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Abstract

The objective of this work is human pose estimation in

videos, where multiple frames are available. We investigate

a ConvNet architecture that is able to benefit from tempo-

ral context by combining information across the multiple

frames using optical flow.

To this end we propose a network architecture with the

following novelties: (i) a deeper network than previously in-

vestigated for regressing heatmaps; (ii) spatial fusion lay-

ers that learn an implicit spatial model; (iii) optical flow

is used to align heatmap predictions from neighbouring

frames; and (iv) a final parametric pooling layer which

learns to combine the aligned heatmaps into a pooled con-

fidence map.

We show that this architecture outperforms a number of

others, including one that uses optical flow solely at the in-

put layers, one that regresses joint coordinates directly, and

one that predicts heatmaps without spatial fusion.

The new architecture outperforms the state of the art

by a large margin on three video pose estimation datasets,

including the very challenging Poses in the Wild dataset,

and outperforms other deep methods that don’t use a

graphical model on the single-image FLIC benchmark (and

also [5, 35] in the high precision region).

1. Introduction

Despite a long history of research, human pose estima-

tion in videos remains a very challenging task in computer

vision. Compared to still image pose estimation, the tem-

poral component of videos provides an additional (and im-

portant) cue for recognition, as strong dependencies of pose

positions exist between temporally close video frames.

In this work we propose a new approach for using op-

tical flow for part localisation in deep Convolutional Net-

works (ConvNets), and demonstrate its performance for hu-

man pose estimation in videos. The key insight is that, since

for localisation the prediction targets are positions in the

image space (e.g. (x, y) coordinates of joints), one can use

dense optical flow vectors to warp predicted positions onto

a target image. In particular, we show that when regressing

a heatmap of positions (in our application for human joints),

the heatmaps from neighbouring frames can be warped and

aligned using optical flow, effectively propagating position

confidences temporally, as illustrated in Fig 1.

We also propose a deeper architecture that has additional

convolutional layers beyond the initial heatmaps to enable

learning an implicit spatial model of human layout. These

layers are able to learn dependencies between human body

parts. We show that these ‘spatial fusion’ layers remove

pose estimation failures that are kinematically impossible.

Related work. Traditional methods for pose estimation

have often used pictorial structure models [2, 8, 10, 27, 39],

which optimise a configuration of parts as a function of lo-

cal image evidence for a part, and a prior for the relative

positions of parts in the human kinematic chain. An alter-

native approach uses poselets [1, 13]. More recent work has

tackled pose estimation holistically: initially with Random

Forests on depth data [12, 29, 31, 34] and RGB [3, 4, 24],

and most recently with convolutional neural networks.

The power of ConvNets has been demonstrated in a wide

variety of vision tasks – object classification and detec-

tion [11, 21, 28, 40], face recognition [32], text recogni-

tion [15, 16], video action recognition [20, 30] and many

more [7, 22, 25].

For pose estimation, there were early examples of using

ConvNets for pose comparisons [33]. More recently, [37]

used an AlexNet-like ConvNet to directly regress joint co-

ordinates, with a cascade of ConvNet regressors to improve

accuracy over a single pose regressor network. Chen and

Yuille [5] combine a parts-based model with ConvNets (by

using a ConvNet to learn conditional probabilities for the

presence of parts and their spatial relationship with image

patches). In a series of papers, Tompson, Jain et al. devel-

oped ConvNet architectures to directly regress heatmaps for

each joint, with subsequent layers to add an Markov Ran-

dom Field (MRF)-based spatial model [17, 36], and a pose

refinement model [35] (based on a Siamese network with

shared weights) upon a rougher pose estimator ConvNet.
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Figure 1. Deep expert pooling architecture for pose estimation. The network takes as an input all RGB frames within a n-frame

neighbourhood of the current frame t. The fully convolutional network (consisting of a heatmap net with an implicit spatial model)

predicts a confidence heatmap for each body joint in these frames (shown here with a different colour per joint). These heatmaps are then

temporally warped to the current frame t using optical flow. The warped heatmaps (from multiple frames) are then pooled with another

convolutional layer (the temporal pooler), which learns how to weigh the warped heatmaps from nearby frames. The final body joints are

selected as the maximum of the pooled heatmap (illustrated here with a skeleton overlaid on top of the person).

Temporal information in videos was initially used with

ConvNets for action recognition [30], where optical flow

was used as an input motion feature to the network. Fol-

lowing this work, [18, 24] investigated the use of temporal

information for pose estimation in a similar manner, by in-

putting flow or RGB from multiple nearby frames into the

network, and predicting joint positions in the current frame.

However, pose estimation differs from action recogni-

tion in a key respect which warrants a different approach to

using optical flow: in action recognition the prediction tar-

get is a class label, whereas in pose estimation the target is

a set of (x, y) positions onto the image. Since the targets

are positions in the image space, one can use dense optical

flow vectors not only as an input feature but also to warp

predicted positions in the image, as done in [4] for random

forest estimators. To this end, our work explicitly predicts

joint positions for all neighbouring frames, and temporally

aligns them to frame t by warping them backwards or for-

wards in time using tracks from dense optical flow. This ef-

fectively reinforces the confidence in frame t with a strong

set of ‘expert opinions’ (with corresponding confidences)

from neighbouring frames, from which joint positions can

be more precisely estimated. Unlike [4] who average the

expert opinions, we learn the expert pooling weights with

backpropagation in an end-to-end ConvNet.

Our ConvNet outperforms the state of the art on three

challenging video pose estimation datasets (BBC Pose,

ChaLearn and Poses in the Wild) – the heatmap regressor

alone surpasses the state of the art on these datasets, and the

pooling from neighbouring frames using optical flow gives

a further significant boost. We have released the models and

code at http://www.robots.ox.ac.uk/˜vgg.

2. Temporal Pose Estimation Networks

Fig 1 shows an overview of the ConvNet architecture.

Given a set of input frames within a temporal neighbour-

hood of n frames from a frame t, a spatial ConvNet re-

gresses joint confidence maps (‘heatmaps’) for each input

frame separately. These heatmaps are then individually

warped to frame t using dense optical flow. The warped

heatmaps (which are effectively ‘expert opinions’ about

joint positions from the past and future) are then pooled

into a single heatmap for each joint, from which the pose

is estimated as the maximum.

We next discuss the architecture of the ConvNets in de-

tail. This is followed by a description of how optical flow is

used to warp and pool the output from the Spatial ConvNet.

2.1. Spatial ConvNet

The network is trained to regress the location of the hu-

man joint positions. However, instead of regressing the joint

(x, y) positions directly [24, 37], we regress a heatmap of

the joint positions, separately for each joint in an input im-

age. This heatmap (the output of last convolutional layer,

conv8) is a fixed-size i × j × k-dimensional cube (here

64 × 64 × 7 for k = 7 upper-body joints). At training

time, the ground truth label are heatmaps synthesised for

each joint separately by placing a Gaussian with fixed vari-

ance at the ground truth joint position (see Fig 2). We then
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k joints

Figure 2. Regression target for learning the Spatial ConvNet.

The learning target for the convolutional network is (for each of

k joints) a heatmap with a synthesised Gaussian with a fixed vari-

ance centred at the ground truth joint position. The loss is l2 be-

tween this target and the output of the last convolutional layer.

use an l2 loss, which penalises the squared pixel-wise dif-

ferences between the predicted heatmap and the synthesised

ground truth heatmap.

We denote the training example as (X,y), where y

stands for the coordinates of the k joints in the image X.

Given training data N = {X,y} and the ConvNet regres-

sor φ (output from conv8), the training objective becomes

the task of estimating the network weights λ:

argmin
λ

∑

(X,y)∈N

∑

i,j,k

‖Gi,j,k(yk)− φi,j,k(X, λ)‖2 (1)

where Gi,j,k(yi) =
1

2πσ2 e
−[(y1

k
−i)2+(y2

k
−j)2]/2σ2

is a Gaus-

sian centred at joint yk with fixed σ.

Discussion. As noted by [36], regressing coordinates di-

rectly is a highly non-linear and more difficult to learn map-

ping, which we also confirm here (Sect 5). The benefits

of regressing a heatmap rather than (x, y) coordinates are

twofold: first, one can understand failures and visualise the

‘thinking process’ of the network (see Figs 3 and 5); second,

since by design, the output of the network can be multi-

modal, i.e. allowed to have confidence at multiple spatial

locations, learning becomes easier: early on in training (as

shown in Fig 3), multiple locations may fire for a given

joint; the incorrect ones are then slowly suppressed as train-

ing proceeds. In contrast, if the output were only the wrist

(x, y) coordinate, the net would only have a lower loss if it

gets its prediction right (even if it was ‘growing confidence’

in the correct position).

Architecture. The network architecture is shown in Fig 1,

and sample activations for the layers are shown in Fig 5.

To maximise the spatial resolution of the heatmap we make

two important design choices: (i) minimal pooling is used

(only two 2× 2 max-pooling layers), and (ii) all strides are

Iteration 262,400 

Iteration 1,146,400

Figure 3. Multiple peaks are possible with the Spatial ConvNet.

Early on in training (top), multiple locations may fire for a given

joint. These are then suppressed as training proceeds (bottom).

The arrows identify two modes for the wrist; one correct, one er-

roneous. As the training proceeds the erroneous one is diminished.

unity (so that the resolution is not reduced). All layers are

followed by ReLUs except conv9 (the pooling layer). In

contrast to AlexNet [21], our network is fully convolutional

(no fully-connected layers) with the fully-connected layers

of [21] replaced by 1 × 1 convolutions. In contrast to both

AlexNet and [35], our network is deeper, does not use local

contrast normalisation (as we did not find this beneficial),

and utilises less max-pooling.

2.2. Spatial fusion layers

Vanilla heatmap pose nets do not learn spatial dependen-

cies of joints, and thus often predict kinematically impos-

sible poses (see examples in the extended arXiv version of

this paper). To address this, we add what we term ‘spatial

fusion layers’ to the network. These spatial fusion layers

(normal convolutional layers) take as an input pre-heatmap

activations (conv7), and learn dependencies between the hu-

man body parts locations represented by these activations.

In detail, these layers take as an input a concatenation of

conv7 and conv3 (a skip layer), and feed these through five

more convolutional layers with ReLUs (see Fig 4). Large

kernels are used to inflate the receptive field of the network.

We attach a separate loss layer to the end of this network

and backpropagate through the whole network.

2.3. Optical flow for pose estimation

Given the heatmaps from the Spatial ConvNet from mul-

tiple frames, the heatmaps are reinforced with optical flow.

This is done in three steps: (1) the confidences from nearby
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Figure 4. Spatial fusion layers. The fusion layers learn to encode dependencies between human body parts locations, learning an implicit

spatial model.
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conv8 (output)

conv5

Figure 5. Sample activations for convolutional layers. Neu-

ron activations are shown for three randomly selected channels

for each convolutional layer (resized here to the same size), with

the input (pre-segmented for visualisation purposes) shown above.

Low down in the net, neurons are activated at edges in the im-

age (e.g. conv1 and conv2); higher up, they start responding more

clearly to body parts (conv6 onwards). The outputs in conv8 are

shown for the right elbow, left shoulder and left elbow.

frames are aligned to the current frame using dense optical

flow; (2) these confidences are then pooled into a compos-

ite confidence map using an additional convolutional layer;

and (3) the final upper body pose estimate for a frame is

then simply the positions of maximum confidence from the

composite map. Below we discuss the first two steps.

Step 1: Warping confidence maps with optical flow.

For a given frame t, pixel-wise temporal tracks are com-

puted from all neighbouring frames within n frames from

((t−n) to (t+n)) to frame t using dense optical flow [38].

These optical flow tracks are used to warp confidence values

in neighbouring confidence maps to align them to frame t

by effectively shifting confidences along the tracks [4]. Ex-

ample tracks and the warping of wrist confidence values are

shown in Fig 6.

Step 2: Pooling the confidence maps. The output of

Step 1 is a set of confidence maps that are warped to frame

t. From these ‘expert opinions’ about the joint positions,

the task is first to select a confidence for each pixel for each

joint, and then to select one position for each joint. One

solution would be to simply average the warped confidence

maps. However, not all experts should be treated equally:

intuitively, frames further away (thus with more space for

optical flow errors) should be given lower weight.

To this end we learn a parametric cross-channel pooling

layer that takes as an input a set of warped heatmaps for a

given joint, and as an output predicts a single ‘composite

heatmap’. The input to this layer is a i× j× t heatmap vol-

ume, where t is the number of warped heatmaps (e.g. 31 for

a neighbourhood of n = 15). As the pooling layer, we train

a 1 × 1 kernel size convolutional layer for each joint. This

is equivalent to cross-channel weighted sum-pooling, where

we learn a single weight for each input channel (which cor-

respond to the warped heatmaps). In total, we therefore

learn t× k weights (for k joints).
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Right wrist (wrong)

Right wrist (correct)

(a) Frame t (b) Confidence at t (c) Warping (d) Pooled at t

Figure 6. Warping neighbouring heatmaps for improving pose estimates. (a) RGB input at frame t. (b) Heatmap at frame t for right

hand in the image. (c) Heatmaps from frames (t − n) and (t + n) warped to frame t using tracks from optical flow (green & blue lines).

(d) Pooled confidence map with corrected modes.

BBC Ext. BBC ChaLearn PiW

Train frames 1.5M 7M 1M 4.5K (FLIC)

Test frames 1,000 1,000 3,200 830

Train labels [2] [2, 3] Kinect Manual

Test labels Manual Manual Kinect Manual

Train videos 13 85 393 -

Val videos 2 2 287 -

Test videos 5 5 275 30

Table 1. Dataset overview, including train/val/test splits.

3. Implementation Details

Training. The input frames are rescaled to height 256. A

248 × 248 sub-image (of the N × 256 input image) is ran-

domly cropped, randomly horizontally flipped, randomly

rotated between −40◦ and −40◦, and resized to 256× 256.

Momentum is set to 0.95. The variance of the Gaussian is

set to σ = 1.5 with an output heatmap size of 64 × 64. A

temporal neighbourhood of n = 15 is input into the para-

metric pooling layer. The learning rate is set to 10−4, and

decreased to 10−5 at 80K iterations, to 10−6 after 100K it-

erations and stopped at 120K iterations. We use Caffe [19].

Training time. Training was performed on four NVIDIA

GTX Titan GPUs using a modified version of the Caffe

framework [19] with multi-GPU support. Training Spatial-

Net on FLIC took 3 days & SpatialNet Fusion 6 days.

Optical flow. Optical flow is computed using FastDeep-

Flow [38] with Middlebury parameters.

4. Datasets

Experiments in this work are conducted on four large

video pose estimation datasets, two from signed TV broad-

casts, one of Italian gestures, and the third of Hollywood

movies. An overview of the datasets is given in Table 1.

The first three datasets are available at http://www.

robots.ox.ac.uk/˜vgg/data/pose.

BBC Pose dataset. This dataset [3] consists of 20 videos

(each 0.5h–1.5h in length) recorded from the BBC with an

overlaid sign language interpreter. Each frame has been as-

signed pose estimates using the semi-automatic but reliable

pose estimator of Buehler et al. [2] (used as training labels).

1,000 frames in the dataset have been manually annotated

with upper-body pose (used as testing labels).

Extended BBC Pose dataset. This dataset [24] contains

72 additional training videos which, combined with the

original BBC TV dataset, yields in total 85 training videos.

The frames of these new videos have been assigned poses

using the automatic tracker of Charles et al. [3]. The output

of this tracker is noisier than the semi-automatic tracker of

Buehler et al., which results in partially noisy annotations.

ChaLearn dataset. The ChaLearn 2013 Multi-modal

gesture dataset [9] contains 23 hours of Kinect data of 27

people. The data includes RGB, depth, foreground seg-

mentations and full body skeletons. In this dataset, both

the training and testing labels are noisy (from Kinect). The

large variation in clothing across videos poses a challenging

task for pose estimation methods.

Poses in the Wild (PiW) and FLIC datasets. The Poses

in the Wild dataset [6] contains 30 sequences (total 830

frames) extracted from Hollywood movies. The frames are

annotated with upper-body poses. It contains realistic poses

in indoor and outdoor scenes, with background clutter, se-

vere camera motion and occlusions. For training, we fol-

low [6] and use all the images annotated with upper-body

parts (about 4.5K) in the FLIC dataset [26].

5. Experiments

We first describe the evaluation protocol, then present

comparisons to alternative network architectures, and fi-

nally give a comparison to state of the art. A demo video is

online at http://youtu.be/pj2N5DqBOgQ.

5.1. Evaluation protocol and details

Evaluation protocol. In all pose estimation experiments

we compare the estimated joints against frames with manual
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ground truth (except ChaLearn, where we compare against

output from Kinect). We present results as graphs that plot

accuracy vs distance from ground truth in pixels, where a

joint is deemed correctly located if it is within a set distance

of d pixels from a marked joint centre in ground truth.

Experimental details. All frames of the training videos

are used for training (with each frame randomly augmented

as detailed above). The frames are randomly shuffled prior

to training to present maximally varying input data to the

network. The hyperparameters (early stopping, variance σ

etc.) are estimated using the validation set.

Baseline method. As a baseline method we include a Co-

ordinateNet (described in [23]). This is a network with sim-

ilar architecture to [28], but trained for regressing the joint

positions directly (instead of a heatmap) [24].

Computation time. Our method is real-time (50fps on 1

GPU without optical flow, 5fps with optical flow).

5.2. Component evaluation

For these experiments the SpatialNet and baseline are

trained and tested on the BBC Pose and Extended BBC Pose

datasets. Fig 7 shows the results for wrists

With the SpatialNet, we observe a significant boost in

performance (an additional 6.6%, from 79.6% to 86.1% at

d = 6) when training on the larger Extended BBC dataset

compared to the BBC Pose dataset. As noted in Sect 4, this

larger dataset is somewhat noisy. In contrast, the Coordi-

nateNet is unable to make effective use of this additional

noisy training data. We believe this is because its target

(joint coordinates) does not allow for multi-modal output,

which makes learning from noisy annotation challenging.

We observe a further boost in performance from using

optical flow to warp heatmaps from neighbouring frames

(an improvement of 2.6%, from 86.1% to 88.7% at d = 6).

Fig 9 shows the automatically learnt pooling weights. We

see that for this dataset, as expected, the network learns to

weigh frames temporally close to the current frame higher

(because they contain less errors in optical flow).

Fig 8 shows a comparison of different pooling types (for

cross-channel pooling). We compare learning a parametric

pooling function to sum-pooling and to max-pooling (max-

out [14]) across channels. As expected, parametric pool-

ing performs best, and improves as the neighbourhood n

increases. In contrast, results with both sum-pooling and

max-pooling deteriorate as the neighbourhood size is in-

creased further, as they are not able to down-weigh predic-

tions that are further away in time (and thus more prone to

errors in optical flow). As expected, this effect is particu-

larly noticeable for max-pooling.

Failure modes. The main failure mode for the vanilla

heatmap network (conv1-conv8) occurs when multiple

modes are predicted and the wrong one is selected (and the
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on BBC Pose. Plots show accuracy as the allowed distance from

manual ground truth is increased. CoordinateNet is the network

in [23]; SpatialNet is the heatmap network; and SpatialNet Flow

is the heatmap network with the parametric pooling layer. ‘Ex-

tended’ indicates that the network is trained on Extended BBC

Pose instead of BBC Pose. We observe a significant gain for the

SpatialNet from using the additional training data in the Extended

BBC dataset (automatically labelled – see Sect 4) training data,

and a further boost from using optical flow information (and se-

lecting the warping weights with the parametric pooling layer).
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Figure 8. Comparison of pooling types. Results are shown for

wrists in BBC Pose at threshold d = 5px. Parametric pooling

(learnt cross-channel pooling weights) performs best.

resulting poses are often kinematically impossible for a hu-

man to perform). Examples of these failures are included in

the extended arXiv version of this paper. The spatial fusion

layers resolve these failures.

5.3. Comparison to state of the art

Training. We investigated a number of strategies for

training on these datasets including training from scratch

(using only the training data provided with the dataset), or

training on one (i.e. BBC Pose) and fine-tuning on the oth-

ers. We found that provided the first and last layers of the

Spatial Net are initialized from (any) trained heatmap net-

work, the rest can be trained either from scratch or fine-

tuned with similar performance. We hypothesise this is be-

cause the datasets are very different – BBC Pose contains

long-sleeved persons, ChaLearn short-sleeved persons and
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Weights shown for the right wrist. The centre frame receives high-

est weight. The jitter in weights is due to errors in optical flow

computation (caused by the moving background in the video) – the

errors become larger further away from the central frame (hence

low or even negative weights far away).

Poses in the Wild contains non-frontal poses with unusual

viewing angles. For all the results reported here we train

BBC Pose from scratch, initialize the first and last layer

from this, and fine-tune on training data of other datasets.

BBC Pose. Fig 10 shows a comparison to the state of

the art on the BBC Pose dataset. We compare against all

previous reported results on the dataset. These include

Buehler et al. [2], whose pose estimator is based on a pic-

torial structure model; Charles et al. (2013) [3] who uses

a Random Forest; Charles et al. (2014) [4] who predict

joints sequentially with a Random Forest; Pfister et al.

(2014) [24] who use a deep network similar to our Coor-

dinateNet (with multiple input frames); and the deformable

part-based model of Yang & Ramanan (2013) [39].

We outperform all previous work by a large margin, with

a particularly noticeable gap for wrists (an addition of 10%

compared to the best competing method at d = 6).

Chalearn. Fig 11 shows a comparison to the state of the

art on ChaLearn. We again outperform the state of the

art even without optical flow (an improvement of 3.5% at

d = 6), and observe a further boost by using optical flow

(beating state of the art by an addition of 5.5% at d = 6),

and a significant further improvement from using a deeper

network (an additional 13% at d = 6).

Poses in the Wild. Figs 12 & 14 show a comparison to

the state of the art on Poses in the Wild. We replicate the

results of the previous state of the art method using code

provided by the authors [6]. We outperform the state of the

art on this dataset by a large margin (an addition of 30% for

wrists and 24% for elbows at d = 8). Using optical flow

yields a significant 10% improvement for wrists and 13%

for elbows at d = 8. Fig 15 shows example predictions.

FLIC. Fig 13 shows a comparison to the state of the art

on FLIC. We outperform all pose estimation methods that
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Figure 13. Comparison to state of the art on FLIC. Solid lines

represent deep models; methods with a square (�) are without a

graphical model; methods with an asterisk (*) are with a graphical

model. Our method outperforms competing methods without a

graphical model by a large margin in the high precision area (an

addition of 20% at d = 0.05).
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Figure 10. Comparison to the state of the art on BBC Pose. Plots show accuracy per joint type (average over left and right body parts)

as the allowed distance from manual ground truth is increased. We outperform all previous work by a large margin; notice particularly the

performance for wrists, where we outperform the best competing method with an addition of 10% at d = 6. Our method uses SpatialNet

Flow Extended. Pfister et al. (2014) uses Extended BBC Pose; Buehler et al., Charles et al. and Yang & Ramanan use BBC Pose.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 [
%

]

Distance from GT [px]

Elbows

 

 

Cherian et al. (2014)

Yang & Ramanan (2013)

SpatialNet Fusion Flow

SpatialNet Fusion

SpatialNet

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 [
%

]

Distance from GT [px]

Shoulders

Figure 14. Poses in the Wild: elbows & shoulders.

don’t use a graphical model, and match or even slightly out-

perform graphical model-based methods [5, 35] in the very

high precision region (< 0.05 from GT). The increase in

accuracy at d = 0.05 is 20% compared to methods not us-

ing a graphical model, and 12% compared to [5] who use a

graphical model. Tompson et al. is [35]; Jain et al. is [17].

Predictions are provided by the authors of [5, 35] and eval-

uation code by the authors of [35].

6. Conclusion

We have presented a new architecture for pose estimation

in videos that is able to utilizes appearances across multiple

frames. The proposed ConvNet is a simple, direct method

for regressing heatmaps, and its performance is improved

by combining it with optical flow and spatial fusion lay-

ers. We have also shown that our method outperforms the

state of the art on three large video pose estimation datasets.

Figure 15. Example predictions on Poses in the Wild.

Further improvements may be obtained by using additional

inputs for the spatial ConvNet, for example multiple RGB

frames [24] or optical flow [18] – although prior work has

shown little benefit from this so far.

The benefits of aligning pose estimates from multiple

frames using optical flow, as presented here, are comple-

mentary to architectures that explicitly add spatial MRF and

refinement layers [35, 36].

Finally, we have demonstrated the architecture for hu-

man pose estimation, but a similar optical flow-mediated

combination of information could be used for other tasks in

video, including classification and segmentation.
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