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Abstract

Single image super-resolution is an important task in the

field of computer vision and finds many practical applica-

tions. Current state-of-the-art methods typically rely on ma-

chine learning algorithms to infer a mapping from low- to

high-resolution images. These methods use a single fixed

blur kernel during training and, consequently, assume the

exact same kernel underlying the image formation process

for all test images. However, this setting is not realistic for

practical applications, because the blur is typically different

for each test image. In this paper, we loosen this restrictive

constraint and propose conditioned regression models (in-

cluding convolutional neural networks and random forests)

that can effectively exploit the additional kernel informa-

tion during both, training and inference. This allows for

training a single model, while previous methods need to be

re-trained for every blur kernel individually to achieve good

results, which we demonstrate in our evaluations. We also

empirically show that the proposed conditioned regression

models (i) can effectively handle scenarios where the blur

kernel is different for each image and (ii) outperform re-

lated approaches trained for only a single kernel.

1. Introduction

Single image super-resolution (SISR) is a classical prob-

lem in computer vision and has attracted a lot of attention in

recent years. The task is to recover a high-resolution image

h given the corresponding low-resolution image l. These

two quantities are related as

l = ↓(k ∗ h) , (1)

where k is a blur kernel, ∗ denotes the convolution operator,

and ↓ the down-sampling operator. The problem is inher-

ently ill-posed as a single low-resolution image can map to

several high-resolution images. One way to tackle this prob-

lem is by assuming some prior on the high-resolution im-

age h, e.g., smoothness [10, 30], or by learning a mapping

from low- to high-resolution in a data-driven manner. The

(a) Original (b) Bicubic: 32.15, 2.88

(c) A+ [28]: 32.60, 3.11 (d) SRF-CAB: 36.59, 5.61

Figure 1: Low-resolution images can underlie different blur

kernels in their formation process and should be treated ac-

cordingly [18]. This figure illustrates the effect of a wrong

blur kernel assumption on the super-resolution quality (the

original blur kernel is depicted in the top left corner of (a)).

Not only standard bicubic upscaling but also state-of-the-art

methods like [28] trained on a wrong kernel yield clearly in-

ferior results (PSNR and IFC [26] are given) compared to

our conditioned regression model (SRF-CAB).

latter approach is typically used in recent state-of-the-art

methods, where dictionary learning approaches [28], ran-

dom forests [24], or neural networks [6] are employed.

SISR can be divided into two different sub-problems.

First, blind super-resolution algorithms consider k and h

unknown and try to recover both quantities from the low-

resolution image l. Second, non-blind super-resolution al-

gorithms assume k to be known and only recover h from
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both k and l. There exist only a few works on blind super-

resolution [12, 18, 27, 31] and most of them focus on recov-

ering the blur kernel k and use existing non-blind methods

for the final super-resolution step. Such a two-step strategy

is also advocated for general deconvolution because a joint

recovery of k and h is often hard and yields suboptimal re-

sults for the finally desired high-resolution image h [17].

Thus, a non-blind super-resolution algorithm should be

able to effectively handle low-resolution images underlying

different blur kernels. There exist SISR methods that can in-

corporate any (also previously unseen) blur kernels during

inference. Most of these methods rely on the re-occurrence

of patches within the image and across scales, e.g., [11, 13],

and do not require any training phase. These approaches

work remarkably well on repetitive structures but do not

achieve state-of-the-art results on natural images [13]. The

currently best performing methods in non-blind SISR typi-

cally rely on machine learning techniques to directly learn a

mapping from low- to high-resolution images from a large

corpus of training data [6, 24, 28, 29]. One problem though

is that all these methods not only assume the blur kernel k

to be known, but also to be equal for all training and test im-

ages. Thus, these methods are designed for a single blur ker-

nel only, e.g., bicubic or an isotropic Gaussian with a fixed

kernel width. Adapting these methods for different blur ker-

nels almost always requires a separate training phase of the

model. This can take a long time, ranging from several min-

utes [24] to even days [6]. To recap, effectively upscaling a

single image with a given, but previously unseen blur kernel

would require a separate training phase, which is obviously

impractical for real-world applications.

In this work, we analyze recent learning-based meth-

ods [6, 24, 28, 29] for the task of non-blind SISR without

the assumption of a fixed blur kernel for each image during

inference. We present adaptations to these machine learn-

ing based methods, such that they can be conditioned on a

given blur kernel k during both, training and inference. In

particular, we focus on a convolutional neural network and

a random forest formulation and show that both can effec-

tively incorporate the blur kernel k. An illustrative example

is shown in Figure 1.

In our experiments, we first confirm previous results on

the importance of using the right blur kernel during infer-

ence [7] and show that even state-of-the-art methods break

down if the wrong blur kernel is assumed. We also demon-

strate that the proposed conditioned models can handle a

large set of varying blur kernels, while other methods would

have to train models for each single blur kernel. More-

over, the conditioned model almost achieves the same per-

formance as models solely trained for one particular blur

kernel and significantly outperforms other learning-based

models trained for a single blur kernel.

2. Related Work

The problem of upscaling images has a long history in

computer vision. This field can be roughly divided into

two main branches. First, we have super-resolution meth-

ods that rely on multiple images of the same scene, which

are either aggregated from a multi-camera setup or a video

sequence [8, 25]. Most methods in this branch rely on the

sub-pixel accurate alignment of the images in order to in-

fer the values of missing pixels in the high-resolution do-

main. In this paper, we focus on the second branch of super-

resolution algorithms, which try to find a high-resolution

image from a single low-resolution image, i.e., single im-

age super-resolution (SISR) [10, 11].

A further distinction of super-resolution algorithms can

be done by differentiating between the blind and the non-

blind setup. As already mentioned in the introduction, blind

super-resolution algorithms typically try to infer both, the

unknown blur kernel k and the high-resolution image h.

This task is often addressed in two-step scheme. First, the

unknown blur kernel k is estimated from l and then, a non-

blind super-resolution algorithm is employed for doing the

actual image upscaling with the given blur kernel. Such a

scheme is also advocated for image deconvolution [17].

Non-blind super-resolution is a highly active field and

numerous algorithms appear every year. An influential

work is that of Glasner et al. [11] who exploit the assump-

tion that small patches often re-occur within the same im-

age and across different scales. A very recent extension of

this type of super-resolution methods is proposed in [13],

which even uses affine transformations to find re-occurring

patches. While these models can incorporate any given

blur kernel on the fly during inference and perform well on

repetitive structures, they are not state-of-the-art on natural

images [13] and are typically slow.

The currently best performing approaches for SISR are

based on different machine learning principles to directly

learn a mapping between the low- and the high-resolution

domain from a large set of training images. Dictionary

learning approaches [33, 34] train coupled dictionaries in

both domains to effectively represent the training data. Dur-

ing inference, low-resolution images are coded with the

low-resolution dictionary (e.g., sparse coding [21]). Due to

the coupling of both domains, the same code is re-used to

reconstruct the high-resolution data with the high-resolution

dictionary. Neighborhood embedding approaches [2, 3] go

without learned dictionaries and directly use all the train-

ing data for coding. Based on these two approaches, several

models emerged that replace the slow coding step with a

locally-linear regression. Locality is established either via

a flat codebook [28, 29] or a hierarchical structure in a ran-

dom forest [24]. Dong et al. [6] present a convolutional

neural network for SISR which is very fast during inference

and also achieves good results, similar to [24, 28].
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However, all these learning-based approaches focus on a

restrictive setup where a single blur kernel is fixed for both,

training and testing phases. This is unrealistic in real-world

scenarios [18] because the blur kernel is typically differ-

ent for every test image. Assuming a wrong blur kernel

during inference can lead to poor results as shown in Fig-

ure 1, c.f . [7]. In the field of image deconvolution, this is

actually the standard setup and many different approaches

exist to handle varying blur kernels during inference. The

current state-of-the-art for this task also employs learning-

based models, e.g., shrinkage-fields [22], cascaded regres-

sion tree fields [14, 23], or fields of experts models [4].

However, these models are typically tailored towards im-

age deconvolution and are often hard to adapt to SISR. In

this work, we address the scenario of varying blur kernels

for image upscaling and extend existing SISR models to be

conditioned on and effectively handle a given blur kernel

during inference.

3. Conditioned Regression Models

In this section we propose our extensions to recent state-

of-the-art methods in order to handle low-resolution im-

ages underlying different blur kernels within a single model.

Thus, the task is to recover a high-resolution image h given

the low-resolution image l and the blur kernel k, where k is

different for each image. A straight-forward approach is to

simply increase the number of the training images by con-

volving each training image with several different blur ker-

nels, train the individual methods without any further mod-

ification and ignore k as input during inference. This as-

sumes that the models inherently learn to differentiate blur

kernels only from the low-resolution images and, thus, have

to be regarded as blind super-resolution methods. In the re-

mainder of this work we will name such methods with the

suffix AB (all blur kernels). In contrast to this, we show how

to extend existing methods to be conditioned on a blur ker-

nel as an additional input. Such models will subsequently

have the suffix CAB (conditioned; all blur kernels).

All methods have in common that they are trained on

patches, or sub-windows. We define the i-th low-resolution

training patch as x
(i)
L and the corresponding blur kernel and

high-resolution patch as k(i) and x
(i)
H , respectively. The set

of high-resolution patches is defined as XH = {x
(i)
H }Ni=1.

Similarly, the set of low-resolution patches and correspond-

ing blur kernels are denoted as XL = {x
(i)
L }Ni=1 and Xk =

{k(i)}Ni=1, respectively.

3.1. The Basic Conditioning Model

The current state-of-the-art in non-blind SISR are learn-

ing based methods. To make the output space tractable,

methods such as global regression (GR) [29], anchored

neighborhood regression (ANR) [29], A+ [28], and super-

resolution forests (SRF) [24], perform learning and infer-

ence on small patches x
(i)
L , rather than on the complete

image. These methods all predict an estimate x̂
(i)
H of the

high-resolution patch x
(i)
H given the corresponding low-

resolution patch x
(i)
L of an image.

Further, they utilize the patches in vectorized form, i.e.,

the input is of the form R
h·w rather than R

h×w, with h and

w being the height and the width of the patch, respectively.

This distinction seems to be obvious, but it enables us to

stack a vectorized blur kernel k(i) to the individual low-

resolution patches x
(i)
L . This already gives us the basic form

of conditioning those methods, both during training and in-

ference. Instead of only utilizing the low-resolution sam-

ples XL for training, we concatenate the input samples with

the blur kernels k(i). Therefore, the new input samples are

given by XL,k = {x
(i)
L,k}

N
i=1, with x

(i)
L,k = [x

(i)
L , k(i)]⊤.

Because only the input changes in the basic conditioning

model the above mentioned methods can be used without

further adjustments. We refer the reader to the individual

works for more details on the training and inference proce-

dures. In the next two sections we show how to exploit the

special structure of SRF [24] and SRCNN [6] to condition

them on a blur kernel k in a more effective way.

3.2. Conditioned SuperResolution Forest

Super-resolution forests [24] is a recently proposed

model achieving state-of-the-art results for SISR. The basic

idea of SRF is to model the super-resolution problem di-

rectly as a locally linear regression problem, which can be

seamlessly addressed with random regression forests hav-

ing multi-variate linear leaf node models. We refer to [24]

for more details. While SRF can also be conditioned by the

basic model explained above, the tree structure of the ran-

dom forest enables us to incorporate a blur kernel k more

tightly. We especially focus on the quality measure Q that

is utilized to greedily optimize the split function σ of a split

node. In the original work of [24] this measure is defined as

Q(σ, θ, XH, XL) =
∑

c∈{Le,Ri}

|XcL|E(XcL, X
c
H) , (2)

where | · | defines the cardinality of a set, θ are the parame-

ters of the split function that divides the samples XL and tar-

gets XH into a left and right branch, with corresponding data

X
Le
{L,H} and X

Ri
{L,H}, respectively. Further, the purity measure

E is defined as

E(XL, XH) = |XL|
−1

|XL|∑

i=1

||x
(i)
H − x̄H||

2
2 + κ1||x

(i)
L − x̄L||

2
2 ,

(3)

where x̄H and x̄L are the means of the target (high-

resolution) and input (low-resolution) samples, respec-
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tively. As suggested in [24], the purity measure E thus cor-

responds to a reduction in variance on both domains (high-

and low-resolution) and κ1 is a trade-off parameter.

In this work, we extend the above described quality mea-

sure for conditioned regression by introducing an additional

regularization on the blur kernel:

Ec(XL, Xk, XH) = E(XL, XH) + κ2|Xk|
−1

|Xk|∑

i=1

||k(i) − k̄||22 .

(4)

Using this term we can enforce a reduction in variance in

terms of the blur kernels. This follows the intuition that

low-resolution patches x
(i)
L generated by the same blur ker-

nel k should reach similar leaf nodes. As a consequence,

the leafs become purer, which typically results in a better

reconstruction of the high-resolution patches.

Additionally, we extend the regression model in the leaf

nodes to a conditioned regression

x̂(xL, k) = Wp · xL +Wk · k = Wp,k · xL,k , (5)

where x̂ is the estimated high-resolution patch. Wp and Wk

are the weight matrices of the regression and can be com-

bined to a single regression matrix Wp,k.

The training and inference of the conditioned SRF re-

main unchanged and we refer to [24] for more details.

3.3. Conditioned SuperResolution CNN

Another method for SISR is the super-resolution CNN

(SRCNN) [6], which is motivated by the recent success of

deep learning [16]. The network consists of three convolu-

tional layers, whereas the first two are followed by a recti-

fier linear unit (ReLU(x) = max(0, x)) [20]. Although the

network is also trained on (larger) patches, the inference is

conducted on the whole image. This avoids the averaging

step of individually estimated high resolution patches.

The special structure of a CNN architecture is not suited

to directly concatenate low-resolution patches x
(i)
L with a

blur kernel k(i). One possibility would be to rewrite the

CNN in terms of a fully-connected network by replacing

the convolutions with inner products. With this approach

we would again have to infer the high-resolution image ĥ

on densely extracted patches and average them. Therefore,

we propose another way to condition the SRCNN on an ad-

ditional blur kernel input.

The SRCNN [6] computes an estimate of a high-

resolution image ĥ given a low-resolution image l as

F1(l) = ReLU(W1∗ ↑b l +B1) , (6)

F2(l) = ReLU(W2 ∗ F1(l) +B2) , (7)

ĥ = W3 ∗ F2(l) +B3 , (8)

Figure 2: For our conditioned SRCNN we replace the first

convolutional layer with a parameterized convolution. The

constant convolution weights W1 in the first layer are re-

placed with a non-linear function W1(k, θ). This makes

the filter weights dependent on an additional blur kernel

input k. The function itself is realized via an extra, fully-

connected neural network that is trained jointly with the

SRCNN.

where Fi are multi-dimensional feature maps dependent

on the low-resolution input and ↑b denotes a bicubic up-

sampling operation. Wi and Bi are convolutional and bias

weights, respectively.

In a vanilla CNN, the weights of the convolutional fil-

ters are learned, but fixed at inference, independent of the

input. We extend this formulation by replacing the constant

weights with a parameterized weight function W (k, θ) that

depends on learnable parameters θ and on some input k.

Therefore, we change the definition of the first layer to

F1(l) = ReLU(W1(k, θ)∗ ↑b l +B1) . (9)

The only difference to Equation (6) is the parameteriza-

tion of the weights W1(k, θ), which can now be an arbi-

trary function. A natural choice is to again utilize a neu-

ral network. This allows us to train the complete network

end-to-end and let the network itself decide which filters are

suitable for what kind of blur kernel. We employ a simple

feed-forward network with a single hidden layer consisting

of 2048 neurons. An overview of our complete network ar-

chitecture is depicted in Figure 2.

For training the CNN we follow the procedure outlined

in [6]. The network is implemented by extending the Caffe

framework [15] for the parameterized convolution.

4. Experiments

In our experiments we analyze the effectiveness and per-

formance of the proposed conditioned regression models for

SISR on standard benchmarks. We first describe the exper-

imental setup and the generation process of blur kernels be-

fore we present our main results on non-blind SISR.

4.1. Experimental Setup

We analyze and compare our proposed conditioned re-

gression models for recent works in SISR, including global

regression (GR) [29], anchored neighborhood regression
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(ANR) [29], SRCNN [6], A+ [28], and super-resolution

forests (SRF) [24]. For GR, ANR, and A+, we reuse the

same settings as described in the papers [28, 29]. The SRF

is trained with 10 trees to a maximal depth of 12, κ1 = 0.01
and κ2 = 10. The SRCNN is also parameterized as de-

scribed in [6], except for our conditioned SRCNN (SRCNN

CAB). In this case we utilize the proposed parameterized

convolution in the first layer, see Section 3. If not stated

otherwise, we employ the same set of parameters for all

methods throughout the experiments. For training all our

models, we always use a set of 91 images that were also

used in [28, 29, 34]. For testing, we use the following stan-

dard benchmarks: Set5 (5 images) and Set14 (14 im-

ages) from [29, 34], and BSDS (200 images) [1].

All methods build upon the same framework for image

upscaling: A given low-resolution image Ilow is first con-

verted into the YCbCr color space and is upscaled to the

size of the desired high-resolution image via standard bicu-

bic interpolation. While the resulting image Imid already

has the desired size, high-frequency components are miss-

ing and is thus referred to as mid-resolution. As the human

visual perception is more sensitive to changes in intensity

than in color [29], the high-frequency components Ihf are

only added on the Y channel of the mid-resolution image.

This yields the final estimate Ihigh = Imid + Ihf . One

exception is SRCNN [6] that directly predicts Ihigh from

Imid. The high-frequency estimate Ihf (or Ihigh for SR-

CNN [6]) is computed by the actual restoration model based

on features (or raw data for SRCNN) extracted from Imid.

For comparing the final output of different methods, we

use the peak signal to noise ratio (PSNR), which is the most

often used metric for such applications. We also include the

IFC score [26], which has a much higher correlation with

the human perception than PSNR [32].

4.2. Generating Blur Kernels for SuperResolution

In order to evaluate the proposed non-blind super-

resolution models, we require a set of realistic blur kernels

for the image formation process. Existing methods to gen-

erate the ground truth blur kernels (e.g., [9, 18, 19]) are typi-

cally slow and take several minutes per image, making them

impractical to build a large corpus of training data. Here,

we choose a Gaussian probability density function N (0,Σ)
with zero mean and varying covariance matrix Σ to repre-

sent the space of kernels. More precisely, we fix the size of

the kernels to 11× 11, allow rotation of the eigenvectors of

Σ between 0 and π and scaling of the corresponding eigen-

values between 0.75 and 3. The rotation angle and the scal-

ing fully define our space of blur kernels. Figure 3 shows 58
representative kernels uniformly sampled from this space.

While a single 2D anisotropic Gaussian may seem too

simplistic, it is a reasonable assumption for the super-

resolution problem (in contrast to image deblurring or de-

Figure 3: Visualization of the 58 blur kernels used in our ex-

periments (normalized for better presentation). The kernels

used in Section 4.3 are highlighted with a green border.

(a) Original (b) SRF, k1: 34.52, 7.79

(c) SRF, k2: 25.99, 4.25 (d) SRF-CAB: 34.13, 7.03

Figure 4: (a) depicts the high-resolution image h. The cor-

responding low-resolution image l was created with k1 (top

left corner). (b-c) show the up-sampling result obtained

by the SRF, which was trained on k1 and k2, respectively.

(d) presents the result of our proposed conditioned SRF. The

image is taken from [24] and the upscaling factor is 2.

convolution). When looking at [19], we see that most es-

timated kernels are actually unimodal and can typically

be modeled with a Gaussian. We also note a recent

SISR benchmark addressing the issue of different blur ker-

nels [32]. While this benchmarks still assumes a fixed-blur-

kernel during testing, it models the kernels only as a 2D

isotropic Gaussian, which is already considered reasonable

for this task. Finally, we should also note that all models

presented in Section 3 are learning-based and not restricted

to or modeled towards these kind of kernels. Thus, if other

distributions of blur kernels prove to be more reasonable, it

is easy to re-train our models for the new distribution.

4.3. Learning for the Right Blur Kernel is Essential

In this section we highlight the importance of learning

for the right blur kernel, thus extending previous results pre-

sented by Efrat et al. [7] with recent state-of-the-art SISR
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Method k1 k2 k3 k4

ANR [29] k1 35.45 29.74 31.95 32.07

k2 26.38 32.78 29.93 29.35

k3 30.35 31.20 34.10 31.61

k4 30.55 31.03 31.84 33.95

A+ [28] k1 36.22 29.66 32.03 32.15

k2 25.89 33.46 29.36 29.19

k3 29.56 31.29 34.96 31.41

k4 29.70 31.09 31.31 34.82

SRCNN [6] k1 36.29 29.72 32.17 32.26

k2 15.51 35.47 18.35 22.50

k3 26.30 31.64 35.68 29.73

k4 23.69 31.60 27.80 35.93

SRF [24] k1 36.24 29.75 32.13 32.24

k2 25.52 33.66 29.33 28.97

k3 29.72 31.41 34.97 31.51

k4 29.75 31.27 31.60 34.88

SRCNN-CAB - 32.38 32.56 33.20 33.28

SRF-CAB - 35 .40 32 .89 34 .10 34 .09

Table 1: Results for Set5 and upscaling factor 2 when us-

ing different blur kernels during training and evaluation.

methods. We select four different kernels, highlighted green

in Figure 3, which are representative for our kernel space.

In Table 1 we compare four state-of-the-art methods

(ANR [29], A+ [28], SRCNN [6], and SRF [24]) and train

each method on the 4 selected blur kernels k1,...,4. We thus

get 16 models corresponding to the first 16 rows in the table.

Then, we evaluate each model four times on Set5, each

time blurred with one of the 4 kernels k1,...,4 and down-

sampled. The results are stated as mean PSNR value for an

upscaling factor of 2 in the columns of the table. We can ob-

serve the expected result: Models trained for the blur kernel

also used during testing achieve the best results. However,

we can also see that the results significantly drop if we eval-

uate a method trained on ki and evaluate it on images con-

volved with kj (i 6= j). An illustrative example is SRCNN,

which achieves the best overall results but also shows the

most pronounced score drops for different kernels.

For comparison, we include results of two of our ex-

tensions that exploit the full set of blur kernels in a single

model (CAB). These models are described in Section 3 in

more detail. As expected, non of these models outperform

the specialized trained models, but they are significantly

better than models trained with a different blur kernel. For

instance, SRF [24] does not achieve a PSNR value above

30 dB when testing on k1, except the exact same blur ker-

nel was used for training. In contrast, SRF-CAB achieves

35.40 dB. We also illustrate this behavior in Figure 4.

4.4. NonBlind Single Image SuperResolution

Here, we present our main results on non-blind super-

resolution. Again, the task is to compute a visually pleasing

high-resolution image h given its low-resolution counter-

part l and the corresponding blur kernel k used to create the

low-resolution image. The blur kernel is thus known but dif-

ferent for each test image, unlike traditional work on SISR

that uses a fixed kernel for training and inference.

As already stated in Section 2, related work for this spe-

cific task is actually rather limited because most of the state-

of-the-art super-resolution approaches are trained and eval-

uated for a single blur kernel. However, we can still use

recently proposed models ([6, 24, 28, 29]) in our setup by

adapting the training procedure as described in Section 3.

We used the 91 training images described above and ran-

domly sampled 14 different blur kernels for each training

image (out of the 58 from Figure 3) to create the corre-

sponding low-resolution image. This results in a training

set of 1274 low- and high-resolution image pairs.

Using this data, we can train our extensions of the state-

of-the-art methods (AB and CAB) as described in Sec-

tions 3.1, 3.2, and 3.3. For each training patch, we collect

the corresponding blur kernel in a vectorized form and, sim-

ilar to the image features in the framework of [29], we first

apply PCA on the blur kernels. This reduces the dimension-

ality from 11 × 11 = 121 to only 8 while still preserving

99% of the energy. This 8-dimensional vector representing

the blur kernel is stacked with the low-resolution patches,

allowing each method to access the current blur kernel of

the image during both training and testing.

As baselines, we include models that are trained with

the assumption of a bicubic blur kernel. We also note

that we do not include non-blind super-resolution methods

based on the patch re-occurrence assumption like [11, 13],

which can incorporate any blur kernel during inference, as

we do not have access to a proper implementation. A re-

implementation is prone to errors and could lead to subopti-

mal results. However, we refer to the very recent results

of [13], which demonstrate impressive results on images

with highly repetitive structures, but are inferior on natural

images (BSDS) compared to standard A+ [28]. We further

do not include any adaption of recent related deconvolution

methods ([4, 14, 23, 22]). Although some methods would,

in therory, only require in addition to the blur kernel matrix

a down-sampling matrix, methods like [22] crucial rely on

the specific structure of the blur kernel matrix, which is not

given if the down-sampling matrix is included. A simple

adaptation is therefore often not feasible. Still, modifying

recent condition regression models like [5] would be an in-

teresting research direction.

Table 2 depicts our quantitative results for the 3 dif-

ferent test sets and different upscaling factors (2, 3, and

4). We report the mean PSNR and IFC scores over all

test images, convolved with all 58 blur kernels from Fig-

ure 3, which results in 290, 812, and 11, 600 test images

for Set5, Set14, and BSDS, respectively. If the model

was only trained for a single blur kernel (bicubic; Bic), we

can generally observe inferior results compared to models
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Figure 5: Complexity of individual blur kernels for SRF-CAB (dark-green), A+-CAB (light-green), and SRCNN-CAB (yel-

low). The bars show the mean PSNR value over the images of Set5 (upscaling factor 2) for the individual 58 blur kernels.

Method Set5 Set14 BSDS

x2 x3 x4 x2 x3 x4 x2 x3

GR Bic 29.32/2.86 26.63/1.71 24.38/1.08 27.04/2.80 24.88/1.57 23.04/0.95 27.01/2.62 25.12/1.42

ANR Bic 29.35/2.85 26.65/1.72 24.43/1.09 27.06/2.78 24.88/1.57 23.09/0.96 27.01/2.61 25.13/1.42

A+ Bic 29.34/2.85 26.60/1.73 24.27/1.09 27.05/2.78 24.82/1.57 22.92/0.94 27.01/2.61 25.07/1.42

SRCNN Bic 29.38/2.86 26.60/1.71 24.29/1.06 27.09/2.79 24.82/1.56 22.95/0.93 27.04/2.62 25.09/1.41

SRF Bic 29.36/2.85 26.65/1.74 24.35/1.09 27.07/2.78 24.87/1.58 23.00/0.95 27.03/2.60 25.12/1.43

GR AB 32.80/5.14 30.72/3.47 28.85/2.32 29.63/5.11 27.78/3.26 26.26/2.08 29.11/4.86 27.36/3.01

ANR AB 33.06/5.15 31.14/3.65 29.26/2.49 29.77/5.07 28.05/3.39 26.57/2.21 29.16/4.80 27.51/3.10

A+ AB 33.21/4.90 31.30/3.59 29.37/2.45 30.00/4.78 28.23/3.30 26.71/2.15 29.34/4.53 27.62/3.02

SRCNN AB 33.58/5.31 31.43/3.66 29.50/2.51 30.27/5.25 28.33/3.41 26.76/2.20 29.62/5.01 27.70/3.13

SRF AB 33.50/5.24 31.44/3.74 29.38/2.51 30.11/5.12 28.24/3.45 26.68/2.22 29.41/4.83 27.63/3.15

GR CAB 32.78/5.11 30.72/3.47 28.85/2.33 29.61/5.08 27.78/3.27 26.26/2.09 29.09/4.84 27.36/3.01

ANR CAB 32.86/4.87 31.09/3.57 29.22/2.47 29.60/4.77 28.01/3.32 26.54/2.20 28.98/4.47 27.48/3.02

A+ CAB 33.76/5 .50 31.35/3.65 29.27/2.40 30.35/5.37 28.28/3.37 26.63/2.11 29.65/5.09 27.67/3.07

SRCNN CAB 33 .92 /5.41 31 .70 /3 .78 29 .54 /2 .55 30 .50 /5 .42 28 .49 /3 .51 26 .81 /2 .23 29 .82 /5 .17 27 .81 /3 .21

SRF CAB 34.43/6.06 31.91/4.12 29.64/2.63 30.73/5.87 28.59/3.77 26.86/2.31 29.90/5.53 27.89/3.44

Table 2: Quantitative super-resolution results for three benchmarks. We present the mean PSNR and IFC scores for each test

set, where all images of the test set are convolved with each of the 58 blur kernels. The best results are highlighted bold-face,

and the second best italic. Results for BSDS x4 are included in the supplemental material.

trained with all 58 kernels, even the ones in the blind super-

resolution setting, i.e., AB. Whether or not the basic con-

ditioning on the blur kernel improves strongly, depends on

the method. For GR and ANR the results remain nearly

unchanged, or get even slightly worse for the conditioned

model. On the other hand, A+ already benefits from the

simple conditioning model, and we can also observe that

our proposed extensions, SRCNN-CAB and SRF-CAB, im-

prove clearly over the AB methods. We also present some

qualitative results in Figure 7.

In Figure 5, we demonstrate the influence of the individ-

ual blur kernels on the results for the three best-performing

methods, evaluated on Set5 and an upscaling factor of 2.

The SRF-CAB performs clearly better if the blur kernel has

a small spatial extent or if it is elongated. In contrast, the

SRCNN-CAB peaks for medium-sized blur kernels and all

models get worse if the kernel exceeds a certain size.

4.5. Generalizing to Unseen Blur Kernels

In the previous experiment, we evaluated several mod-

els for varying blur kernels. For a proper investigation of

the complexity of the blur kernels, we used the same set of

58 kernels for both, training and testing phase. In practical

applications, though, we are interested in upscaling images

generated with previously unseen kernels, i.e., generaliza-

tion. In this section, we investigate this issue for the best

performing model from the previous experiment, i.e., SRF-

CAB. We thus train 7 models with access to only a fraction

of the 58 blur kernels from Figure 3 (58, 29, 15, 8, 4, 2,

1). During inference, all models still have to handle all 58
kernels. We show our results in Figure 6, where the 7 bars

above each kernel depict the differently trained models. The

most left one has access to all kernels, while the most right

one uses only a single kernel during training. The red dots

below the bars indicate whether or not this particular model

had access to the kernel below. The results indicate that

SRF-CAB can handle previously unseen blur kernels during

testing. While using only a single kernel to train the model

gives poor performance, only a small fraction of the kernels

already suffices to achieve good overall performance.

4.6. Analyzing the Conditioned Regression Forest

As SRF-CAB turned out to give the best overall results

in Section 4.4, we analyze this model in more detail.

In a first experiment, we investigate the influence of the

blur kernel to different parts of the forest. We train the ran-

dom forest in four different settings: (a) blur kernels are not

used at all except for generating the training data, i.e., the

AB model; (b) blur kernels are only used on the split nodes

(B split); (c) blur kernels are only used in the leaf nodes (B

leaf); (d) blur kernels are always available as described in

Section 3, i.e., the CAB model. Figure 8a depicts our results

as PSNR on Set5 for an upscaling factor of 2. We can ob-

serve that conditioning on the blur kernel always improves
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Figure 6: Generalization power of 7 SRF-CAB model, each trained with access to a different amount of blur kernels. The

figure shows the results (PSNR, Set5) of the models on all 58 blur kernels (separated into two rows). See text for details.

(a) Original (b) Bicubic: 27.52, 1.68 (c) ANR-AB: 29.85, 3.29 (d) A+-AB: 30.01, 3.09

(e) SRF-AB: 30.20, 3.22 (f) A+-CAB: 30.08, 2.96 (g) SRCNN-CAB: 30.03, 3.22 (h) SRF-CAB: 30.48, 3.33

Figure 7: Qualitative results of state-of-the-art methods for upscaling factor x3 on image skiing (image taken from [24]).

The numbers in the sub-captions refer to PSNR and IFC scores, respectively. Best viewed in color and digital zoom.

the results, regardless of what part in the forest has access to

it. The biggest gain is obtained by utilizing the blur kernel

in the leaf nodes, but fully conditioning on the blur (CAB)

yields the best results. In a second experiment, we evaluate

the influence of κ1 and κ2 on the PSNR scores on Set5 for

an upscaling factor of 2. Figure 8b depicts our results. We

can observe a good performance with a small regularization

of the low resolution patches (κ1) and a high regularization

of the blur kernels (κ2). More details can be found in the

supplemental material.

5. Conclusion

Previous state-of-the-art methods in SISR typically rely

on machine-learning techniques that learn a mapping from

low- to high-resolution images. Although achieving good

results, these methods are trained and evaluated for just a

single blur kernel. For practical applications, however, the

blur kernel is typically different for each test image. In this

work, we tackle this problem by proposing several condi-

tioned regression models that can incorporate different blur

kernels during training and inference.Beside demonstrating

the importance of using the right blur kernel for each test

image, our experiments also show the effectiveness of the

AB B split B leaf CAB
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Figure 8: (a) Influence of the blur kernel for different parts

of the forest. (b) Evaluation of the parameters κ1 and κ2.

proposed conditioned models on an extensive evaluation.

When evaluated for a single blur kernel, the conditioned

models almost achieve the same performance as models

specifically trained for that particular kernel. In contrast,

when evaluating for different blur kernels, the conditioned

models show their effectiveness and outperform other meth-

ods that are only trained for a single fixed blur kernel.

We hope that future research in non-blind SISR favors

the proposed evaluation setup with varying blur kernels over

the prevailing assumption of a single fixed blur kernel.
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