i,kbu

]

+
(8)

where [x]+ = max{x, 0} is the Hinge loss, and ns is the

number of training samples. The value yu is 1 if the label

for the u-th sample in the training set is equal to k, and zero

otherwise. The vector b of size 2nt contains zero values,

except for the value 1 at the element di. Due to the L2 reg-

ularisation in the optimised cost, the discriminative training

generates a L matrix with a certain amount of zero values.

However, as discussed further the sparsity in these leaves

can be increased with the proposed method.

3. Quantisation of values in the leaves

After the generative or discriminative training we scale

the values in matrix L with the following transformation:

L′
i,j,k = 2q

Li,j,k −min(L)

max(L)−min(L)
(9)

Given that it is linear, it will change the responses of the

ferns ensemble but not the results provided by the classifi-

cation rule in equation 1. In this expression q is a positive

non-zero value that represents the desired bit-depth of the

posterior probabilities. In our implementation after the lin-

ear transformation we round each value in L′ down to the

closest integer. This way we can store the values in the

leaves using a smaller amount of memory.

Typically the values in the leaves of ferns ensembles are

stored using a single-precision floating-point number that

occupies four bytes in memory [20, 13]. As we will show

in the results section, for a value of q = 8 the quantisation

round-off has a neglectable effect in the prediction accuracy

of the ferns ensemble. This way each element in the leaves

can contain up to 256 different values. Hence, we can store

each value in the leaves using a single byte in memory. With

a regular non-sparse storage this would represent a reduc-

tion of 75% in the memory space occupied by the leaves.

Next section discusses how to increment the number of zero

values in the leaves, so we can get even further memory re-

ductions for certain types classification problems using the

sparse storage.

4. L0 maximisation of valid responses

There will commonly be a few zero values in the matrix

L′ (in most occasions only one value). The proposed op-

timization will find a sparser version of this matrix, while

preserving weights in L′ that are both large and have a posi-

tive contribution to the classification success rate. Instead of

reducing the number of misclassified samples in the train-

ing set, as it is done in multiclass margin error optimisation,

our procedure aims to set to zero the largest amount of el-

ements in the leaves, while producing a zero, or minimal

decrease in the ensemble response to valid classifications in

the training set.

Formally, the method can be represented as the following

simple minimisation problem:

maximize
L∗

nf
∑

i=1

∑

(d,y)∈D

L∗
i,di,y

− λ‖L∗‖0 (10)

subject to L∗ � L′ (11)

The termD represents the set of training samples, the entry-

wise pseudo-norm ‖L∗‖0 evaluates the number of non-zero

elements in L∗, and � evaluates the smaller-than inequal-

ity between matrix elements. The constraint 11 ensures

that the optimisation will not increase values in L. For

λ > 0, with the L0 regularisation the solution obtained will

be sparse. The terms L∗
ijk are maximized, so that some of

the elements in L∗ will still have a high value close to the

original value in L′. The solution to this simple formulation

can be found using a closed-form method. For a given fern

number i = nf the following equivalence holds:

∑

(d,y)∈D

L∗
i,di,y

=

2nt
∑

j=1

nc
∑

k=1

Ai,j,kL
∗
i,j,k
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Thus the objective function 10 can be rewritten as follows:

nf
∑

i=1

2nt
∑

j=1

nc
∑

k=1

Ai,j,kL
∗
i,j,k − λu(L∗

i,j,k) (12)

where u(·) is the unit step function u(x) = {0 ∀x <
0, 1 ∀x >= 1} (or Heavyside function). This new form

of the objective function shows that the optimization prob-

lem is separable. The value for each element in the optimal

solution L∗ can be found by solving the following reduced

optimization problem:

maximize
L∗

i,j,k

Ai,j,kL
∗
i,j,k − λu(L∗

i,j,k) (13)

subject to L∗
i,j,k ≤ L′

i,j,k (14)

For L∗
i,j,k = 0 the value for the objective function 13 be-

comes zero. Otherwise, it is equal to Ai,j,kL
∗
i,j,k − λ.

Thanks to the constraint in equation 14 and the normali-

sation done in equation 9, the solution for the reduced prob-

lem can only be within the range 0 ≤ L∗
i,j,k ≤ L′

i,j,k. If

Ai,j,kL
′
i,j,k−λ ≤ 0 the objective function can only produce

zero, or negative values for any non-zero value of L∗
i,j,k. In

these cases, the optimal solution for the reduced problem is

L∗
i,j,k = 0. Otherwise, the objective function will produce

the maximum value for L∗
i,j,k = L′

i,j,k. A summarisation

of the sparsification algorithm can be found in algorithm 1.

A zero value in Ai,j,k implies Ai,j,kL
∗
i,j,k = 0. Hence

the corresponding element L∗
i,j,k in the leaves will have a

null or negative contribution to the margin error. By setting

λ to the smallest non-zero value in Ai,j,kL
∗
i,j,k:

λ0 = min
(

{Ai,j,kL
′
i,j,k, ∀Ai,j,k 6= 0}

)

(15)

the optimisation will eliminate only those elements in the

leaves that have zero contribution to correct classifications.

Maximizing 10 is equivalent to minimising a simplified

version of the empirical loss for multiclass margin classifi-

cation, such as 2 in [10]. Equation 10 represents the sum

of responses to valid classes for the training samples, pro-

duced by 1, minus a L0 regularisation. Maximising it will

produce a classifier with high responses to the valid classes

for the training samples. This will provide a configuration

with a low value in the margin loss optimised in multiclass

margin classification. By not involving the responses to in-

correct classes in 10, the sparsification will not provide a

classifier with optimal training error. However, it allows for

a fast closed-form solution with highly accurate empirical

results, as discussed in section 6.

Furthermore, for λ = λ0 the training error is ensured

to remain equal or smaller after the sparsification, as only

those elements L′
ijk for which Aijk is zero are eliminated.

Each element Aijk contains the number of times the cor-

responding term L′
ijk is added to the response of a valid

class in equation 1. If Aijk = 0, the term L′
ijk will never

be added to the valid class response of any training sam-

ple. Decreasing them to zero will not increase the response

to invalid classes for the training set, while valid responses

will remain the same.

Algorithm 1 Leaves sparsification algorithm

Inputs:

nf , nl, nc ← Number of ferns, leaves per fern, and num-

ber of classes in the classifier.

L′, A← Posterior probabilities and counts in leaves.

λ← Sparsification parameter.

Output:

L∗ ← Sparse matrix of leaves values.

for i = 1..nf , j = 1..nl, k = 1..nc do

if Ai,j,kL
′
i,j,k ≥ λ then

L∗
i,j,k = L′

i,j,k

else

L∗
i,j,k = 0

end if

end for

5. Efficient storage for sparse ferns

The sparse structure stores each leave in matrix L∗ as

a list that contains the non-zero posterior probabilities for

each class. For indexing purposes, each entry in the list

must also store the class number for the value. Our imple-

mentation assumes that the ferns ensemble will emit predic-

tions for less than 216 classes. This way, the class number

for each element in the list can be stored in a 16-bit integer

that occupies another extra two bytes, adding up to a total

of three bytes per non-zero element in L∗. In contrast, the

original implementation of ferns used 4 bytes to store each

value as a floating point number. Our sparse implementa-

tion must also keep an array of size nc × n2t , containing

pointers to the initial position of each leaf in L∗ for its fast

retrieval.

When the number of zero elements is too small, sparse

storage structures are known to consume more memory, and

have larger retrieval times than dense ones due to the ex-

tra indexing of the sparse data. Thanks to the quantisation

our sparse structure will usually require a smaller amount

of memory than the original dense storage for sufficiently

large classification problems, even when the sparsity in L∗

is close to zero. When the sparsity is sufficiently high,

the classification time is also equivalent or smaller than the

time required to access the dense structure with the original

dense matrix.
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Sample model images.

(a) bikes (b) wall (c) graffiti

Sample images used for validation of graffiti.

Figure 1: Sample images for training and validation used in

our tests for image patch classification.

6. Results

We performed experiments comparing classification

time, prediction accuracy, and memory usage of classi-

cal ferns ensembles with and without the proposed post-

processing. In this section we show the most representa-

tive results. The first subsection describes results for im-

age patch classification, and the second results obtained for

other kinds of classification problems. Results not included

in these sections can be found in the additional material.

6.1. Image patch classification

We replicated the experimental setup used in [20, 19] to

evaluate the performance of fern classifiers for image patch

recognition. In our tests we used several model images,

most of them from the Oxford1 and CallTech2 image repos-

itories. This section shows representative results of the per-

formance evaluation obtained for three model images: bikes

(figure 1a), wall (difficult classification of features with high

visual similarity, figure 1b), and graffiti (using real images

to measure validation error, figure 1c). The results for the

rest of model images are equivalent to those herein provided

and can be found in the additional material.

We trained ferns ensembles using a generative proce-

dure to recognise 400 features detected in each one of these

images, using 4000 synthetically generated random affine

views. This section does not include results for discrimi-

native ferns due to the large training time in these exper-

iments, as further discussed below. To simulate real im-

age noise we added a Gaussian error to each pixel in these

training images, and blurred them with a box filter of size

3 × 3. We fixed the number of ferns in each ensemble to

nf = 25, and evaluated the binary tests inside an image

patch of 32× 32 pixels centered at each key-point location.

1http://www.robots.ox.ac.uk/ vgg/data/data-aff.html
2http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html

We evaluated the experiments for different numbers of tests

per fern (nt = 10..13). Using nt = 13 we obtained re-

sults equivalent to those obtained with larger fern depths,

for most data-sets in our tests. We executed the sparsifica-

tion method proposed in section 4 for different increasing

values of the λ parameter starting from zero. For each λ
value we measured the memory size and the classifier pre-

diction accuracy.

Prediction error vs memory consumption. Figures 2a,

2b and 2c show results of experiments where the classifiers

were trained using the model images bikes, wall, and graffiti

respectively. For the first two images the prediction accu-

racy was measured using 1000 random affine views of the

model image, that were generated for validation purposes

only. We evaluated the prediction error in the plot 2c using

40 validation images taken with a real camera. The model

image was printed and captured in these validation images

from different points of view (some of them can be seen at

the two bottom row of figure 1).

When λ is close to zero both the memory consumption

and prediction accuracy tend to be high. Conversely, for

sufficiently large values of λ the memory consumption is

reduced at the expense of increasing the error. The middle

marker in each line shows the point where the sparsification

eliminated all the elements in the leaves with zero contri-

bution to the correct responses of the ferns ensemble for

the training set. This is the point where the λ parameter is

equal to λ0 from equation 15. We obtained the peak predic-

tion accuracy at this point for the largest number of tests per

fern evaluated (nt = 13 in our experiments). This peak ac-

curacy was better than the best accuracy obtained with the

original ferns ensemble in several percentage points, for all

the model images used in the experiments.

As shown in figure 2a and table 3 the best prediction er-

ror obtained with sparse ferns for the model image bikes was

6.1%, and the ferns ensemble occupied 26.6Mb in memory.

The original ferns ensemble classifier provided a classifica-

tion error rate of 13.7% for a configuration that consumed a

similar amount of memory (39.1Mb with nt = 10). Mean-

while, the original ferns obtained a best prediction error

of 9.9% for the same model image, consuming 312.5Mb

of memory (with nt = 13). This shows two important

facts. On the one hand, redundant elements occupied a

large amount of memory (89.2% for nt = 13 for bikes, as

seen in the table). Secondly, discarding these elements in-

creases the classification success rate of the ferns ensemble

(in 3.8% for bikes), and can provide reductions of around

90% in memory size. A similar analysis can be done for the

results obtained with the rest of the model images.

We can also increase λ from this point to decrease the

validation accuracy down to a certain minimally acceptable

level. This way we can further reduce the memory con-
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Figure 2: Comparison of memory occupied by sparse container vs. mean error and 95% confidence margin for 100 random

ferns ensembles, compressed using different λ values. The second marker in each line indicates the point where λ = λ0.

sumed by the classifier. As λ increases the method discards

more elements in L that have positive, but small contribu-

tion to valid classification responses for the training sam-

ples. The optimisation of the error in equation 10 allowed

a controlled reduction of the memory consumption, at the

expense of decreasing the prediction accuracy. For exam-

ple, we can configure the λ parameter to obtain a valida-

tion error with the sparse classifier similar to the error of

the original ferns. This way, the memory size of the ferns

ensemble trained with the bikes image and nt = 13, is re-

duced down to 13.6Mb of memory, while the classifier still

provides a validation error of 9.2% (smaller than the best

error obtained with the original classifier). This represents

an extra 50% memory reduction.

Influence of quantisation in prediction error. The plot

in figure 3 shows that the quantisation produces a ne-

glectable impact on the classifier success rate for a num-

ber of significant bits around 8. Furthermore, thanks to

the quantisation and the optimal memory usage of the in-

dexing data, storing the ferns in the sparse structure occu-

pies a small amount of memory, even if we account for the

indexing data. For these experiments our sparse container

requires less memory than the dense container used in the

original ferns implementation, even when L∗ contains a few

zero values (no discarding of elements).

In our experiments the generative training provided L
matrices that contain less than 1% zero elements. Storing

the quantised values in a dense container will require a 25%
of the original memory size. In most of these examples,

given the small number of classes for these data-sets this is

less memory than using the sparse container. The quantisa-

tion did not degrade the prediction accuracy for the classifi-

cation problems evaluated.

Prediction time vs memory consumption. Figure 4

compares the average time required to obtain the posterior

probabilities for the image patches using the original ferns

10 9 8 7 6 5 4
Number of significant bits

8

10

12

14

16

18

Va
lid

at
io
n 
er
ro
r r
at
e 
(%

) bikes boat1 graffiti

Original ferns Post-processed leaves

nt Error Size Error Size (*) Sparsity

10 13.7 39.1 12.3 12.0 59.5

11 11.3 78.1 8.9 16.6 72.1

12 10.2 156.3 7.0 21.6 82.1

13 9.9 312.5 6.1 26.6 89.2

Figure 3: Top: validation error for ferns ensembles using

different quantisation levels, trained with nt = 13 tests

per fern using several model images. Bottom: error, size

(in megabytes) and sparsity obtained for the model image

bikes with the generative fern implementation, before and

after the elimination of non-contributive elements with the

sparsification method. (*) probabilities were quantised and

stored in memory using the sparse container.

ensemble and the sparse ferns ensemble after the compres-

sion. The tests were executed on an Intel Core i3 with 3GHz

and 4Gb of memory, using a single CPU core. When the

sparseness is sufficiently high, the prediction time is equal

or smaller than using the original classifier. In the examples

previously discussed for the model image bikes, using the

sparse container does not affect (for λ = λ0) or even im-

proves the prediction time (for larger values of λ), given the

small number of non-zero elements that have to be accessed

in each leave to make the prediction.
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Original ferns Post-processed leaves

Generative Discriminative Generative Discriminative

Image Tests Error Size Error Size (*) Sparsity Error Size (*) Sparsity Error Size (*) Sparsity

glass

4 36.9 9.5 36.0 9.5 31.0 34.6 5.0 64.0 35.0 5.0 64.0

6 32.7 37.6 33.6 37.6 58.4 30.8 13.7 85.0 31.8 13.7 85.0

8 33.6 150.1 32.7 150.1 83.8 30.8 43.0 95.2 33.2 43.0 95.2

ionosphere

4 16.5 3.2 17.1 4.8 7.6 15.1 4.6 8.5 16.2 4.6 8.5

6 12.5 12.6 12.3 18.9 29.1 10 15.1 40.4 10.0 15.1 40.4

8 13.7 50.1 12.5 75.1 63.3 12.3 46.9 75.3 12 46.9 75.3

wine

4 7.3 4.8 9.6 6.0 14.1 7.3 4.5 43.2 6.7 4.5 43.2

6 4.5 18.8 6.2 23.6 46.0 3.9 13.2 73.8 4.5 13.2 73.8

8 3.4 75.1 3.9 93.9 77.0 3.9 42.9 90.5 2.8 42.9 90.5

ecoli

4 21.4 12.6 30.7 11.8 41.6 20.5 4.8 74.9 22.0 4.8 74.9

6 18.2 50.1 18.2 47.0 68.4 16.7 13.0 90.7 16.1 13.0 90.7

8 15.5 200.1 16.1 187.6 85.1 15.8 42.7 96.7 14.6 42.7 96.7

Table 1: Comparison of memory size (in kilobytes), leave-one-out cross-validation error, and sparsity for different classifi-

cation problems. The table shows the results obtained using generative and discriminative ferns ensembles, before and after

the post-processing. (*) probabilities were quantised and stored in memory using the sparse container.

In our experiments the generation of the matrix A in the

training usually required between 3 and 4 seconds. Depend-

ing on the number of tests per fern nt, obtaining the matrix

L of posterior probabilities with the generative ferns train-

ing took between 1 and 12 seconds, and the sparsification

took between 0.5 and 2 seconds.

Each regularised Hinge loss optimisation in the discrim-

inative training involved more than a million samples and

210 variables, taking more than a minute to find the solution

using a standard sparse SVM implementation. Training a

single discriminative ferns ensemble would hence require

more than 400 × 25/60 ≃ 160 hours for the current setup

used in our tests for image patch classification. For this rea-

son this section does not include results for discriminative

ferns. Next section shows results with smaller classification

problems comparing generative and discriminative ferns.

6.2. General classification problems

Table 1 shows results of experiments were we used sev-

eral publicly available data-sets from the UCI repository3.

Each one of these data-sets contains the samples and labels

for a different kind of classification problem. These data-

sets have less than 1000 samples and 10 classes each. The

features in these data-sets were normalised for the experi-

ments, so they have zero mean and unit variance.

The size for the discriminative ferns shown in table cor-

responds to quantised values that were stored in the sparse

container. This is done to compare the memory occupied

by the discriminative classifier before and after our sparsi-

fication, when it is stored in the sparse container. The dis-

criminative training produced a significant number of zero

3http://archive.ics.uci.edu/ml/

elements. However, our method provided a much higher

sparsity.
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Figure 4: Average time per prediction with generative ferns

before and after the post-processing. The classifier was

trained using the model image bikes.

7. Conclusions

We demonstrated that ferns ensembles typically contain

a large number of elements that can be discarded without

harming prediction accuracy. Likewise we can quantise the

remaining elements using a reasonable bit depth and have a

high classification performance. We provided empirical re-

sults showing the large memory reductions achieved by ex-

ploiting these facts for generative and discriminative ferns

ensembles. In the future, optimisations like the present will

permit new applications using low-end hardware with strict

memory restrictions, such as visual navigation and recogni-

tion using micro-robots or light-weight wearable devices.
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