
Dynamic Texture Recognition via Orthogonal Tensor Dictionary Learning

Yuhui Quan1, Yan Huang2, Hui Ji1

1Department of Mathematics, National University of Singapore, Singapore 119076
2School of Computer Science & Engineering, South China University of Technology, China 510006

{matquan@nus.edu.sg, yyfeiyanzi@gmail.com, matjh@nus.edu.sg}

Abstract

Dynamic textures (DTs) are video sequences with sta-

tionary properties, which exhibit repetitive patterns over

space and time. This paper aims at investigating the sparse

coding based approach to characterizing local DT patterns

for recognition. Owing to the high dimensionality of DT

sequences, existing dictionary learning algorithms are not

suitable for our purpose due to their high computational

costs as well as poor scalability. To overcome these obsta-

cles, we proposed a structured tensor dictionary learning

method for sparse coding, which learns a dictionary struc-

tured with orthogonality and separability. The proposed

method is very fast and more scalable to high-dimensional

data than the existing ones. In addition, based on the pro-

posed dictionary learning method, a DT descriptor is de-

veloped, which has better adaptivity, discriminability and

scalability than the existing approaches. These advantages

are demonstrated by the experiments on multiple datasets.

1. Introduction

Dynamic texture (DT) refers to texture with motion [38],

and DT sequences are often regarded as video sequences of

moving scenes that possess certain stationary properties in

both space domain and time domain [12]. People see DT

in familiar forms like video clips of boiling water, bursting

flame, windblown vegetation, meandering coastlines, grow-

ing crystals, and swirling galaxies. The automatic recogni-

tion on DT sequences has a broad spectrum of applications,

such as scene classification, video segmentation, emergency

detection, facial expression analysis, biometrics, and astro-

nomical phenomena prediction; see e.g. [13, 21, 37, 46].

Plenty of existing methods for DT recognition, e.g. [14,

18, 26, 39], quantitatively model the underlying physical

dynamic systems that generate DT sequences, whose dif-

ficulty lies in the construction of universal models that are

able to cover a wide range of DT sequences [42] (e.g. linear

models [38, 35] could not be well generalized to the DTs

generated by nonlinear processes). A promising alternative

is to compute some invariant statistics of local features over

a DT sequence. However, the development of local features

is challenging, as both the discriminability and the relia-

bility should be granted in designing local features. While

handcrafted features have been exploited in many previous

studies [46, 19, 10, 44], adaptive features learned from data

have yielded better performance [39, 31]. In this paper, we

focus on investigating feature learning for DT recognition.

It is observed that there exist strong spatial homogeneity

and temporal periodicity in DT [28, 8, 17, 6], which implies

that local DT patterns are repetitive and could be sparsely

represented under some suitable dictionary. This motivates

us to develop a sparse coding based framework for DT

recognition, i.e. representing repetitive local DT patterns as

sparse linear combinations of learned spatio-temporal prim-

itives. Many existing sparse dictionary learning methods

have been proposed to deal with data of low dimensional-

ity, e.g. K-SVD [1]. However, a direct call of these meth-

ods would be computationally infeasible when scaling to

high-dimensional data such as DT sequences. In addition,

most of these methods handle visual data by vectorization,

which is likely to destroy the inherent ordering information

in data [24, 36] and reduce both the discriminability and the

expressibility of the resulting representation [45, 48].

Aiming at tackling the computational challenges when

applying sparse coding to tensor data processing, we pro-

pose a tensor dictionary learning approach which learns a

dictionary structured with separability and orthonomality.

The separability of dictionary atoms makes the resulting

method highly scalable. The orthonomality among dictio-

nary atoms leads to very efficient sparse coding computa-

tion, as each sub-problem encountered during the iterations

for solving the resulting optimization problem has a sim-

ple closed-form solution. These two characteristics, i.e. the

computational efficiency and scalability, make the proposed

method very suitable for processing tensor data.

Based on the proposed dictionary learning method, we

develop a powerful descriptor for DT classification, which

is constructed by regarding the distribution of sparse codes

generated from DT sequences under the learned dictionary.

73

In addition to the computational advantage introduced by

the proposed orthogonal tensor dictionary learning method,

the developed DT descriptor exhibits strong discriminabil-

ity for classification, which is demonstrated with the exper-

iments on multiple benchmark datasets.

In short, the contribution of this paper is two-fold. For

DT classification, we develop a powerful tensor sparse cod-

ing based DT descriptor, and it shows noticeable improve-

ment over the state-of-the-art DT classification methods in

terms of both classification accuracy and computational ef-

ficiency of feature extraction. For sparse coding, we pro-

pose a structured tensor dictionary learning method for

high-dimensional data, with a particular focus on computa-

tional efficiency and scalability. By introducing orthogonal-

ity constraints on dictionary atoms, the proposed method is

more computationally efficient than the generic dictionary

learning methods, while the performance in applications,

e.g. DT classification, remains very competent.

2. Related work

Dynamic texture classification. Considering a DT se-

quence as the realization from some stationary stochas-

tic process with spatially and temporally invariant statis-

tics, most existing methods for DT recognition charac-

terize DT sequences either by quantizing the underlying

process or calculating the invariant statistics over DT se-

quences. The former is often referred as the generative

methods while the latter referred to as the discriminative

ones [44]. The generative methods are built upon some

prior stochastic models, e.g. the spatio-temporal autoregres-

sive model [38, 39] and its multi-scale version [14], the lin-

ear dynamical system (LDS) [35, 41] and its kernelized ver-

sion [5], the phase-based non-parametric model [18], the hi-

erarchical model [22], etc. The main disadvantage of gener-

ative methods is that they cannot be well generalized to the

DT sequences which are generated by the irregular physical

processes with complexities beyond the freedom degree of

prior models.

To bypass the challenges of modeling and inferring gen-

erative systems, the discriminative methods directly cal-

culate the statistics (e.g. histogram [46] or fractal spec-

trum [44]) on local DT features, which empirically exhibit

better performance and show advantages in the robustness

to environmental changes and viewpoint changes. The suc-

cess of discriminative methods is largely determined by the

discriminability and reliability of the local features used for

statistics. Existing approaches mainly rely on handcrafted

features extracted by spatio-temporal filtering [40, 44, 25,

16], local binary pattern encoding [46, 47, 22], optical flow

estimation [7, 28, 30, 44], or space-time orientation analy-

sis [10, 11, 9]. It is worth mentioning that generative models

can be integrated into discriminative methods by using the

parameters inferred from generative systems as local fea-

tures; see e.g. [32, 19, 20].

While handcrafted features often allow fast computa-

tion (e.g. using convolution [25], lookup table [46], or in-

tegral image [44]), learned features, as shown in an abun-

dant of literature (e.g. [1]), have exhibited superior perfor-

mance in many applications due to their better adaptivity

to the classes of target signals. This is also demonstrated

in DT classification by [39], where noticeable improvement

has been observed by transferring the local features learned

from images to the frames of DT sequences. However, such

transferring is not optimal as it does not consider the space-

time correlation in DT. In comparison, our method directly

learns features from DT data to fully exploit the inherent

spatiotemporal DT characteristics.

To learn informative features from DT data, several ap-

proaches have been proposed based on sparse representa-

tion and dictionary learning. In [20], the coefficients of

LDS are calculated by sparse coding, and the LDS is further

learned in [39] by considering it as a dictionary. Both are

generative methods. The discriminative methods [32, 22]

employ dictionary learning either for forming codebooks

for handcrafted local features [32] or for sample-level fea-

ture refinement [22], which are different from ours as we

focus on local DT feature learning via sparse coding.

Sparse tensor dictionary learning. Producing sparse rep-

resentation in terms of a learned dictionary has emerged as

a powerful way to create image features for a wide range

of applications. However, a vast majority of existing dictio-

nary learning methods deal with vectors, which might lose

the structure of data (e.g. spatial correlation of image pixels)

and lead to poor representation in the vectorization process.

To overcome this problem, the so-called tensor dictionary

learning methods [24, 8, 15, 45] have been proposed for var-

ious sparsity-based restoration and recognition tasks, which

treat input data as tensors instead of vectors and learn dic-

tionaries by tensor decomposition. The resulting dictionar-

ies can preserve the original layout of data in representation

with better compression ratio than the matrix case [24], and

this benefit has been demonstrated in DT synthesis [8].

To deal with high-dimensional data, most existing tensor

dictionary learning methods [23, 33, 27, 34] structure dic-

tionaries with separability (e.g. each dictionary atom is the

product of 1D components), which significantly reduces the

computational burden and improves the scalability of algo-

rithms. In [23], separable dictionaries with minimized mu-

tual coherence are learned from images for denoising by a

complicated algorithm. In [34], the K-SVD algorithm is

extended to the tensor form by directly replacing the SVD

step with a higher-order version. The resulting algorithm is

still time-consuming. In [33], a low-rank separable synthe-

sis filter learning model is developed, which is challenging

to solve. It is also recommended in [33] to approximate the

learned non-separable filters by the separable ones. How-

74

ever, such a scheme only accelerates the filtering process

and does not reduce the computational cost in dictionary

learning. Compared with these methods, the proposed one

structures the dictionary with not only separability but also

orthogonality. The resulting subproblems on dictionary up-

date and sparse coding both have simple explicit solutions

whose computation is scalable. In addition, the orthogonal-

ity of dictionary benefits the design of a fast DT descriptor,

while not sacrificing the performance in recognition.

Finally it is noted that the idea of orthogonal dictionary

has been exploited in [2] for processing 2D images, as well

as the constructions for data-driven wavelet tight frames [3,

4]. These methods neither deal with tensor data nor enforce

separability of dictionary.

3. Preliminaries

3.1. Notations and definitions

Throughout the paper, scalars are denoted by light-faced

letters (a, b, . . . , A,B, . . .), vectors are denoted by lower-

case bold-faced letters (a, b, . . .), matrices are denoted by

upper-case bold-faced letters (A,B, . . .), sets are denoted

by light-faced calligraphic letters (A,B, . . .), and tensors

are denoted by bold-faced calligraphic letters (A,B, . . .).
For an R-dimensional tensor A ∈ R

M1×M2×···×MR , the r-

mode unfolding [A](r) ∈ R
Mr×(M1···Mr−1Mr+1···MR), rep-

resents a rearrangement of A in a matrix where the r-th in-

dex is used as a row index and all other indices are aligned

along the columns in reverse cyclical ordering. The i-th
row of [A](r) is denoted by [A](r)(i). The r-mode fold-

ing, denoted by [A]−1
(r), is the inverse operation of the r-

mode unfolding, i.e. [[A](r)]
−1
(r) = A. The r-mode product

between a tensor A ∈ R
M1×···×Mr×···×MR and a matrix

U ∈ R
Nr×Mr is defined as follows:

A×r U = [U [A](r)]
−1
(r) ∈ R

M1×···×Nr×···×MR . (1)

The ℓ0 norm of a tensor A is denoted by ‖A‖0 and defined

as the number of nonzero elements in the tensor. The Frobe-

nius norm of a tensor A is denoted by ‖A‖F and defined

as the square root of the sum of the squares of its elements.

Identity matrices of size m × m are denoted by Im, and

ignoring m means I is of appropriate size.

3.2. Sparse coding and dictionary learning

Given a set of input patterns, sparse coding aims to find a

small number of atoms (i.e. representative patterns) whose

linear combinations approximate those input patterns well.

More specifically, given a set of vectors {y1,y2, . . . ,yp} ⊂
R

n, sparse coding is about determining a set of atoms

{d1,d2, . . . ,dm} ⊂ R
n, together with a set of coefficient

vectors {c1, . . . , cp} ⊂ R
m with most elements close to

zero, so that each input vector yj can be approximated by

the linear combination yj ≈
∑m

ℓ=1 cj(ℓ)dℓ. The typical

sparse coding method, e.g. K-SVD [1], determines the dic-

tionary D = [d1, . . . ,dm] via solving

argmin
D,{ci}

p

i=1

p
∑

i=1

‖yi −Dci‖
2
2, (2)

subject to ‖ci‖0 ≤ T, ‖dj‖2 = 1, 1 ≤ j ≤ m, which

can be solved by alternating OMP (Orthogonal Matching

Pursuit) for sparse coding and SVD (Singular Value De-

composition) for dictionary update. It is noted that when

applying (2) to visual data, the image or video patches need

to be unfolded onto vectors as input.

4. Our method

We model a DT sequence by a set of space-time elements

with certain distribution. Such elements are formulated as

a tensor and represented by a separable dictionary with or-

thogonal components learned from a set of local DT patches

via sparse representation. The learned dictionary atoms are

used to extract local DT features via sparse coding. Finally

the distribution of space-time elements in DT sequences are

characterized by the histograms of sparse codes over both

the whole sequence and each DT slice. In the following, we

will detail each step of our method.

4.1. Structured tensor dictionary learning

The first step of our method is to learn a dictionary con-

taining joint spatial and temporal patterns for representing

local structures of DT. Instead of directly learning a dic-

tionary by (2), we learn a structured tensor dictionary with

separability and orthogonality. More concretely, given a set

of gray-scale DT sequences for training, totally N volume

patches of size MH×MV×MT are randomly sampled from

the sequences and stacked as a 4-dimensional tensor de-

noted by Y ∈ R
MH×MV×MT×N . Define SM to be the set

containing all orthogonal matrices of size M ×M :

SM = {D ∈ R
M×M : D⊤D = I}. (3)

Our goal is to learn a set of orthogonal dictionaries {DH ∈
SMH

,DV ∈ SMV
,DT ∈ SMT

} by the following model:

argmin ‖Y − C ×1 DH ×2 DV ×3 DT‖
2
F

DH∈SMH
,DV∈SMV

,DT∈SMT

C∈R
MH×MV×MT×N

(4)

subject to ‖[C](4)(i)‖0 ≤ T for all possible i, where C is the

corresponding sparse coding tensor.

The separated dictionaries are learned to represent DT

sequences from different perspectives:

• The spatial dictionaries DH and DV jointly character-

ize the spatial appearances in DT frames. Most often-

seen spatial patterns in DT sequences, including homoge-

neous textured patterns (e.g. windmill), deformable tex-

tured patterns (e.g. grass and leaves) and discrete textures

75

(e.g. insect swarm and human crowd), are likely to lie in a

union of low-dimensional subspaces due to the intra-class

similarity in appearance, which can be well captured by

DH and DV via sparse representation.

• The temporal dictionary DT summarizes the motion pat-

terns and encodes intrinsic temporal coherence between

DT frames. There are mainly two types of motion in DTs,

i.e. deterministic motion like movement of escalators and

stochastic motion like propagation of smoke. The former

often shows periodicity and the latter are statistically sim-

ilar, both of which can be captured by DT.

Algorithm 1 Tensor dictionary learning

INPUT: Training data Y

OUTPUT: Learned dictionaries DH, DV, and DT

Main procedure:

1. Initialization: Set dictionaries D
(0)
H , D

(0)
V , D

(0)
T .

2. For k = 0, 1, . . . ,K − 1

(a) Sparse coding by thresholding:

C(k) = ST (Y ×3 D
(k)⊤
T ×2 D

(k)⊤
V ×1 D

(k)⊤
H)

(b) Run SVD on the r-mode unfolding of tensors:

PTΣQ
⊤
T = [Y](3)[C ×1 D

(k)
H ×2 D

(k)
V]⊤(3)

PVΣQ
⊤
V = [Y ×3 D

⊤(k)
T](2)[C ×1 D

(k)
H]⊤(2)

PHΣQ
⊤
H = [Y ×3 D

⊤(k)
T ×2 D

⊤(k)
V](1)[C]

⊤
(1)

(c) Update dictionaries by

D
(k+1)
T = PTQ

⊤
T , D

(k+1)
V = PVQ

⊤
V ,

D
(k+1)
H = PHQ

⊤
H .

3. DH := D
(K)
H , DV := D

(K)
V , DT := D

(K)
T .

4.2. Learning algorithm

An alternating iterative scheme is used to solve (4). The

resulting algorithm is summarized in Alg. 1. More specif-

ically, let D
(0)
H , D

(0)
V , and D

(0)
T be the initial dictionaries.

For k = 0, 1, . . . ,K − 1, we loop the following process:

1. Sparse coding: Given the orthogonal dictionaries D
(k)
H ,

D
(k)
V , and D

(k)
T , we find the sparse tensor C(k) via solving

C(k) := argmin
C

‖Y−C×1D
(k)
H ×2D

(k)
V ×3D

(k)
T ‖2F (5)

subject to ‖[C](4)(i)‖0 ≤ T for all possible i. This problem

has an explicit solution given by the following proposition.

Proposition 4.1 Given Y ∈ R
MH×MV×MT×N , DH ∈ SMH

,

DV ∈ SMV
and DT ∈ SMT

, the minimization problem

argmin ‖Y − C ×1 DH ×2 DV ×3 DT‖
2
F

C∈R
MH×MV×MT×N

(6)

subject to ‖[C](4)(i)‖0 ≤ T for all possible i, has an explicit

solution given by

C∗ = [ST ([Y ×3 D
⊤
T ×2 D

⊤
V ×1 D

⊤
H](4))]

−1
(4), (7)

where ST (·) denotes the operator that keeps the largest T
elements of each row of the matrix in terms of magnitudes

while setting the rest to be zero.

[Sketch of proof] As the Frobenius norm is invariant under

orthonormal transform, the functional ‖Y − C ×1 DH ×2

DV ×3 DT‖
2
F can be re-written as ‖Y ×3 D

⊤
T ×2 D

⊤
V ×1

D⊤
H − C‖2F , which is a separable function such that each

variable can be independently solved. A single-variable ℓ0
norm relating problem in the above form can be solved via

thresholding. See Appendix A in the supplementary mate-

rial for the complete proof.

2. Dictionary update: Given the calculated sparse coding

tensor C(k), we update the dictionaries D
(k+1)
T , D

(k+1)
V ,

and D
(k+1)
H via solving

D
(k+1)
T := argmin

D∈SMT

‖Y − C ×1 D
(k)
H ×2 D

(k)
V ×3 D‖2F

D
(k+1)
V := argmin

D∈SMV

‖Y − C ×1 D
(k)
H ×2 D ×3 D

(k)
T ‖2F

D
(k+1)
H := argmin

D∈SMH

‖Y − C ×1 D ×2 D
(k)
V ×3 D

(k)
T ‖2F

.

Each of the three problems above has a unique solution

given by Proposition 4.2.

Proposition 4.2 Let {Dr : Dr ∈ SMr
}Rr=1 be a set of

orthogonal matrices. Given Y ,C ∈ R
M1×M2···×MR×N ,

the minimization problem

argmin
A∈SMr

‖Y−C×1D1 · · ·×r−1Dr−1×rA×r+1Dr+1 · · ·×RDR‖
2
F

has an explicit solution given by A = PQ⊤, where P and
Q denote the orthogonal matrices defined by the following
SVD:

[Y×RD
⊤
R ×R−1 DR−1 · · · ×r+1 D

⊤
r+1](r)

[C ×1 D1 ×2 D2 · · · ×r−1 Dr−1]
⊤

(r) = PΣQ⊤
.

(8)

[Sketch of proof] Using r-mode unfolding and the length-

preserving property of orthonormal transform, the problem

can be re-formulated as argminA∈SMr
‖U − AV ‖2F s.t.

A⊤A = I , which is a classical matrix nearness problem

with explicit solution given by SVD. See Appendix B in the

supplementary material for the complete proof.

4.3. Feature extraction

Given a DT sequence V ∈ R
mH×mV×mT , we sample all

the patches of size MH ×MV ×MT in V by a sliding win-

dow, then stack them into a tensor X ∈ R
MH×MV×MT×Z ,1

1
Z = mH ·mV ·mT by a proper boundary extension.

76

and compute the corresponding sparse representation C ∈
R

MH×MV×MT×Z by the following minimization:

argmin ‖X − C ×1 DH ×2 DV ×3 DT‖
2
F + β2‖C‖0

C∈R
MH×MV×MT×Z

(9)

which has an explicit solution given by2

C∗ = Tβ(X ×3 D
⊤
T ×2 D

⊤
V ×1 D

⊤
H), (10)

where β is the threshold which is set small to retain discrim-

inability of code, and Tβ(·) is the element-wise hard thresh-

olding operator which keeps the elements whose magni-

tudes are larger than β while setting the rest zeros.

The calculation of (10) can be implemented in a series

of separated 1D convolutions, which is very efficient and

scalable. To see this, we consider the case of calculating

X×3D
⊤
T = [D⊤

T [X](3)]
−1
(3). Let wj denote the j-th column

of DT. As columns of [X](3) correspond to the patches of

size 1×1×MT sampled by a sliding window in V , the calcu-

lation of wjX amounts to the convolution between wj and

V . Thus, the calculation of X ×3 D
⊤
T can be implemented

by convoluting V with MT 1-dimensional filters defined by

columns of DT. This trick is also applicable to the cases of

DH and DV.

Based on the sparse codes, we construct a set of feature

maps as follows:

{Mijk ∈ R
mH×mV×mT : Mijk = R(C(i, j, k, :))} (11)

for i = 1, . . . ,MH, j = 1, . . . ,MV, and k = 1, . . . ,MT,

where R denotes the operation reshaping the vector back to

the volume which is of the same size as the input sequence.

Then, to describe to DT sequences from different views,

four types of normalized histograms are computed on each

feature map regarding the coefficient magnitudes:

• HHVT(M): The histogram is computed on the whole

feature map M, characterizing the global distribution

of local DT features by regarding M as a 3D volume.

• Hr
H(M) and Hs

V(M): These two histograms are

computed on the r-th 2D slice along the horizontal

axis and on the s-th slice along the vertical axis

respectively, which jointly characterize the temporal

changes of spatial appearance.

• Ht
T(M): To encode the stationary spatial appearances

of a DT sequence, the histogram is computed on the

t-th 2D slice along the temporal axis.

As shown in many previous studies (e.g. [47, 44]), local DT

patterns are distributed in similar ways on the slices along

the same axis. Thus, we compute three mean histograms by

HH(M) =
∑mH

r=1 H
r
H(M)/mH

HV(M) =
∑mV

s=1 H
s
V(M)/mV

HT(M) =
∑mT

t=1 H
t
T(M)/mT

. (12)

2See the proof in the supplementary materials.

Finally, the proposed DT descriptor is constructed by con-

catenating HHVT, HH, HV, and HT over all feature maps:

⊎

i,j,k

[HHVT(Mijk),HH(Mijk),HV(Mijk),HT(Mijk)].

Remark 1 Considering the length of our descriptor, only a

subset of dictionary atoms are selected to construct the fea-

ture maps and descriptor. The atoms are selected according

to their discriminability measured by the Fisher criterion on

the corresponding sparse codes generated in learning.

5. Experiments

In this section, our method is applied to DT classification

and compared to the state-of-the-art approaches in terms of

classification accuracy.

5.1. Implementation details

Datasets. Due to the difficulties in collecting DT se-

quences, only a limited number of DT datasets are available.

There are mainly two DT databases that have been widely

used for DT analysis: the UCLA-DT database [12] and the

DynTex database [29]. With the development of classifica-

tion techniques, the performances on the original databases

have saturated. Thus, both these two databases have been

refined, recompiled and enriched by many previous studies

to generate extra datasets with different protocols for eval-

uation. The details of these datasets are given in the next

subsections. As the color information is not our focus, it

is discarded in our experiments by converting all frames to

gray-scale images.

Parameter setting. Throughout all the experiments, only

the 27 most discriminative dictionary atoms are used for

local feature extraction. The bin numbers of HH, HV, HT

and HHVT are set equally to be 25. The dimension of the

resulting descriptor is 27 × 3 × 25 + 27 × 25 = 2700.

In dictionary learning, we sampled 2000 patches from each

category to stack Y . The patch size is set according to the

size as well as the resolution of training sequences, ranging

from 4×4×4 to 7×7×7. The sparsity degree T is set 4. The

dictionary is initialized by a set of wavelet filters. In feature

extraction, the thresholding parameter β is set 1× 5−4.

5.2. Evaluation on the UCLADT database

The UCLA-DT database originally contains 200 DT se-

quences from 50 categories, and each category contains four

video sequences captured from different viewpoints. All the

videos sequences are of the size 160× 110× 75. There are

mainly five different breakdowns when the database is used

for evaluating DT classification algorithms:

• UCLA-DT50 [5, 10]: The original 50 categories of DT

are directly used for evaluation, with three samples per

77

category for training and the rest for test. As the details

of sequence cropping used in [5] are unavailable, only the

uncropped sequences in [10] are used in our experiments.

This breakdown tests the performance of “viewpoint spe-

cific recognition” in that samples from the same class are

sequences of the same scene from the same view.

• UCLA-DT9 [19]: This breakdown is for evaluating the

robustness to viewpoint changes. By combining the se-

quences from different viewpoints, the original 50 cate-

gories are merged to 9 categories, with number of sam-

ples per category varying from 4 to 108. We trained on

50% of samples per category and tested on the rest.

• UCLA-DT8 [32]: The aforementioned 9 categories are

further reduced to 8 categories by removing the one con-

taining too many sequences with large ambiguities. One

half of samples per category are used for training.

• UCLA-DT7 [10]: This breakdown is for the “semantic

category recognition”, where the 400 sequences obtained

by cutting the original sequences into non-overlapping

halves are grouped into seven semantic categories. The

resulting dataset is very unbalanced, with number of sam-

ples per category varying from 8 to 240. One half of sam-

ples per category are used for training.

• UCLA-SIR [41, 10]: This breakdown is generated for

the “shift-invariant recognition (SIR)”, which evaluates

the shift-invariance of descriptors. Each of the original

video sequences is cut into non-overlapping left and right

halves, where one half is used for training and the other

half for test. There are two settings for this breakdown -

using cropped samples from 39 categories [41] and using

all 50 categories with careful panning [10]. The latter is

adopted as it is more challenging

Following [43, 26], both the support vector machine (SVM)

and nearest-neighbor (NN) classifier are used for classifi-

cation. In the case where the size of training set is insuffi-

cient large for reliable cross validation, we empirically de-

termined the parameters of SVM by setting the penalty co-

efficient to a multiple of the number of categories.

We compared our method with eight recent methods,

including Kernel Dynamic Texture (KDT) [5], Bags of

Systems (BoS) [32], Maximum Margin Distance Learn-

ing (MMDL) [19], Dynamic Fractal Spectrum (DFS) [44],

Space-time Oriented Representation (SOR) [11], Hierarchi-

cal Expectation Maximization (HEM) [26], Oriented Tem-

plate Features (OTF) [43], and Wavelet Multifractal Spec-

trum (WMFS) [25]. The results are summarized in Tab. 1,3

in which our method exhibits competitive performance to

the compared ones. In particular, our method performs the

best in DT9 and SIR, which demonstrates the superior ro-

bustness of our method to viewpoint changes. The most no-

ticeable improvement of our method is observed on the SIR

3The results of HEM in UCLA-SIR are obtained using 39 categories.

dataset, the classification on which is much more challeng-

ing than other datasets due to the significant difference in

appearances between the training videos and the test ones.

The performance gaps between the best ones and our

method in DT50, DT8, and DT7 are marginal. In DT50,

the performance of our method using NN is superior to

the other compared methods except MMDL. Notice that

MMDL focuses on feature weighting instead of extraction.

We observed that the performance of our descriptor could

outperform MMDL by a careful weighting on the four his-

tograms in the descriptor. In DT7, our method is inferior to

HEM which is a generative method built upon BoS.

Table 1. Classification accuracies (%) on the UCLA database.

Method
DT50 DT9 DT8 DT7 SIR

NN SVM NN SVM NN SVM NN SVM NN SVM

BoS - - - - 70.0 80.0 - - - -

SOR 81.0 - - - - - 92.3 - 42.3 -

MMDL 99.0 - 95.6 - - - -

KDT 89.5 97.5 - - - - - - - -

HEM 95.6 96.5 96.5 97.3 - - 98.7 99.7 56.4 58.0

DFS - 100 97.5 - - 99.0 98.5 - - 73.8

OTF - 97.2 96.3 97.2 95.8 99.5 96.1 98.3 67.4 -

WMFS - 99.7 96.9 97.1 97.2 96.9 96.8 98.4 61.2 -

Ours 98.5 99.8 97.5 98.2 97.0 99.5 98.6 99.5 68.6 75.2

5.3. Evaluation on the DynTex database

The DynTex database is a large pool of DT sequences,

which originates from [28] and has been enriched in recent

years. There are totally five datasets used in the previous

studies on DT classification:

• DynTex-35 [28]: This dataset consists of 35 DT cate-

gories, each with 10 video sequences panned from the

original sequences. The leave-one-out scheme (i.e. one

sample per category is picked up to form the test set and

the rest are for training) is used for evaluation with two

types of classifiers: the NN classifier [22] and the “Near-

est Class Center (NCC)” classifier [47] that classifies

each test sample based on its distance to each class cen-

ter. The NCC emphasizes the invariance of descriptors

while NN emphasizes the discriminability of features.

• DynTex++ [19]: This is a well-designed dataset with

36 DT categories, each with 100 video samples of size

50 × 50 × 50 cropped from the original sequences. An

SVM with the RBF kernel is trained on 50% samples per

category and tested on the rest. The parameters of SVM

are determined by five-fold cross-validation.

• DynTex-Alpha [29]: This dataset is composed of 60 DT

sequences divided into three categories, i.e. sea, grass,

and trees. Each category contains 20 samples.

• DynTex-Beta [29]: This dataset contains 162 DT se-

quences from 10 categories. The number of samples per

category varies from 7 to 20.

78

• DynTex-Gamma [29]: There are 275 DT sequences as-

signed to 10 categories in this dataset. The number of

samples per category varies from 7 to 38.

All the samples of the Alpha, Beta and Gamma datasets are

of the size 720× 576× 250. These three datasets share the

same protocol in [16], which is the same as the leave-one-

out scheme using NCC in DynTex35. Note that a similar

protocol using the NN classifier is presented in an arXiv pa-

per [31], which is not adopted as it is less challenging with

results tending to be saturate, e.g., 100% classification ac-

curacies are achieved on Alpha by both the approach of [31]

and our method. To provide a diverse evaluation, we addi-

tionally adopt a new protocol, in which a SVM is trained on

five samples per category and tested on the rest.

The classification results are summarized in Tab. 2. Be-

sides the MMDL, HEM, DFS, OTF, and WMFS methods,

we compare our method with the LBP-TOP (Local Binary

Patterns on Three Orthogonal Planes) [46], KGDL (Kernel-

ized Grassman Dictionary Learning) [22], 2D+T (2D-plane

and Temporal curvelets) [16]. To show the improvement of

the learned dictionary over the random ones, we tested the

performance of using OMP on random dictionaries, which

is denoted by ’Rand’. The results in Tab. 2 have demon-

strated the power of our method. On all the datasets, our

method achieved the best performance. In DynTex35, the

improvement of our method over others is marginal as the

performances of the compared methods tend to be saturate.

In DynTex++, noticeable improvement (around 5%) over

DFS, OTF, WMFS and LBP-TOP is observed. The WMFS

is a wavelet-based approach using similar filters to our ini-

tial dictionary, and its inferior performance to ours demon-

strates the benefits of the dictionary learning in our method.

The most competitive method to ours is KGDL, which in-

deed is a feature refinement method instead of a DT de-

scriptor. It is combined with the LBP-TOP descriptor and

can also be applied to our method. In fact, it is empirically

observed that our method can be further improved by using

K-SVD for post feature refinement.

In Alpha, Beta and Gamma, the performance improve-

ment of our method over 2D+T are 1.2%-2.0%. The 2D+T

method is developed based on curvelet which is more ex-

pressible than our initial dictionary. However, after dictio-

nary learning, our descriptor achieved better performance

than 2D+T. The performance improvement of our method

over others using SVM in Alpha is larger than that in Beta

and Gamma. One reason is that the scale changes in Beta

and Gamma are more significant (e.g. flags from far away as

well as nearby). This is challenging to our method as single-

size patches are used in feature extraction. We also tested

the combination of our descriptors generated by different

patch sizes on the Beta and Gamma datasets. Around 2%

performance improvement was observed. However, such

a scheme is not suitable for the real cases where computa-

tional resources are limited and feature length is considered.

Table 2. Classification accuracies (%) on the DynTex database.

Method
DynTex35 DynTex++ Alpha Beta Gamma

NCC NN SVM NCC SVM NCC SVM NCC SVM

MMDL - - 63.7 - - - - - -

HEM - 98.6 - - - - - - -

DFS 97.6 - 89.9 83.6 84.9 65.2 76.5 60.8 74.5

OTF 96.7 - 89.2 - 82.8 - 75.4 - 73.5

WMFS 96.5 - 88.8 - - - - - -

LBP-TOP 97.1 - 89.8 83.3 73.4 72.0

KGDL - - 92.8 - - - - - -

2D+T - - - 85.0 - 67.0 - 63.0 -

Rand 84.7 83.8 82.5 78.1 73.9 47.2 52.3 37.6 46.6

Ours 97.8 99.0 94.7 86.6 87.8 69.0 76.7 64.2 74.8

Remark 2. We also tested the performance of using only

100-dimensional HHVT for classification. The performance

decrease is around 3.5% in DynTex++, which is still accept-

able for the applications where feature length is considered.

5.4. Computational efficiency

The computational efficiency of our method is evaluated

regarding both the time cost of the dictionary learning mod-

ule and the time cost of the feature extraction process. The

tests were conducted in MATLAB on a PC with an Intel i5

CPU and 32G memory.

Dictionary learning. Algorithm 1 is compared with the

K-SVD algorithm for solving (2) and its tensor extensions

including K-HOSVD [34] and K-CPD [15].4 The running

time is measured on 7.2 × 104 patches sampled from the

DynTex++ dataset. The results w.r.t. different patch sizes

are plotted in Fig. 1(a). It can be seen that our method is

more efficient than K-SVD, K-HOSVD and K-CPD and is

scalable to larger patches. Compared with the OMP algo-

rithm used in K-SVD for sparse coding, the thresholding in

our method is much more efficient. Meanwhile, the sepa-

rability of dictionary in our method permits to break down

the original problem into three subproblems with reduced

dimensions and less variables, which is more computation-

ally efficient and scalable.

It is noted that the convergence of Alg. 1 cannot be guar-

anteed due to the non-convexity of the problem (4). For

further understanding the behavior of Alg. 1, we show the

objective function value decay over the iteration in Fig. 1(c).

Feature extraction. The running time of extracting the pro-

posed descriptor using patch size 7× 7 is compared to sev-

eral competitive methods using default parameters, includ-

ing LBP-TOP, DFS, OTF, and WMFS. Besides, for simu-

lating the case where K-SVD instead of the proposed tensor

dictionary learning model is used in our framework, we re-

place the sparse coding module in our feature extraction by

4The K-HOSVD and K-CPD methods are implemented in Matlab with the

TPTOOL and PROPACK toolboxes. The code of K-SVD is available on

http://www.cs.technion.ac.il/ ronrubin/software.html.

79

OMP (Orthogonal Matching Pursuit) under the dictionary

learned by K-SVD and report the resulting time cost.

The results w.r.t. different sizes of sequences are shown

in Fig. 1(b) under the Logarithm coordinate. Obviously,

our method is more efficient and scalable than other com-

pared methods. Such advantages come from both the use of

separated 1D convolutions and the use of histogram. The

WMFS, OTF, and DFS methods are also filter-based meth-

ods, but they compute fractal spectra instead of histograms

of filter responses to improve discriminability, which is

much more time-consuming. Regardless of the cost of com-

puting fractal spectra, our method still has advantages in

computation over OTF, as it employs non-separable 3D fil-

ters. The LBP-TOP method is a histogram-based method,

in which the computation of local features is accelerated by

lookup table. Although it is comparable to our method in

computational time, LBP-TOP is inferior regarding accu-

racy.

Remark 3. We replaced our dictionary learning and sparse

coding modules by K-SVD, K-HOSVD and K-CPD respec-

tively, and tested the resulting performances on DynTex++.

The results are slightly inferior to ours with performance

gaps around 0.81%-1.52%. It is also found that using OMP

for sparse coding in feature extraction achieved better re-

sults than direct filtering with the atoms learned by K-SVD.

This is mainly due to the inconsistency between filtering

and the K-SVD learning model.

Patch Size

3 4 5 6 7 8 9

T
ra

in
in

g
 T

im
e

 (
s
)

0

500

1000

1500

2000

2500

3000

KSVD

K-HOSVD

K-CPD

Ours

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

Video Size (N × N × N)

L
o

g
a

ri
th

m
 o

f
R

u
n

n
in

g
 T

im
e

 (
s
)

LBP−TOP

DFS

OTF

WMFS

OMP

Ours

Number of Iteration

0 5 10 15 20 25

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

×109

0

2

4

6

8

(a) (b) (c)

Figure 1. Time costs and decay behavior (a) Time cost of dictio-

nary learning; (b) Time cost of feature extraction; (c) Decay be-

havior of objective function value.

6. Conclusion

This paper aims at exploiting sparse representation for

DT recognition. We proposed a structured tensor dictionary

learning method for extracting local DT patterns, which

learns a separable dictionary with orthogonal components

from a stack of DT volume patches. The learned atoms are

able to characterize the patterns of spatial appearance and

temporal dynamics in DT sequences. Benefiting from the

separability and orthogonality of dictionary, a fast and scal-

able numerical algorithm for learning as well as a discrimi-

native and scalable DT descriptor for DT recognition is de-

veloped. In the experiments, the proposed DT descriptor

shows noticeable performance improvement in both classi-

fication accuracy and time cost over the existing ones.

One limit of our method is that the learned atoms can-

not be used for multi-scale analysis compared with the

multi-scale geometry analysis approaches. Learning mul-

tiple dictionaries with different atom sizes can be helpful

but is not computationally efficient. In future, we would

like to investigate structured dictionary learning under a

multi-scale analysis framework. Furthermore, our method

can be applied to dynamic scene recognition by combining

the learned features into state-of-the-art feature integration

frameworks. For example, the sparse coding and dictionary

learning can also be applied to global feature integration,

sample-level feature refinement, and even classification. By

this way we can construct a multi-layer sparse learning ar-

chitecture for recognizing dynamic scenes, which is also

what we would like to pursue in the future.

References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An al-

gorithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on Signal Processing,

54(11):4311–4322, 2006. 1, 2, 3

[2] C. Bao, J.-F. Cai, and H. Ji. Fast sparsity-based orthogonal

dictionary learning for image restoration. In ICCV, pages

3384–3391. IEEE, 2013. 3

[3] C. Bao, H. Ji, and Z. Shen. Convergence analysis for iterative

data-driven tight frame construction scheme. Applied and

Computational Harmonic Analysis, 38(3):510–523, 2015. 3

[4] J.-F. Cai, H. Ji, Z. Shen, and G.-B. Ye. Data-driven tight

frame construction and image denoising. Applied and Com-

putational Harmonic Analysis, 37(1):89–108, 2014. 3

[5] A. B. Chan and N. Vasconcelos. Classifying video with ker-

nel dynamic textures. In ICPR, pages 1–6, 2007. 2, 5, 6

[6] D. Chetverikov and S. Fazekas. On motion periodicity of

dynamic textures. In BMVC, pages 167–176, 2006. 1

[7] D. Chetverikov and R. Péteri. A brief survey of dynamic tex-

ture description and recognition. In Computer Recognition

Systems, pages 17–26. Springer, 2005. 2

[8] R. Costantini, L. Sbaiz, and S. Susstrunk. Higher order SVD

analysis for dynamic texture synthesis. IEEE Transactions

on Image Processing, 17(1):42–52, 2008. 1, 2

[9] K. G. Derpanis, M. Lecce, K. Daniilidis, and R. P. Wildes.

Dynamic scene understanding: The role of orientation fea-

tures in space and time in scene classification. In CVPR,

pages 1306–1313. IEEE, 2012. 2

[10] K. G. Derpanis and R. P. Wildes. Dynamic texture recogni-

tion based on distributions of spacetime oriented structure.

In CVPR, pages 191–198. IEEE, 2010. 1, 2, 5, 6

[11] K. G. Derpanis and R. P. Wildes. Spacetime texture repre-

sentation and recognition based on a spatiotemporal orien-

tation analysis. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 34(6):1193–1205, 2012. 2, 6

[12] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dy-

namic textures. International Journal of Computer Vision,

51(2):91–109, 2003. 1, 5

80

[13] G. Doretto, D. Cremers, P. Favaro, and S. Soatto. Dynamic

texture segmentation. In ICCV, pages 1236–1242. IEEE,

2003. 1

[14] G. Doretto, E. Jones, and S. Soatto. Spatially homogeneous

dynamic textures. In ECCV, pages 591–602. Springer, 2004.

1, 2

[15] G. Duan, H. Wang, Z. Liu, J. Deng, and Y.-W. Chen. K-

cpd: Learning of overcomplete dictionaries for tensor sparse

coding. In ICPR, pages 493–496. IEEE, 2012. 2, 7

[16] S. Dubois, R. Péteri, and M. Ménard. Characterization and

recognition of dynamic textures based on the 2d+ t curvelet

transform. Signal, Image and Video Processing, pages 1–12,

2013. 2, 7

[17] S. Fazekas and D. Chetverikov. Dynamic texture recogni-

tion using optical flow features and temporal periodicity. In

International CBMI Workshop, pages 25–32. IEEE, 2007. 1

[18] B. Ghanem and N. Ahuja. Phase based modelling of dynamic

textures. In ICCV, pages 1–8. IEEE, 2007. 1, 2

[19] B. Ghanem and N. Ahuja. Maximum margin distance learn-

ing for dynamic texture recognition. In ECCV, pages 223–

236. Springer, 2010. 1, 2, 6

[20] B. Ghanem and N. Ahuja. Sparse coding of linear dynamical

systems with an application to dynamic texture recognition.

In ICPR, pages 987–990. IEEE, 2010. 2

[21] B. S. Ghanem. Dynamic textures: Models and applications.

PhD thesis, University of Illinois at Urbana-Champaign,

2010. 1

[22] M. Harandi, C. Sanderson, C. Shen, and B. Lovell. Dictio-

nary learning and sparse coding on grassmann manifolds: An

extrinsic solution. In ICCV, pages 3120–3127. IEEE, 2013.

2, 6, 7

[23] S. Hawe, M. Seibert, and M. Kleinsteuber. Separable dictio-

nary learning. In ICPR, pages 438–445. IEEE, 2013. 2

[24] T. Hazan, S. Polak, and A. Shashua. Sparse image coding

using a 3d non-negative tensor factorization. In ICCV, vol-

ume 1, pages 50–57. IEEE, 2005. 1, 2

[25] H. Ji, X. Yang, H. Ling, and Y. Xu. Wavelet domain mul-

tifractal analysis for static and dynamic texture classifica-

tion. IEEE Transactions on Image Processing, 22(1):286–

299, 2013. 2, 6

[26] A. Mumtaz, E. Coviello, G. R. Lanckriet, and A. B. Chan.

Clustering dynamic textures with the hierarchical em algo-

rithm for modeling video. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(7):1606–1621, 2013.

1, 6

[27] Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang.

Decomposable nonlocal tensor dictionary learning for multi-

spectral image denoising. In ICPR, pages 2949–2956. IEEE,

2014. 2

[28] R. Péteri and D. Chetverikov. Dynamic texture recognition

using normal flow and texture regularity. Pattern Recogni-

tion and Image Analysis, pages 223–230, 2005. 1, 2, 6

[29] R. Péteri, S. Fazekas, and M. J. Huiskes. DynTex : A Com-

prehensive Database of Dynamic Textures. Pattern Recogni-

tion Letters, 31:1627–1632, 2010. 5, 6, 7

[30] R. Polana and R. Nelson. Temporal texture and activity

recognition. Springer, 1997. 2

[31] X. Qi, C.-G. Li, G. Zhao, X. Hong, and M. Pietikäinen. Dy-

namic texture and scene classification by transferring deep

image features. arXiv preprint arXiv:1502.00303, 2015. 1, 7

[32] A. Ravichandran, R. Chaudhry, and R. Vidal. View-invariant

dynamic texture recognition using a bag of dynamical sys-

tems. In CVPR, pages 1651–1657. IEEE, 2009. 2, 6

[33] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua. Learning

separable filters. In ICPR, pages 2754–2761. IEEE, 2013. 2

[34] F. Roemer, G. Del Galdo, and M. Haardt. Tensor-based algo-

rithms for learning multidimensional separable dictionaries.

In ICASSP, pages 3963–3967. IEEE, 2014. 2, 7

[35] P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. Dynamic

texture recognition. In CVPR, volume 2, pages II–58. IEEE,

2001. 1, 2

[36] R. Sivalingam, D. Boley, V. Morellas, and N. Papanikolopou-

los. Tensor sparse coding for region covariances. In ECCV,

pages 722–735. Springer, 2010. 1

[37] J. R. Smith, C.-Y. Lin, and M. Naphade. Video texture in-

dexing using spatio-temporal wavelets. In ICIP, volume 2,

pages II–437. IEEE, 2002. 1

[38] M. Szummer and R. W. Picard. Temporal texture modeling.

In ICIP, volume 3, pages 823–826. IEEE, 1996. 1, 2

[39] X. Wei, H. Shen, and M. Kleinsteuber. An adaptive dictio-

nary learning approach for modeling dynamical textures. In

ICASSP, pages 3567–3571, May 2014. 1, 2

[40] R. P. Wildes and J. R. Bergen. Qualitative spatiotemporal

analysis using an oriented energy representation. In ECCV,

pages 768–784. Springer, 2000. 2

[41] F. Woolfe and A. Fitzgibbon. Shift-invariant dynamic texture

recognition. In ECCV, pages 549–562. Springer, 2006. 2, 6

[42] J. Xu, S. Denman, S. Sridharan, C. Fookes, and R. Rana. Dy-

namic texture reconstruction from sparse codes for unusual

event detection in crowded scenes. In J-MRE, pages 25–30.

ACM, 2011. 1

[43] Y. Xu, S. Huang, H. Ji, and C. Fermüller. Scale-space texture

description on sift-like textons. Computer Vision and Image

Understanding, 116(9):999–1013, 2012. 6

[44] Y. Xu, Y. Quan, H. Ling, and H. Ji. Dynamic texture clas-

sification using dynamic fractal analysis. In ICCV, pages

1219–1226. IEEE, 2011. 1, 2, 5, 6

[45] L. D. Yangmuzi Zhang, Zhuolin Jiang. Discriminative tensor

sparse coding for image classification. In BMVC. BMVA

Press, 2013. 1, 2

[46] G. Zhao and M. Pietikainen. Dynamic texture recognition

using local binary patterns with an application to facial ex-

pressions. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 29(6):915–928, 2007. 1, 2, 7

[47] G. Zhao and M. Pietikäinen. Dynamic texture recognition

using volume local binary patterns. In Dynamical Vision,

pages 165–177. Springer, 2007. 2, 5, 6

[48] S. Zubair and W. Wang. Signal classification based on block-

sparse tensor representation. In DSP, pages 361–365. IEEE,

2014. 1

81

