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Abstract

This paper addresses the problem of semantic segmenta-

tion of 3D indoor scenes reconstructed from RGB-D images.

Traditionally label prediction for 3D points is tackled by em-

ploying graphical models that capture scene features and

complex relations between different class labels. However,

the existing work is restricted to pairwise conditional ran-

dom fields, which are insufficient when encoding rich scene

context. In this work we propose models with higher-order

potentials to describe complex relational information from

the 3D scenes. Specifically, we relax the labelling prob-

lem to a regression, and generalize the higher-order asso-

ciative Pn Potts model to a new family of arbitrary higher-

order models based on regression forests. We show that

these models, like the robust Pn models, can still be de-

composed into the sum of pairwise terms by introducing

auxiliary variables. Moreover, our proposed higher-order

models also permit extension to hierarchical random fields,

which allows for the integration of scene context and fea-

tures computed at different scales. Our potential functions

are constructed based on regression forests encoding Gaus-

sian densities that admit efficient inference. The parameters

of our model are learned from training data using a struc-

tured learning approach. Results on two datasets show clear

improvements over current state-of-the-art methods.

1. Introduction

In recent years significant progress has been made in

Structure from Motion (SfM) and Visual Simultaneous Lo-

calisation and Mapping (VSLAM) and it is now possible to

perform real-time, dense 3D reconstruction in an indoor en-

vironment using either a single camera [18] or RGB-D sen-

sor [17]. However, even such dense representations are sim-

ply sets of 3D points encoding the scene geometry, and are

often inadequate for high-level applications such as mobile

robot navigation or manipulation [2]. In this paper we aim

to generate more meaningful representations of 3D scenes

in terms of semantic regions and objects, rather than pure

3D point clouds.

Although there has been remarkable progress in 2D im-

age semantic segmentation, 3D scene semantic labelling has

not received as much attention or achievement (though some

notable exceptions exist, e.g., [12, 8]). Unlike 2D images

which capture specific views, 3D reconstructed point clouds

cover the whole scene with a large number of things and

stuff, making label prediction more challenging. Yet 3D

data inherently carries rich contextual information benefi-

cial for the label prediction task if successfully exploited.

Koppula et al. [12] proposed a graphical model with sophis-

ticated pairwise potentials to encode contextual relations be-

tween different objects for 3D indoor scene understanding.

The model parameters are learned from training data us-

ing a Structured Support Vector Machine (SSVM) approach.

Kahler and Reid [8] learn similar potential functions us-

ing Decision Tree Fields (DTF) [19] and Regression Tree

Fields (RTF) [7]. The tree based method [8] is more efficient

and yields similar segmentation accuracies. Although initial

promising results have been reported, both of these models

restrict themselves to pairwise potential functions limiting

their ability to encode complex geometrical and topological

characteristics of 3D scenes.

We propose to overcome the above-mentioned limita-

tions of previous work by introducing a novel higher-order

model for semantic 3D indoor scene labelling. Our higher-

order potentials can capture much more structural informa-

tion embedded in the scene than the common pairwise po-

tentials, thus effectively yield more accurate label predic-

tions. Moreover, we extend the proposed higher-order mod-

els to hierarchical models that allow the incorporation of

features and contextual information evaluated at different

scales for even better performance.

Specifically, we generalize the popular higher-order as-

sociative Pn Potts model [9] and its robustified version [10]

to a new family of arbitrary higher-order models. Similar

to the robust Pn models, our higher-order potentials can

be decomposed into the sum of pairwise terms by intro-

ducing auxiliary variables, thus admitting efficient inference

and learning. The main difference is that rather than penal-

izing the count of variables (within a clique) that disagree

with the dominant label as in the Potts models, our higher-

order potentials employ more arbitrary penalty functions to
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Figure 1: An overview of our 3D scene semantic labelling approach. Given a 3D point cloud (left) reconstructed from RGB-D

images, we decompose the scene into layers (e.g. segments, super-segments), construct a hierarchical graph (middle), and

finally predict a category label for each segment (right) using a hierarchical higher-order regression trees based CRF model.

For clarity, we only show non-overlapping super-segments, in practice super-segments could overlap each others.

describe complex relations. The main drawback is that the

proposed functions are no longer submodular and cannot be

optimised efficiently using graph-cuts. To overcome this dif-

ficulty we use Gaussian functions over encoded continuous

vector-valued labels, which are particularly convenient to

optimise (i.e. find the mean/mode of the Gaussian). Impor-

tantly, the Gaussian parameters (i.e., mean and covariance

matrix) are drawn from learned regression trees conditioned

on the data, resulting in expressive potentials unlike stan-

dard Gaussian CRFs [26]. Inspired by the Regression Tree

Fields recently proposed in [7], we learn regression trees and

associate different Gaussian parameters with each leaf node.

Conditioned on the clique data, active Gaussian parameters

for the higher-order potential functions are selected via deci-

sion rules. Both the tree structures and the Gaussian param-

eters at the leaves can be effectively learned from training

data.

Another important contribution of our work is a novel

non-parametric hierarchical CRF model for 3D scene se-

mantic labelling that allows us to integrate scene context

as well as features at different scales. To do so, we ex-

tend our proposed higher-order regression forest CRF by in-

troducing hierarchical connections between auxiliary vari-

ables. More specifically, we first oversegment a 3D point

cloud into hierarchy of layers—a segment (i.e., groups of

3D points) layer, a super-segments (i.e., groups of segments)

layer, and so on. We then build a hierarchical graph in which

base-layer nodes and cliques represent segments and groups

of segments, respectively, second-layer nodes correspond

to super-segments, etc. Fig. 1 shows an overview of our

3D scene labelling pipeline. We empirically evaluate our

proposed hierarchical higher-order model using two 3D in-

door scene datasets, namely Cornell-RGBD [12] and NYU

Depth [25]. The experimental results show that our models,

which better exploit the scene context, greatly outperform

the standard pairwise CRF models.

2. Related Work

Recently, there has been considerable efforts devoted to

automatic labelling of 3D point clouds acquired from laser

scans or RGB-D sensors (Kinect) for both outdoor [23, 28,

16] and indoor [27, 12, 8] environments; though these ef-

forts are not yet as well developed as their 2D image coun-

terparts. Similar to standard (2D) semantic image segmen-

tation, the 3D point cloud labelling task aims at assigning

a category label to each 3D point in the cloud. A common

solution is to train a classifier (e.g., random forest or support

vector machine) to assign a semantic label to each point in-

dependently. This line of work usually requires rich feature

descriptors extracted at every point [22, 4]. Nevertheless

when the features are not sufficiently discriminative to pre-

dict labels correctly, exploiting contextual information of 3D

scenes can significantly improve performance [3, 14, 12, 8].

Such contextual priors are commonly encoded using condi-

tional Markov random fields (CRFs).

A number of 3D scene understanding methods make the

assumption that neighbouring points should belong to the

same object. Such simple smoothness priors can be en-

coded using pairwise associative CRFs [3, 14]. Though im-

provements have been observed, associative potentials are

clearly insufficient to encode complex relations between dif-

ferent classes in 3D data, for example, sky above grass,

computers on top of tables. Moreover, associative poten-

tials tend to over-smooth the labelling. To address these is-

sues, non-associative pairwise graphical models have been

proposed [24, 23]. However, as shown in [12], models

with both associative and non-associative terms are more

appropriate since not every relation is non-associative. As a

consequence, the authors introduced a parsimonious model

with coupled associate and non-associative pairwise poten-

tials. The model is learned using a Structured Support Vec-

tor Machine approach. In [8], similar pairwise potentials

are trained using Decision Tree Fields [19] and Regression

Tree Fields [7]. While these models have proven useful for
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indoor scene semantic segmentation, they are restricted to

pairwise potentials which are in many cases cannot encode

complex geometrical and topological arrangements between

different objects in 3D scenes. We address this inadequacy

by proposing CRF models with sophisticated higher-order

potentials.

Higher-order potentials have shown their superiority in

many (image) labelling problems [10, 11, 15, 21]. Con-

sider, for example, the robust Pn Potts models [10], which

enforces label consistency over image regions (i.e. super-

pixels) and has been shown to outperform standard pair-

wise smoothness potentials. Nevertheless, such higher-

order smoothness potentials fail to encode complex non-

associative relations between labels, and thus are restrictive

for our problem. Our work extends the robust Pn mod-

els to a new class of rich, arbitrary (both associative and

non-associative depending on data content) potentials for

3D indoor scene semantic labelling. Although pattern based

higher-order potentials (e.g. [11, 15]) allow complex rela-

tions to be encoded, these potential are only applicable to

fixed-size cliques, thus less flexible than ours.

A few works consider higher-order potentials for point

cloud labelling. For instance Najafi et al. [16] introduce a

non-associative higher-order Markov network for classify-

ing 3D point clouds arising from laser scans. The authors in-

troduced various pattern-based higher-order potentials such

as simple label co-occurrences, geometric co-occurrences

to encode scene context. The patterns are learned from a

large amount of training data. As expected, their higher-

order models yield improved point cloud classification as

compared to the pairwise counterparts. However, since in-

ference is solved using loopy belief propagation algorithm,

their method does not allow large cliques (ignoring cliques

of order six or higher) and has no convergence guarantees.

Moreover, the model parameters are learned by a cross-

validation strategy, which is not effective for higher-order

terms as shown in [20]. In contrast, our models allow ar-

bitrary clique sizes, and all the parameters are effectively

learned using a structured learning approach.

3. 3D Indoor Scene Semantic Labelling

Given a sequence of RGB-D images recorded from a

Kinect sensor, our system starts by reconstructing a 3D

dense volumetric representation of the scene. It then extracts

features and finally semantically labels the 3D points. Ex-

cept for the final label prediction, all pre-processing steps in

our model are similar to previous works [12][8]. We there-

fore focus on describing the label prediction algorithm in the

next sections, and defer discussion of the 3D reconstruction

and feature extraction until Sec. 5.

Assume we are given a reconstructed point cloud X =
{x1,x2, . . . ,xN}. Our goal is to assign a semantic label yi

(e.g. table, computer, etc.) to each 3D point xi. Note that

the semantic labels yi can be encoded using either discrete

values or continuous vectors [7]. A typical assignment is

denoted as Y = {y1,y2, . . . ,yN}. The “best” labelling

can be computed by optimising an energy function, which

relates observations (i.e., 3D points) and labels

Y ∗ = argmin
Y

E(Y ,X,W), (1)

where W are the model parameters. To this end, one needs

to define an appropriate energy function E, an efficient al-

gorithm for inference as well as a training algorithm to learn

the model parameters W . Next we will describe these tasks

in detail.

4. Random Fields For Label Prediction

Conditional Markov random fields (CRFs) are a class of

structured prediction model that is well suited for predicting

labels in point clouds and images. Due to computational

concerns during learning and inference, pairwise CRFs are

commonly used in practice. Here the energy function for the

CRF includes unary and pairwise terms only:

E(Y ,X,W) =
∑

i∈V

ψi
u(yi,X,W) (2)

+
∑

(i,j)∈E

ψij
p (yi,yj ,X,W),

where G = 〈V, E〉 is a graph with a set of vertices V index-

ing random variables and a set of edges E connecting pairs

of variables (often only those in a local neighbourhood). The

functions ψi
u(.) and ψij

p (.) are unary and pairwise potentials,

respectively. The unary term usually represents the negative

log-likelihood of independently assigning label yi to node

xi, while the pairwise term models prior knowledge of the

underlying scene, e.g., label smoothness. Pairwise models

are generally inadequate at capturing complex scene context

(e.g., higher-dependencies between multiple nodes) and in

many cases can result in poor quality segmentations. Our

main contribution in this work is in introducing a new class

of higher-order potential to model rich contextual informa-

tion existing in 3D scenes, which can still be optimised effi-

ciently.

4.1. Higher­order Potentials

A higher-order CRF energy can be written as:

E(Y ,X,W) =
∑

i∈V

ψi
u(yi,X,W) (3)

+
∑

(i,j)∈E

ψij
p (yi,yj ,x,W) +

∑

c∈C

ψc
h(yc,X,W),

where C is a set of cliques; yc = {yi}i∈c. The higher-order

potentials ψc
h(.) are inherently more powerful than pairwise

potentials but present difficulties for learning and inference

except for some very special forms. In the discrete case (i.e.,

yi ∈ L = {1, 2, . . . }), for example, the most well-known

higher-order function in computer vision is the robust Pn

Potts model [10], defined as:

ψc
h(yc) = min

l∈L

(

γmax
c , γlc +

∑

i∈c

wik
l
c∆(yi 6= l)

)

, (4)
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A higher-order clique Transformed pairwise cliques

Figure 2: Left: A toy factor graph with a higher-order

clique. Right: The higher-order clique can be transformed

to a set of pairwise cliques by introducing an auxiliary node.

where γlc, wi, and klc are model parameters; ∆ is the indica-

tor function. The energy is truncated by a constant γmax
c . In-

tuitively, the robust Pn Potts models encourage all the nodes

within a clique c to take the same label. Function (4) assigns

a cost wik
l
c for every node i within the clique c that does

not take the dominant label l⋆, up to a maximum amount

γmax
c . As shown in [10] function (4) can be transformed to

submodular pairwise functions and thus can be optimised ef-

ficiently using graph-cuts based move-making methods [5].

However a limitation of the robust Pn model is that it is as-

sociative and consequently unable to encode rich relational

information between different labels.

In this work we propose more flexible higher-order

potentials to capture geometric relationships within the

cliques. For example, we wish to favour a local region with

labels {keyboard, mouse, table-top} and penalize a local re-

gion with labels {keyboard, fridge, ceiling}. Essentially,

variables in a higher-order clique are allowed to take differ-

ent labels so long as these labels are all contextually consis-

tent. To that end, we generalize the robust Pn Potts model

to the following higher-order potential:

ψc
h(yc,X,W) = min

z
φcu(z,X,W)+

∑

i∈c

φcp(yi, z,X,W)

(5)

where z is an auxiliary variable, φcu(.) and φcp(.) are arbi-

trary functions that capture a preference for z and the in-

teraction energy between z and yi, respectively. Both func-

tions are conditioned on clique features. The intuition is that

given a clique c with a set of labels {yi : i ∈ c}, the poten-

tial (5) will find the best “label” z for the whole clique c,

which summarizes the contents of the clique and enforces

contextual consistency on the label of every node yi in the

clique i ∈ c. Fig. 2 illustrates the factor graphs.

The richness of potential (5) raises two important issues.

First, unlike the robust Pn Potts model, (5) cannot be opti-

mised using efficient graph-cut based algorithms as it now

contains general (non-submodular) terms φcu(.) and φcp(.).
Second, the variable z needs to encode contextual informa-

tion (i.e., valid label sets) rather than just a single dominant

label as in (4).

To address the above issues, we model the variables z

and yi as continuous vectors. Particularly, z,yi ∈ R
m

Figure 3: Left: A simple factor graph with pairwise and

higher-order cliques. Right: A hierarchical graph includes a

base layer, inter-layer connections and a second layer.

where m is the number of considered labels. The nth en-

try of z (or yi) represents the confidence of taking the nth

label. Effectively z represents multiple labels with differ-

ent confidences. Moreover we formulate φcu(.) and φcp(.)
as multivariate Gaussian functions to facilitate efficient op-

timisation. Importantly, to overcome the restrictiveness of a

single Gaussian model, we generate different Gaussian func-

tions depending on the clique data contexts. In Sec. 4.3, we

will show how to use regression trees to map from clique

data to local Gaussian models.

The complete energy function of our higher-order CRF is

E(Y ,X,W) = Eu(Y ,X,W) + Ep(Y ,X,W) (6)

+min
Z

∑

c∈C

(

φcu(zc,X,W) +
∑

i∈c

φcp(yi, zc,X,W)

)

,

whereEu(Y ,X,W) andEp(Y ,X,W) are unary and pair-

wise energies as defined in (2), and Z = {zc} is a set of

auxiliary variables (one for each clique).

4.2. Hierarchical CRFs

Inspired by [13], we extend our higher-order CRFs to hi-

erarchical pairwise CRFs. Suppose that we are interested

in further encoding pairwise relationships between auxiliary

variables, we arrive at the following energy function:

E(Y ,X,W) = Eu(Y ,X,W) + Ep(Y ,X,W) (7)

+min
Z

∑

c∈C

∑

i∈c

φcp(yi, zc,X,W)

+
∑

c∈C

φcu(zc,X,W) +
∑

(i,j)∈C

ψc
p(zi, zj ,X,W).

The energy (7) can be interpreted as follows. The first two

terms are unary and pairwise for the base layer, the third

term involves inter-layer connections, and the last two terms

are unary and pairwise for the second layer. Fig. 3 depicts a

factor graph of a two-layer hierarchical CRF.

There is no technical reason why we cannot add more

layers to our model. As above we can continue adding

higher-order potentials over the auxiliary variables in the

second layer and end up with a three-layer hierarchical

CRFs. In general, the energy of our hierarchical CRFs can
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Figure 4: Illustration of regression forest fields for unary

potentials. Unary features are passed down the trees to select

appropriate parameters at leaf nodes. The final unary cost

are computed by summing up the energies from different

trees in the forest.

be written recursively as

E(Y ,X,W) = Eu(Y ,X,W) + Ep(Y ,X,W) (8)

+min
Z

Econn(Y ,Z,X,W) + E(Z,X,W),

where

Econn(Y ,Z,X,W) =
∑

c∈C

∑

i∈c

φcp(yi, zc,X,W) (9)

is the inter-layer connection energy; E(Z,X,W) has the

same form as E(Y ,X,W).
Ladicky et al. [13] showed that hierarchical CRFs have

considerable advantages over standard CRFs, in that they

allow feature extraction and encoding of scene context at

multiple scales, and thus harvest more useful statistics from

the observed data. Consequentially, hierarchical CRFs yield

better label predictions. Compared to the hierarchical CRF

proposed in [13], our model is more expressive and flex-

ible since it considers not only associative but also non-

associative potentials.

4.3. Regression Forest Based CRFs

Having described the intuition behind our higher-order

and hierarchical CRF models, in this section we detail the

actual formulations of ψi
u(.), ψ

ij
p (.), φcu(.), φ

c
p(.) and φcp(.),

which are used in energies (6) and (8). Inspired by Janc-

sary et al. [7], we construct our potential functions using re-

gression trees, which are non-parametric and take quadratic

forms. For example, the unary potential is defined as:

ψi
u(yi,X,W) =

1

2
yT
i Θ

u
i (X,W)yi − yiθ

u
i (X,W),

(10)

where yi ∈ R
m, positive-definite matrix Θ

u
i (X,W) ∈

S
m
++ and vector θu

i (X,W) ∈ R
m are local unary param-

eters. These parameters are extracted from the global model

parameters W and observations X via regression trees.

In particular, we first learn regression trees for the unary

factor, and also Gaussian parameters (i.e. Θu
i (X,W) and

θu
i (X,W)) at leaf nodes from training data (see Sec. 4.4 for

details). Then the unary energy ψi
u(yi,X,W) is computed

by passing the features extracted at xi down the regression

trees, and eventually reaching leaf nodes via decision rules.

Finally the energy ψi
u(yi,X,W) can be calculated trivially

via (10) (see Fig. 4).

Similarly, the pairwise energy is defined as:

ψij
p (yi,yj ,X,W) =

1

2
yT
ijΘ

p
ij(X,W)yij−yijθ

p
ij(X,W),

(11)

where yij is simply a concatenation of yi and yj , e.g.

yij = [yi,yj ]. Θ
p
ij(X,W) ∈ S

2m
++ and θ

p
ij(X,W) ∈ R

2m

are pairwise parameters. Similar to the unary factor, we also

learn a regression forest for the pairwise factor and the cor-

responding Gaussian parameters at leaf nodes from training

data. Note that all the parameters (the unary, pairwise and

others factors) are jointly learned (see Sec. 4.4). At test time,

we pass the features extracted at xi, xj down the regression

trees to select the active local Gaussian model for (11).

Thanks to the graph construction in Sec. 4.1 (see Fig. 2),

our higher-order energy is equivalent to a summation of

unary and pairwise energies φcu(.), φ
c
p(.) over the auxiliary

variables. Accordingly, they can be defined as:

φcu(zc,X,W) =
1

2
zT
c Θ

u
c (X,W)zc − zcθ

u
c (X,W),

(12)

φcp(yi, zc,X,W) =
1

2
[yi zc]

T
Θ

p
ic(X,W)[yi zc] (13)

− [yi zc]
Tθ

p
ic(X,W).

Finally the pairwise energies between auxiliary variables are

defined in an analogous manner to (11) and (13).

Note that the quadratic energies (10), (11), (12) and (13)

are actually the canonical forms of the correspond-

ing Gaussian densities with, for instance, mean µ =
Θ

u
i (X,W)−1θu

i and covariance Σ = Θ
u
i (X,W)−1 for

the unary energy, which are particularly convenient for in-

ference and learning. However, unlike the restricted uni-

modality Gaussian CRFs [26], regression trees based CRFs

are much more flexible and powerful as the potentials are

conditioned on the data via sophisticated regression trees.

Effectively they admit to generate different Gaussian models

for different data-dependent contexts. Moreover, the poten-

tials can be either associative or non-associative depending

on the input data and thus which leaf nodes are selected.

4.4. Inference and Learning

For notational simplicity let us consider a two-layer

model. Since all the terms are quadratic forms, we can stack

the model parameters to end up with a single quadratic en-

ergy function:

E(Ỹ ,X,W) =
1

2
Ỹ T

Θ(X,W)Ỹ − Ỹ θ(X,W) (14)

where Ỹ = [Y Z] (Z are auxiliary variables for the second

layer); Θ and θ are stacked parameters, Θ ∈ S
m(|V||C|)
++ and

θ ∈ R
m(|V||C|).
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Assume that we have learned the forest structures and

parameters W , the inference task is to find the optimal

prediction Ỹ ∗, which can be computed analytically as

Ỹ ∗ = Θ(X,W)−1θ(X,W). However, for large prob-

lems computing the inverses of the high-dimensional matri-

ces Θ(X,W) is prohibitively expensive. Many large-scale

linear equation solvers can be used to solve this problem.

In our work we resort to the standard L-BFGS optimisation

method, as done in [8]. Given the optimal Y ∗, the actual

predicted labels can be computed trivially by extracting the

index of largest entry in each vector y∗
i .

To learn the trees and the model parameters W , we fol-

low the two-steps approach proposed in [7, 8]. Particu-

larly, given training data including a pair of observations

and ground true labels 〈X,Y 〉 (concatenated from a large

collection of training instances), we first learn the regres-

sion forests for unary, pairwise and higher-order terms sep-

arately using the classical variance reduction criterion [6].

We randomly split the data into smaller equal-size subsets

which are used to learn the trees separately. Once the tree

structures have been learned, the second step is to optimise

the parameters W , i.e., the Gaussian parameters at each

leaf of the trees. Since the objective function (14) is high-

dimensional, optimising W using the maximum likelihood

method (MLE) is infeasible since it requires expensive com-

putation of the inverse of the matrix Θ (for computing gra-

dients). Thus we use the pseudo-likelihood (MPLE) method

instead as suggested by Jancsary et al. [7]. The idea is to de-

compose the large optimisation problem into smaller ones,

each of which can be solved efficiently. As a consequence,

we need to solve the following optimisation problem:

W∗ ∈ argmin
W∈Ω

−
∑

i∈V

log(p(yi | Ỹ \ yi,X,W)) (15)

−
∑

c∈C

log(p(zc | Ỹ \ zc,X,W)),

where Ω is a constraint set that enforces the matrices Θ
u
. ,

Θ
p
. be positive-definite. The (log) probability of variable yi

conditioned on other variables is given as:

log(p(yi | Ỹ \ yi,X,W)) = ψi
u(yi,X,W) (16)

+
∑

j∈Ni

ψij
p (yi,yj ,X,W) +

∑

c∈Ci

φcp(yi, zc,X,W) + k,

where Ni is a set of neighbours of node i and Ci is a set of

cliques containing node i, and k is a constant. The proba-

bility of the variable zc can be derived similarly. The con-

strained non-linear problem (15) can be solved by using the

projected L-BFGS method. We refer readers to [7] for more

details.

5. Implementation Details

So far we have presented our higher-order and hierarchi-

cal CRF models for label prediction, we now describe our

full 3D indoor semantic scene labelling pipeline which ad-

ditionally includes the 3D reconstruction and feature extrac-

tion subroutines. Our system builds on the work of [8] and

unless otherwise stated, the basic steps are the same. A brief

description is given as below, details can be found in [8].

5.1. 3D Reconstruction

Starting with a sequence of RGB-D images of an indoor

scene captured from a depth sensor (Kinect), we first gen-

erate a dense volumetric representation of the scene. This

can be achieved using the KinectFusion algorithm [17]. As

suggested in [8], we utilise both depth and color (RGB) in-

formation for better reconstructions.

5.2. Oversegmentation

As the reconstructed 3D scene is composed of millions of

3D points, learning and inference on such large graphs could

be computationally expensive. To reduce the computational

expense, we over-segment the point cloud into thousands of

segments, each of which hopefully covers part of a distinct

object; we then predict labels for the segments instead. We

resort to the over-segmentation algorithm proposed in [8],

based on SLIC [1] super-pixels for 2D images.

5.3. Graph Construction

Given a set of available segments, we construct a graph

whose nodes associate with the segments. We create edges

between pairs of segments whose distances are less than

a certain threshold d1 (e.g., d1 = 0.3 meters). To create

cliques, we simply group neighbouring segments, which are

not necessarily visually and geometrically similar, though

more complicated strategies (e.g. [16]) can be investigated.

In particular, we uniformly select 50% number of segments

to be the clique centroids, then for each centroid we add

up the segments within a certain distance d2 from the cen-

troid, resulting in cliques. Unlike the previous associative

higher-order models [10, 13, 20] which create cliques by

grouping similar pixels/voxels likely from the same object,

our cliques are allowed to contain parts of different ob-

jects, requiring no expensive clustering algorithms as for in-

stance in [13]. Moreover, our cliques potentially could be

overlapped and vary in size. These cliques are also called

super-segments. For our hierarchical model, we connect

super-segments whose distances between their centroids are

smaller than a threshold d3.

5.4. Feature Extraction

Node Features. In order to predict the labels for the

segments accurately, we need to extract expressive and dis-

criminative features for each segment. Similar to the previ-

ous work [12, 8], features should encode visual appearance,

shape and geometrical properties. The appearance features

are computed by using histogram of HSV colors and his-

togram of gradients (HOG) , whereas shape and geometric

features describe, for example, planarity, area, height above

the ground floor. (See [8] for the full list of node features

and detailed computations.) Finally the extracted features

are binned using the cumulative binning strategy [2].
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Methods
Parameter settings

Macro P Macro R Micro P/R Training Inference
# trees d1 d2 d3

Unary 15 - - - 31.40 29.20 65.49 12min 0.4sec

Pairwise RTF [8] 15 0.3 - - 59.00 33.18 76.13 5.5h 17sec

Higher-order RTF 15 0.3 0.3 - 63.44 36.94 78.44 8.8h 29sec

Hierarchical RTF 15 0.3 0.3 0.6 65.01 36.23 78.00 12.6h 32sec

Pairwise RTF [8] 15 0.6 - - 61.69 37.27 78.37 8.4h 36sec

Table 1: Experimental results on Cornell-RGBD-Dataset [12]. The table shows the average precision and recall over 5-fold

cross valiation. Average training and testing time are also included. It can be seen that our higher-order and hierarchical

models clearly outperform the unary and pairwise models. Note that the micro precision and micro recall are identical since

the algorithms predict one label for each segment.

Methods
Parameter settings

Macro P Macro R Micro P/R Training Inference
# trees d1 d2 d3

Unary 10 - - - 33.38 34.86 46.20 16m 2.0sec

Pairwise RTF [8] 10 0.3 - - 56.11 42.32 61.28 3.4h 30sec

Higher-order RTF 10 0.3 0.3 - 57.27 42.88 61.83 6h 48sec

Hierarchical RTF 10 0.3 0.3 0.6 59.24 43.09 62.67 9.8h 71sec

Table 2: Comparable results on NYU Depth dataset [25]. Average precision and recall as well as training, testing time for

different methods are shown. Again higher-order and hierarchical models have considerable improvement over the pairwise

and unary models. The micro precision and micro recall are identical since the algorithms predict one label for each segment.

Clique Features. We take the average over the binned

features of all the segments constituting the clique as the

clique features.

Pairwise Features. To describe the contextual relations

between two segments, we extract features based on the dif-

ferences of their appearances and their relative geometric

arrangement. Specifically, we compute the absolute differ-

ences of HSV values and HOG descriptors. The geometric

relations include, for example, angle between normals, dis-

tance between two centroid, co-planarity, connectivity, etc.

Again we adopt features from [8]. Similar to the node fea-

tures, the pairwise features are binned before being used.

Inter-layer Features. As mentioned previously, our

higher-order and hierarchical models require pairwise con-

nections between segments and super-segments (cliques).

We simply compute the pairwise features between the seg-

ment and the clique centroid.

Pairwise Features for Cliques. Our hierarchical model

also requires pairwise features between super-segments.

Similar to the pairwise features between segments, we also

compute the appearance differences and relative geometric

relations between super-segments. Since a super-segment

is constructed by adding neighbouring segments to a central

segment, we instead compute pairwise features between two

central segments.

6. Experimental Results

Closely following the protocol described in [8], we

conducted experiments on 3D indoor scene understanding

using two datasets (Cornell-RGBD-Dataset [2] and NYU

Depth [25]). The two datasets are collections of RGB-D

images acquired from Kinect sensors. We used 24 office

scenes from the Cornell-RGBD-Dataset and 40 home-office

sequences from NYU Depth for the experiments. To create

ground truth labels for training and testing, we follow the

method described in [8]. In particular, the 3D ground truth

labels are obtained by re-projecting all the 3D segments into

the original images, where ground truth labels have been

manually annotated.

We compare our higher-order and hierarchical models

against the state-of-the-art pairwise models for 3D indoor

scene understanding [8][12]. The trees based method [8] is

actually a special case of our framework, where the higher-

order terms are omitted. We have not successfully managed

to run the SVM based method [12] on the datasets we have

considered since it requires a prohibitive amount of memory

to process using their publicly available implementation1.

Nevertheless, using a much smaller dataset, it has been re-

ported in [8] that the SVM based method is comparable with

the trees based pairwise model [8]. We also include a model

with unary terms only into comparisons to demonstrate the

advantages of scene contexts for label prediction. Note that

we use the same number of trees and depths for all the mod-

els to ensure fair comparison.

We evaluate all methods using 5-fold cross validation.

In each run, 80% of data is randomly selected for train-

ing and the remained 20% is for testing. As in [12][8][2]

we compute the average macro precision and recall, mi-

cro precision and recall across the folds for performance

comparisons. The numerical results are reported in Table 1

(Cornell-RGBD) and Table 2 (NYU Depth). A sample of

1http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
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(a) A 3D point cloud (b) Unary model (c) Pairwise model

Wall

Ground floor

Table

Picture

Unknown

Cabinet

Sofa

(d) Ground truth (e) Higher-order model (f) Hierarchical model

Figure 5: A sample of 3D semantic scene labelling results on NYU Depth dataset using different methods. Note that the light

purple regions with the unknown label result from either inconsistent labels or missing labels when the 3D scene is projected

into multiple ground truth labelled 2D images. We ignored these regions during training and testing.

qualitative results is shown in Fig. 5.

In both datasets, the first impression is that scene contexts

are particularly useful for label prediction. It is clear that

the models encoding scene context (via pairwise, higher-

order potentials) significantly outperform the unary model.

Around 10-20% improvements can be observed in precision

and recall separately. The results also show that the higher-

order model considerably improves the pairwise model in

macro precision, but is only slightly better in macro recall

and micro precision (see Table 2). This can be explained by

the fact that the truth labels for different object classes are

very imbalanced (e.g., a majority of labels go to floors and

walls while a small amount goes to objects such as laptops,

books). As a result, average precision across the class la-

bels (macro precision) is more appropriate for these datasets.

Further improvements can be observed in our hierarchical

model.

Certainly, our proposed models are more expensive in

both learning and inference than the unary and pairwise

models since our higher-order and hierarchical graphs are

more complicated with more nodes and edges. On the other

hand, we have attempted to test denser pairwise models with

more edge connections (by increasing the context range d1).

We observed that the denser pairwise models slightly in-

crease the performance, yet the training and inference costs

significantly increase. Indeed, the last row in Table 1 re-

veals that the pairwise model with context range d1 = 0.6
(meters) is still worse than our higher-order model with

d1 = 0.3, d2 = 0.3 (meters), but its inference is about 1.5

times slower.

It is worth mentioning that we have constructed very sim-

ple higher-order cliques (i.e. by grouping nearby segments)

and extracted their features by simply taking average of seg-

ments’ features for all the experiments. We believe that

more sophisticated hierarchical scene decomposition and

higher-order clique feature extraction would definitely fur-

ther improve the performance.

7. Conclusion

We have proposed higher-order and hierarchical CRF

models for 3D scene semantic labelling, which have the abil-

ity to strongly exploit complex contextual information in 3D

scenes. Our higher-order potentials encourage geometrical

consistencies within groups of 3D segments, thus more ad-

vantageous in extracting relational information between dif-

ferent objects than the pairwise potentials. Furthermore, our

hierarchical model enables us to exploit the scene context

and extract features at multiple scales. The model considers

short range interactions between parts of objects at low lev-

els, and long range interactions between different objects at

high levels. We showed that the proposed methods clearly

outperform the state-of-the-art pairwise models for 3D se-

mantic scene understanding on two different datasets. It is

important to note that our proposed models are general and

could be applied to any multi-labelling problems, which we

plan to consider in our future work.

Acknowledgements

This research was supported by the Australian Re-

search Council through the Centre of Excellence for

Robotic Vision (CE140100016) and Laureate Fellowship

(FLFL130100102) to IDR.

2253



References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Su. Slic superpixels compared to state-of-the-art super-

pixel methods. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 34(11):2274–2282, 2012. 6

[2] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena.

Contextually guided semantic labeling and search for three-

dimensional point clouds. Int. J. Rob. Res., 32(1):19–34, Jan.

2013. 1, 6, 7

[3] D. Anguelov, B. Taskarf, V. Chatalbashev, D. Koller,

D. Gupta, G. Heitz, and A. Ng. Discriminative learning of

markov random fields for segmentation of 3d scan data. In

Computer Vision and Pattern Recognition (CVPR), 2005. 2

[4] J. Behley, V. Steinhage, and A. Cremers. Performance of his-

togram descriptors for the classification of 3d laser range data

in urban environments. In Robotics and Automation (ICRA),

2012. 2

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Trans. on Pattern

Analysis and Machine Intelligence (PAMI), 23(11):1222–

1239, 2001. 4

[6] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-

cation and Regression Trees. Wadsworth and Brooks, Mon-

terey, CA, 1984. 6

[7] J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression

tree fields - an efficient, non-parametric approach to image

labeling problems. In CVPR, 2012. 1, 2, 3, 5, 6

[8] O. Kahler and I. Reid. Efficient 3d scene labeling using fields

of trees. In The IEEE International Conference on Computer

Vision (ICCV), December 2013. 1, 2, 3, 6, 7

[9] P. Kohli, M. Kumar, and P. Torr. P3 beyond: Solving energies

with higher order cliques. In CVPR, 2007. 1
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