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Abstract

Computer vision in general, and object proposals in par-

ticular, are nowadays strongly influenced by the databases

on which researchers evaluate the performance of their al-

gorithms. This paper studies the transition from the Pascal

Visual Object Challenge dataset, which has been the bench-

mark of reference for the last years, to the updated, bigger,

and more challenging Microsoft Common Objects in Con-

text. We first review and deeply analyze the new challenges,

and opportunities, that this database presents. We then sur-

vey the current state of the art in object proposals and eval-

uate it focusing on how it generalizes to the new dataset. In

sight of these results, we propose various lines of research

to take advantage of the new benchmark and improve the

techniques. We explore one of these lines, which leads to an

improvement over the state of the art of +5.2%.

1. Introduction

The sliding windows approach [27] dominated the object

detection literature for several years. It consists in sweep-

ing a large amount of locations and sizes in the image,

represented by rectangular windows, and then applying an

object/non-object classifier on each of them. The number of

swept windows is usually in the order of millions, so to get

a reasonable speed one needs to rely on very simple classi-

fiers carefully implemented using tools like integral images.

In order to reduce the number of windows to consider,

and thus being able to apply more advanced classification

machinery, the concept of objectness [1] arose; which pro-

vides a reduced number of windows, in the order of hun-

dreds or thousands, aiming at keeping the true objects as

much as possible. These techniques have been improv-

ing to get more quality and efficiency until the present

days [28, 7, 20, 25], widely known as bounding-box object

proposals methods: they propose a reduced set of windows

aiming at representing the bounding box of the true objects.

Object windows give us the location and scale of the ob-

jects, but they miss a crucial queue for object detection:

its shape. While a window representation might be good

Figure 1. Example segmentation annotations from the three stud-

ied databases: Pascal SegVOC12 [11], SBD [12], and COCO [19]

enough for certain types of roughly-rectangular objects such

as faces or cars, it is certainly not precise enough to repre-

sent more deformable objects such as animals or plants; and

one might need the mask of the object for applications like

image editing or inpainting.

In this context, the segmented object proposal techniques

arose [5, 9], whose objective is to provide a reduced set of

object segmentations, that is, a small set of binary image

masks indicating sets of pixels belonging to an object in the

image. It currently has become an active topic of research

in computer vision [18, 4, 22, 15, 25, 17, 6, 10].

Annotated databases play a crucial role in the improve-

ment of these techniques, both for training the algorithms

and for benchmarking and comparing different approaches.

The Pascal Visual Object Challenge [11] database has been

the driving force behind many of the improvements in latest

years, providing high-quality bounding-box and segmenta-

tion annotations for thousands of images.

With the increasing computation power given by mod-

ern computers and the annotation capacity provided by

Amazon Mechanical Turk1, however, much bigger anno-

tated databases are taking its place and further pushing

the literature. ImageNet [23] provides annotated bound-

ing boxes on half million images. Semantic Boundary

Dataset (SBD) [12] extends the Pascal segmented annota-

tions to more than ten thousand images. Most notably, the

recent Microsoft Common Objects in Context (COCO) [19]

1http://www.mturk.com
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pushes the number of annotated segmented images one or-

der of magnitude, to more than one hundred thousand im-

ages. Figure 1 shows an example image and segmentation

annotations from Pascal, SBD, and COCO.

The first contribution of this work (Section 3) is the anal-

ysis of the properties of COCO compared to SBD and Pas-

cal. We focus on the size of the databases, the balance be-

tween the number of objects annotated on different cate-

gories, and the localization and size of the annotations. By

showing the properties of the objects that are annotated we

make researchers more aware of the new challenges.

The second contribution of this paper (Section 4) is the

in-depth analysis of the state of the art in segmented object

proposals in COCO. We will evaluate how well all tech-

niques, that were designed and evaluated on Pascal, scale to

COCO, focusing on the challenges detected in the previous

section. The weaknesses of current methods are also oppor-

tunities to improve, which is what we encourage with these

experiments.

Finally, Section 5 proposes a generic improvement to ob-

ject proposal techniques by taking into account the results

in previous sections, which leads to a 5.2% boost over state

of the art. This improvement is only an example of the ap-

plications that can be given to the analysis we perform. In

the conclusions (Section 6) we sketch other future lines of

research we envision.

We present a website (http://vision.ee.ethz.

ch/˜biwiproposals/boosting-coco) where all

the results from this paper are available interactively and

kept up to date with the latest state of the art. Notably, the

best proposal from each technique on all COCO images is

available to visualize, directly from the browser.

Some of the closer works to ours are:

• Hoiem et al. [13]: They analyze the small subtleties on

Pascal (boxes) after years of research. We evaluate (seg-

mented) object proposals on a very new dataset and so

we focus on the new generalities and caveats.

• Torralba and Efros [24]: They focus on how well object

recognition generalizes across datasets. We are analyzing

what should researchers, biased towards Pascal, be aware

of when generalizing their techniques to COCO.

• Hosang et al. [14]: They focus on detection (boxes) per-

formance on Pascal and ImageNet, while we focus on

the segmentation task on COCO, especially targeting the

novel properties of it with respect to Pascal.

2. State of the Art in Object Proposals

We focus the review of the state of the art in segmented

object proposal techniques, that is, those that provide pixel-

accurate object proposals.

One of the seminal works in this area was presented by

Carreira and Sminchisescu [5, 6], who sample a set of fore-

ground and background seeds and produce the object pro-

posals by parametric min cuts. The same year, Endres and

Hoiem [9, 10] presented an object proposal technique using

a hierarchy of regions taking contour and occlusion cues

into account. Arbeláez et al. [2] presented their technique

based on the combination of regions and parts toward se-

mantic segmentation. Kim and Grauman [17] propose a

partial shape matching algorithm of annotated objects to de-

tected contours, shared between classes. Uijlings et al. [25]

produce a set of partitions of the image, for a variety of color

spaces, and perform a selective search algorithm to produce

a set of object proposals.

Most recently, the topic has been reactivated by much

more efficient algorithms, especially thanks to new, very ef-

ficient, and precise contour detectors [16, 8]. Krähenbühl

and Koltun [18] compute geodesic distance transforms, and

the object proposals are their critical level sets. Arbeláez

et al. [4, 21] compute segmentation hierarchies at different

image resolutions and combine their regions via an efficient

combinatorial grouping strategy. Rantalankila et al. [22]

perform a global and local search in the space of sets of

superpixels. Humayun et al. [15] speed up parametric min-

cuts by reusing the involved graphs.

3. Analysis of the Databases

We have selected three of the most representative

databases for object detection and segmentation:

• Segmentation challenge of Pascal 2012 Visual Object

Classes (SegVOC12) [11]: The Pascal challenges were

a series of computer vision competitions on object de-

tection, object segmentation, action detection, etc. Apart

from non-overlapping object segmentations, the annota-

tions provide void pixels that were not taken into account

in the evaluation. We will use the training and validation

sets of year 2012.

• Berkeley Semantic Boundaries Dataset (SBD) [12]:

This database adds segmentation annotations to the main

set of images in the detection challenge of Pascal (which

was only annotated with bounding boxes). The annota-

tions have the same format than SegVOC12 except they

don’t have void pixels. Those images that were annotated

in the segmentation challenge are re-annotated. We use

the training and validation sets.

• Microsoft Common Objects in Context (COCO) [19]:

The biggest and newest of the three databases. In contrast

with SegVOC12 and SBD, the object segmentations can

overlap (a single pixel can be part of two objects). We

use the training and validation sets of the 2014 release

(COCO14). We ignore the instances marked as crowd.

The three databases consist of annotated objects of dif-

ferent categories. Table 1 summarizes the number of cate-

gories, images, and object instances in each database.
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Pascal SegVOC12 SBD COCO14

Figure 2. Qualitative examples: Images and segmentation annotations from Pascal SegVOC12, SBD, and COCO14.

Number of Number of Number of

Categories Images Instances

SegVOC12
20

2 913 6 934

Train+Val 1 464+1 449 3 507+3 427

SBD
20

11 355 26 843

Train+Val 8 498+2 857 20 172+6 671

COCO14
80

123 287 886 284

Train+Val 82 783+40 504 597 869+288 415

Table 1. Sizes of the databases

As we can observe, each new database is roughly one

order of magnitude larger than its predecessor, giving more

significance to the experiments at each step. COCO14 has

four times the number of categories of previous databases,

giving more representativity to the results. These 80 cate-

gories are grouped into 12 super-categories.

The annotations in the three datasets are both in the form

of bounding boxes and segmentations. Figure 2 shows some

images of the three datasets, along with their object seg-

mentations. The SegVOC12 annotations include void re-

gions (in cream color) that mark uncertainty or difficult pix-

els. SBD annotations are shown in the same format than

SegVOC12 but they do not have void pixels.

COCO annotations have some particularities with re-

spect to SBD and SegVOC12. First, some of the annota-

tions mark objects that are really challenging to segment, as

the wine glasses that are semi-transparent. Some segmen-

tations are less accurate than those in the previous datasets,

such as the chair in Figure 2: the contour is not very accu-

rate and the wall seen in between the bars is not subtracted.

Finally, annotations in COCO overlap between them, mean-

ing that some pixels are annotated as two different objects.

The dogs in Figure 2, for instance, are annotated as dogs and

sofa, which should be handled carefully in the evaluation.

3.1. Category Balance

The analysis of the results on these databases is com-

monly separated into per-category performance, thus the

distribution of objects among categories is an important fea-

ture of the database. An uncompensated distribution might

entail bias towards a specific type of object in the evalu-

ation. Let us therefore analyze the percentage of objects

among every category in the three databases. Figure 3 plots

the frequency of each category (percentage of the whole set

of objects that fall into that category). Categories are sorted

by frequency and plotted with respect to the accumulated

frequency of all categories up to that category, to align the

results with 20 and 80 categories (note that all end at 100%).

The most common categories are labelled.
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Figure 3. Object category and super-category frequencies with

the most common categories annotated. X axis is accumulated

frequency, to plot different number of categories in the same axis.

In the three databases, person is by far the most com-

mon category (around 25-30%). In COCO, this is espe-

cially exaggerated: the second category is at 5%, 59 cat-

egories have less than 1% of the objects, and 20 less than

0.5%. SegVOC12 and SBD categories, and especially

super-categories in COCO, are more balanced. One should

be aware of this unbalance when performing the evaluation,

in order not to bias the results and interpret them correctly.

3.2. Annotated Instances Localization

Another potential source of bias is the localization of the

annotated instances. Are objects situated in the center of the

image more common than those on the borders?

We rescale all images and annotations to 600×600 pix-

els, and we count the number of annotated objects that over-

lap with every pixel position. Figure 4 shows the heat map

of the localization of the annotated objects, being red the
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most common localization (1), dark blue meaning that no

object overlaps that pixel (0), and the range in between

meaning that the value at that pixel is a certain ratio with

respect to the value at the most frequent pixel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SegVOC 2012 SBD COCO 2014

Figure 4. Ground-truth object localization frequency: Heat

map of the localization of the annotated objects.

The three databases are biased towards objects in the

center of the image. COCO is the one with more percent-

age of objects close to the border of the lower part of the

image. The upper-half borders of the images are almost

equally scarce in the three databases.

3.3. Annotated Instances Areas

The size of the annotated objects might also be a dif-

ferentiating factor between databases. To explore it, we

calculate the percentage of the image area that every an-

notated object occupies and compute a histogram. For all

three databases, the majority of the objects represents a very

small percentage of the image, so the three histograms of in-

stance areas have a very pronounced peak close to 0 but are

not visually very informative.

To grasp the differences between the databases graphi-

cally, Figure 5 plots the Cumulative Distribution Function

(CDF) of the percentage of image area occupied by an-
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Figure 5. Annotated objects area: Cumulative distribution of the

percentage of image area occupied by the annotated objects for

SegVOC12, SBD, and COCO, i.e., percentage of instances whose

area is below a certain threshold. As a baseline, we plot the func-

tion of a uniform distribution. The plot is cut at 60% for the sake

of readability, but should go up to 100%.

notated objects, i.e., the percentage of annotated instances

whose area is below a certain percentage of the image.

The plot shows that indeed the majority of the objects

in the three databases are small (above the uniform dis-

tribution ), and that COCO has the most pronounced

bias. To put a particular example, the green line ( ) high-

lights that while 50% of SegVOC12 objects are below 5%

of area, in COCO 80% of the annotated objects are below

this threshold. In the other axis, the percentile 80% is at

20% of the area for SegVOC12 and at 5% for COCO.

4. Analysis of the State of the Art

4.1. Evaluation Overview

As a first approach to the analysis of the results, we eval-

uate the recall of all State-of-the-Art (SoA) object proposal

techniques, i.e., we count the percentage of annotated ob-

jects for which there is a segmented object proposal (not

box) in the set whose Jaccard J (Intersection over Union) is

higher than certain thresholds.

As a rule of thumb, J = 0.5 represents a very rough ap-

proximation, J = 0.7 an approximate representation, and

J = 0.9 an accurate segmentation [18]. To summarize the

different behaviors in a single value, we compute the Av-

erage Recall (AR) over different values for J , as proposed

in [14], in the range of J ∈ [0.5, 1].

Figure 6 shows the AR values with respect to the num-

ber of proposals for the validation sets of Pascal SegVOC12

and SBD; and for the training set of COCO14. We use the

training set of COCO14 in order to fairly evaluate our im-

provements in the validation set.

There is a noticeable and consistent decrease in the qual-

ity of the proposals from SegVOC12 to COCO, suggesting

that COCO is indeed a more challenging dataset. It could

also happen that the techniques are trained for SegVOC12

and they are not generalizing well and should be trained on

COCO. This work is focused on the former, and so finding

the particularities that make COCO different from previous

datasets; and leave the latter as a future work, with the help

of the conclusions of this work.

In terms of comparing the object proposal techniques,

MCG obtains the best results in all range of number of pro-

posals and in all datasets. Table 2 shows the timing results

of all techniques, in which we observe that GOP is consid-

erably more efficient than the rest of techniques.

GOP SCG GLS SeSe RIGOR MCG CPMC CI ShSh

1.0 6.1 7.7 16.2 31.1 41.5 ≥150 ≥150 ≥150

Table 2. Timing (in seconds) for all considered techniques
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Figure 6. Average Recall for segmented proposals. Percentage of annotated objects for which there is a proposal whose overlap with the

segmented ground-truth shapes (not boxes) is above different J thresholds, averaged in the range of J ∈ [0.5, 1], for different number of

proposals per image. Results on SegVOC12 validation, SBD validation, and COCO training sets.

4.2. PerCategory Evaluation

This section analyzes the quality obtained by the state-

of-the-art methods on each of the 80 object categories

in COCO. Figure 7 shows the per-category Average Best

Overlap (ABO) (mean best J) for all studied techniques at

650 proposals per image. For those techniques that provide

more than 650 proposals and do not rank them, a random

selection was performed on each image. Although it might

be argued that this is not fair for those techniques, it is out

of the scope of this paper to re-parameterize all techniques

to get 650 proposals per image (not even possible for some

of them); since we are not focusing on the technique com-

parison but on the general behavior on COCO.

Categories are sorted by category difficulty, as the mean

quality obtained by all techniques. We also plot the mean

area of the annotated objects in each category ( ), as the

percentage of the image area they occupy.

We observe a clear general trend in all techniques, that

is, difficult/easy categories are approximately the same for

all methods. Selective Search (SeSe ) is the only one

that slightly separates from this trend: while it performs be-

low the mean in all easy categories, it is slightly above the

mean at the difficult ones. The plots also show a certain

correlation between category difficulty and the mean area

of their annotated objects: the easy categories are the big

ones, while the small ones are the most challenging.

To get an overall idea of how the techniques compare at

this number of proposals per image, we rank all of them

for each category. Table 3 shows the mean position in the

ranking and the number of times each technique is the best

ranked. (Perfect result would get a mean ranking of 1 and

would be the best in all 80 categories.)

MCG GOP SCG RIGOR SeSe GLS

Mean rank 1.36 3.01 3.03 3.49 4.44 5.68

Times best 59 13 0 2 6 0

Table 3. SoA ranking in per-category results

Again, please keep in mind that some methods could be

optimized to get this number of proposals and potentially

improve their results.

4.3. Area and Localization of the Proposals

Section 3.3 analyzes the distribution of the annotated

objects size. This section performs the same analysis but

on the state-of-the-art object proposal techniques. Figure 8

shows the CDF of the generated proposals (as in Figure 5)

on the training set of COCO. We also plot the CDF for the

annotated objects and uniform distribution for reference.
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Figure 8. State-of-the-art proposals area: Cumulative distribu-

tion of the percentage of image area occupied, as in Figure 5.

We can observe significant differences between tech-

niques illustrated, for instance, by the percentage of pro-

posals whose area is below 5% of the image area (green

line ): 73% in case of GOP ( ) and 34% for GLS

( ). In all cases, the percentage of small objects is even

more significant in COCO, although GOP gets close.

To quantify the bias towards small objects, we compute

the area under these curves. A uniform distribution ( )

would give 0.5, and 1 would correspond to the extreme case

in which all proposals have a single pixel. Table 4 shows

these values for the SoA techniques and for the annotated

objects in COCO ( ).

Next, as done in Section 3.2 for the annotated objects,

Figure 9 shows the heat map of the proposal localization for
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Figure 7. State-of-the-art per-category evaluation: Per-category ABO on COCO14 train. All techniques are evalauted at around 650

proposals per image. The categories are sorted by category difficulty.

COCO GOP RIGOR MCG SCG GLS Uniform

0.95 0.93 0.91 0.87 0.86 0.83 0.50

Table 4. Bias towards small objects

the different proposal techniques. Comparing these plots to

those of the annotated objects (top-left), all techniques are

considerably less biased towards the center of the image.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

COCO14 RIGOR GOP

GLS MCG SCG

Figure 9. Object proposals localization frequency: Heat map of

the localization of the proposals by SoA techniques and COCO.

Symmetries are also characteristic: while COCO has

more objects on the lower half of the image, the current

techniques are almost perfectly symmetrical in all direc-

tions. In other words, SoA techniques do not take into ac-

count whether the image is upside down or not. There are

also differences in terms of shape: while most techniques

tend to have a rectangular distribution, MCG and SCG have

almost perfectly circular distributions.

To quantify the bias towards the center of the image, we

compute the volume under the heat map (recall that heat

maps are normalized to 1). A perfectly evenly-distributed

result would give 1, the extreme case of bias in which all

proposals are a single pixel in the center of the image would

approach 0. Table 5 shows these values for the object pro-

posal techniques and for the annotated objects in COCO.

COCO GOP RIGOR MCG GLS SCG Uniform

0.51 0.59 0.63 0.70 0.72 0.73 1.00

Table 5. Bias towards the center of the image

Again, we observe significant differences between tech-

niques, being some closer to the center-biased COCO, and

others closer to the uniform distribution.

4.4. Quality with respect to the Object Areas

As we have shown in Section 3.3, COCO is character-

ized by having much more percentage of small annotated

objects than its predecessors and, as seen in Section 4.2, the

categories with smaller objects tend to be more difficult for

current techniques. For these reasons, this section delves

into the analysis of the results with respect to the size of the

annotated objects.

A first attempt to visualize this data would be to plot

the best overlap (J) on all annotated objects with respect

to the percentage of the image area they occupy. Having so

many annotated objects, however, makes this plot unread-

able. We instead compute the bi-dimensional histogram of

these points, by counting the number of occurrences at each

square bin at a particular area and quality. Figure 10 shows

the heat map representing this histogram for MCG [4] and

GOP [18] on COCO14 train.

The trend of both techniques is clear: the smaller the

object, the worse the results. Comparing both techniques,

the most noticeable difference is at the objects smaller than

2−9 ≈ 0.2%, where GOP drops its performance drastically

while MCG holds better; but in any case almost all objects

in this range are clearly missed by the techniques (less than
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Figure 10. MCG vs GOP - ABO versus Area: Bi-dimensional

histogram on COCO comparing MCG and GOP at the same num-

ber of proposals per image (≈650)

J = 0.5). The bigger objects are marginally better repre-

sented by MCG while the middle ones by GOP.

The dashed line corresponds to the quality of the pro-

posal consisting of the whole image. Intuitively, the inter-

section with the ground-truth object would be the annotated

object itself and the union would be the whole image, so the

intersection over union of the full-image proposal would be

the percentage of area occupied by the object, thus y = x.

In other words, we can avoid having any result below

the dashed line by adding a single proposal to the set: the

full image. This gives us an idea of why big objects are

somehow easier to segment: it is more likely to overlap

with them by chance.

4.5. Maximum quality to expect in COCO

Superpixel techniques are commonly used to reduce the

computational load of the segmentation algorithms, while

keeping the achievable quality almost unchanged. In this

section we evaluate how true this statement is in COCO, es-

pecially focusing on the small object instances; which we

have show that are very numerous in COCO (Section 3.3)

and current object proposals techniques struggle to repre-

sent them correctly (Section 4.4).

We compute the SEEDS superpixels [26] (one of the

best-performing techniques to date) on the COCO training

dataset, and we evaluate how well we could perform if we

had an oracle merging the superpixels optimally to repre-

sent the annotated objects. Table 6 shows the achievable

Average Best Overlap, as well as the achievable Average

Recall, both computed as in Section 4.1.

Number of Superpixels 416 609 758 1074 3714

Av. Best Overlap COCO 0.587 0.625 0.649 0.681 0.769

Average Recall COCO 0.383 0.425 0.452 0.494 0.623

Boundary Recall BSDS 0.973 0.986 0.992 0.995 0.996

Table 6. SEEDS superpixel evaluation: Best representation given

by an oracle selecting the optimal superpixels

The results show that COCO objects are very challeng-

ing even if we could perform a perfect combination of state-

of-the-art superpixels. With 1074 superpixels, for instance,

we cannot even reach an AR of 0.5, and with four times the

number of superpixels we only get to 0.62.

As a sanity check, we compute and evaluate the SEEDS

superpixels also on the well-established BSDS500 [3].

The last row of Table 6 shows the percentage of anno-

tated boundaries that we can recover from the superpixels

(boundary recall). In this case, the performance of the su-

perpixels is the expected: an almost perfect result already

for less than 1000 superpixels.

So are current superpixel techniques as bad in COCO as

the results show? Or some of this loss of performance could

also be due to the lack of accuracy in COCO annotations (as

we can observe in Figure 2)? In other words, it is clear that

we cannot expect an achievable quality of J = 1 or full

recall, but how far from this we can achieve in COCO is

still to be proven. Having a subset of COCO annotated very

precisely by different individuals, for instance, would be a

way to find out, but the results of this section suggest that

we would not be close J = 1.

5. Boosting Object Proposals

Up until this point, we have shown that COCO is indeed

challenging for current state of the art, especially for hav-

ing very small objects. We could ask, however, whether all

the SoA techniques fail at the same objects systematically,

or instead their performance in the annotated objects is not

correlated. This could give us a sense of their combinabil-

ity, that is, whether we would benefit from combining the

proposals from different techniques.

To analyze it, we compute the quality that we would get

if we had an oracle choosing the best proposal on each ob-

ject from the full set of proposals from different techniques.

Table 7 shows the average recall, as done in Section 4, as

well as the same value for the techniques alone (in italics).

MCG SCG GOP GLS SeSe RIGOR

MCG 34.37 35.37 35.64 35.86 40.82 36.73

SCG 27.19 30.32 30.28 37.89 32.20

GOP 22.36 26.42 36.44 29.80

GLS 20.04 35.80 28.79

SeSe 33.46 37.24

RIGOR 25.84

Table 7. Average Recall (×100) of the combined techniques: If

an oracle selected the best proposal from each technique on every

object on the training set of COCO14

We observe significant improvements in the majority of

the combinations, and especially between MCG and SeSe,

which leads to an improvement of +6.45 with respect to the

best of the two. The global combination of all the tech-
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Figure 11. Achievable quality of current object proposal techniques and the suggested combination: Average Best Overlap (Jaccard

index) with respect to the number of proposals per image, on COCO14 train (left) and val (right)

niques leads to AR = 42.93. In a realistic environment,

in the absence of an oracle, however, this combination can

only be obtained by merging the sets of proposals from dif-

ferent techniques, which increases the number of propos-

als significantly; so we would like to reduce the size of the

whole set, keeping the quality as much as possible.

Intuitively, we would like to combine a subset of each

set of proposals into the global pool. For the techniques

that give ranked proposals, we will simply take the N best-

ranked proposals, and for the techniques without ranking,

we will consider a random subset of proposals. To learn the

number of proposals Ni that we take from each technique i,

we will use the Pareto front optimization presented in [4],

which aims at finding the parameterizations that correspond

to the Pareto front of number of proposals versus quality.

Figure 11 (left) shows the ABO on COCO train of the

state of the art techniques, as well as the proposed com-

binations of proposals ( ). As we can see, the full set

of combined proposals effectively improves the quality of

all techniques. On top of that, we are capable of reduc-

ing the number of proposals being better than all techniques

down to 300, where the combined quality converges to that

of MCG.

Figure 11 (right) shows the results on COCO validation,

where we have taken the parameters learnt in the training

set and used them directly on validation. As we can ob-

serve, this technique does not overfit and the improvement

in quality is kept also at test time. Overall, we achieve an

improvement of +3.2 points (5.2%) with respect to the full

set of MCG and +4.2 (6.7%) with respect to SeSe at their

same number of proposals per image.

6. Conclusions and Discussion

This paper analyzes the state of the art in segmented

object proposals, especially focusing on the challenges en-

countered when going from Pascal and SBD to COCO:

• We first provide an in-depth analysis of the three

databases: their number of images and categories, the

balance of their types of objects, and where and how big

the annotated objects are. We show that the three of them,

especially COCO, are biased towards small objects, cen-

tered in the image.

• We then provide an exhaustive and comprehensive review

of the state of the art in segmented object proposals, and

we thoroughly evaluate them on the three databases. We

analyze how aligned the SoA techniques are with the bias

observed in COCO towards small objects and the center

of the image. We also show how challenging small ob-

jects are for current SoA, and we question the maximum

quality that we can expect in COCO.

• Finally, we propose an algorithm to combine current SoA

techniques in COCO to boost their performance as an ex-

ample of the room for improvement available in COCO.

As future lines that we believe this work envisions:

• We have shown that the strong bias of the annotated

databases towards small and centered objects are not

present in the SoA proposals. Re-sampling the proposals

to fit the distribution of annotated objects size and loca-

tion could entail a significant improvement.

• The smallest annotated objects of COCO, and especially

those semi-transparent, are extremely challenging to seg-

ment. We have shown that, in fact, they are not even

captured by superpixels of a very fine granularity. This

can push us into the meeting point between detection and

segmentation. Would we better segmenting these type of

objects simply by detecting them?

• The Pareto combination of proposals relies on getting

the top proposals from each technique, emulated by a

random sampling when a ranking is not available. We

believe that having better rankings, or diverse rankings,

could provide further improvement to the combination of

techniques.
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[2] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and

J. Malik. Semantic segmentation using regions and parts. In

CVPR, 2012. 2
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