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Abstract

Face alignment, especially on real-time or large-scale

sequential images, is a challenging task with broad appli-

cations. Both generic and joint alignment approaches have

been proposed with varying degrees of success. However,

many generic methods are heavily sensitive to initializa-

tions and usually rely on offline-trained static models, which

limit their performance on sequential images with exten-

sive variations. On the other hand, joint methods are re-

stricted to offline applications, since they require all frames

to conduct batch alignment. To address these limitations,

we propose to exploit incremental learning for personal-

ized ensemble alignment. We sample multiple initial shapes

to achieve image congealing within one frame, which en-

ables us to incrementally conduct ensemble alignment by

group-sparse regularized rank minimization. At the same

time, personalized modeling is obtained by subspace adap-

tation under the same incremental framework, while cor-

rection strategy is used to alleviate model drifting. Ex-

perimental results on multiple controlled and in-the-wild

databases demonstrate the superior performance of our ap-

proach compared with state-of-the-arts in terms of fitting

accuracy and efficiency.

1. Introduction

Recently, analysing image sequences in large-scale and

unconstrained conditions attracts increasing interest in com-

puter vision community [40]. In the context of face-related

topics, sequential face alignment, i.e., fitting facial land-

marks on consecutive frames, is a crucial task with a wide

range of applications, such as Face Verification [31], Facial

Action Unit (FAU) analysis [35] and Human-Computer In-

teraction (HCI) [25]. It is challenging due to the extensive

rigid and non-rigid variations of human faces [15], as well

as unconstrained imaging conditions such as illumination

changes and occlusions.

It has been shown that either generic face alignment [6,

(a) Generic approaches are sensitive to initializations.

Joint

Alignment

#" #"

(b) Joint approaches are restricted to offline batch alignment.

Figure 1: Limitations of existing methods. Yellow points:

different initial shapes. Green points: well-aligned land-

marks. Red points: mis-aligned landmarks.

23, 28, 30, 33, 38], aligning each frame independently in

a tracking-by-detection manner by various facial landmark

detectors [10, 22], or joint face alignment [7, 8, 27, 36],

aligning all frames simultaneously in a batch manner, can

be employed for sequential face alignment.

Generic face alignment starts the fitting process from an

initial shape, e.g., a mean face [6, 33] or the result of the last

frame [1, 28]), and deform the shape constrained by facial

deformable models (FDMs) to minimize the reconstruction

residual by either gradient descend optimization [28, 30]

or cascade/boosted regression [6, 33]. They have shown

great success on single image with respect to the efficiency,

e.g., face alignment at 3000 FPS [23], and unconstrained

scenarios, e.g., face alignment in the wild [33]. However,
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they have significant limitations when applied to dynamic

streams with extensive variations: (1) They lack the capa-

bility to capture the personalized information and imaging

continuity in consecutive frames, due to their reliance on

offline-trained static FDMs and thus the difficulty of in-

corporating any motion information. (2) Many of them

are heavily sensitive to initializations, as illustrated in Fig-

ure 1(a), since both gradient descend and regression-based

methods may be trapped in local optima when starting from

poor initial guess.

Joint face alignment, on the other hand, take the advan-

tage of the shape and appearance consistency to simultane-

ously minimize fitting errors for all frames [7, 8, 27, 36].

They are more robust to illumination changes and partial

occlusions than generic methods [8]. However, they still

have limitations in two aspects. (1) Most of them can only

handle offline tasks as they require all frames to conduct

batch alignment, as illustrated in 1(b), which severely im-

pedes their applications on either real-time or large-scale

tasks. (2) Some of them attempt to achieve personalized

modeling without correction, which may inevitably result

in drifting during the model update.

In this paper, we propose personalized incremental en-

semble alignment to address aforementioned issues. Instead

of the single initialization, we incorporate motion informa-

tion to sample multiple initial shapes and conduct generic

alignment in parallel at each frame. The image congealing

is then achieved within one frame, which enables the en-

semble alignment to be performed in an incremental man-

ner by constrained robust decomposition. At the same time,

personalized modeling is achieved by subspace adaptation

under the same incremental framework, while correction

strategy is used to alleviate model drifting. To sum up, our

main contributions are the follows:

• To the best of our knowledge, this is the first work to

address initialization-sensitivity issue of generic meth-

ods by ensemble initialization with motion models.

• The proposed incremental framework is radically dif-

ferent from existing joint alignment with respect to the

congealing manner, i.e., intra- v.s. inter-frame.

• The proposed group-sparse regularized rank minimiza-

tion is well designed for incremental framework, and

guarantees robust personalized modeling on the fly.

By conducting extensive experiments on multiple public

and unconstrained databases, we show that our approach

has significant accuracy improvement compared with state-

of-the-arts, while constant computational cost w.r.t. both

CPU time and memory usage is guaranteed. These mer-

its make our approach very suitable for real-time and large-

scale applications.

2. Related Work

We briefly reviews both generic and joint approaches

in this section. Based on the different FDMs employed,

existing face alignment approaches can be categorized as

methods based on either holistic models, e.g., active ap-

pearance models (AAMs) [9], or part-based models, e.g.,

constrained local models (CLMs) [28].

Among generic face alignment approaches, part-based

FDMs combined with regression-based fitting strategies

attract intensive interest. For instance, Cao et al. [6]

achieved explicit shape regression (ESR) by combining

shape-indexed feature selection and multi-layer boosted re-

gression. Xiong et al. [33] proposed supervised descent

method (SDM) for fast optimization by concatenating SIFT

features and applying cascade non-linear regression. Al-

though they have shown great success on single image [23],

however, the static FDMs and initialization-sensitivity issue

severely limited their performance on streaming data with

extensive variations.

Multiple efforts were devoted to address these limita-

tions. For instance, Asthana et al. [2] improved SDM by

updating cascade regressors in parallel for incremental face

alignment (IFA). Yan et al. [34] proposed to rank and com-

bine multiple hypotheses (CMH) in a structural SVM frame-

work to address the initialization-sensitivity issue. Zhu et

al. [39] proposed to search the best initial shape in a coarse-

to-fine manner. However, the temporal constraints, w.r.t.

personalized shape, appearance and motion cues in sequen-

tial inputs, are hardly investigated in these approaches.

To this end, joint face alignment approaches, which take

the advantage of consistency constraints to minimize fit-

ting errors for all frames, are mainly applied. For instance,

Zhao et al. [36] proposed to regularize the holistic texture

by enforcing all frames to lie in a low-rank subspace. The

drawback of this method is that it did not incorporate any

face prior, which may result in arbitrary deformations dur-

ing joint optimization. To address this problem, Cheng et

al. [7] proposed to use anchor shapes to penalize arbitrary

deformations; while Sagonas et al. [27] proposed to em-

ploy a clean face subspace trained offline to restrict opti-

mization directions. The most prominent limitation of these

joint methods is that they can hardly handle real-time or

large-scale applications since they lack the capability to in-

crementally utilize consecutive information.

More recently, Zhang et al. [37] proposed to use dictio-

nary learning to achieve sparse representations for rigid ob-

ject tracking [32]. However, it is nontrivial to apply dic-

tionary learning for sequential face alignment as face may

undergo extensive non-rigid deformations. Moreover, It

remains a challenging task to simultaneously address the

initialization-sensitivity issue and adapt FDMs for person-

specific modeling in a unified framework.
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Figure 2: Overview of our approach: (a) Ensemble Initialization (3.1), (b) generic face alignment in parallel, (c) Constrained

Decompostion (3.3), (d) Fitting Recovery (3.4), (e) fitting evaluation and (f) Personlized Adaptation (3.5).

3. Proposed Approach

In this paper, we propose a novel approach for sequen-

tial face alignment. To address the sensitivity issue, we in-

corporate motion model to sample multiple initial shapes at

each frame, i.e., Ensemble Initialization. Then we employ

off-the-shelf generic approach to conduct batch face align-

ment in parallel. The alignment results are re-organized in a

part-based manner, i.e., Part-based Representation. By con-

ducting low-rank and group-sparse optimization, i.e., Con-

strained Decomposition, we can recover the best fitting S∗

from the part-based representation, i.e., Fitting Recovery.

Finally, personalized modeling is achieved by robust sub-

space adaptation, i.e., Personalized Adaptation. Please refer

to Figure 2 for an overview of our approach.

3.1. Ensemble Initialization

Initialization is the first and key step in landmark local-

ization. It is easy to get a landmark correctly aligned if it is

initialized closely to the ground-truth. This fact motivates

us to incorporate Bayesian motion models [11] to sample

multiple initial shapes for ensemble initialization.

Let s denote the latent state, i.e., the scale, rotation, trans-

lation and deformation of initial shapes, y denote the obser-

vation, i.e., fitting results, we can sample an ensemble of

particles, i.e., initial shapes, at time t from the prediction:

p(st|y1:t−1) =

∫

q(st|st−1)p(st−1|y1:t−1)dst−1, (1)

where q(st|st−1) is the state transition probability, and the

integration can be approximated by efficient Markov chain

Monte Carlo (MCMC) sampling [21]. The posterior state

distribution is then updated at time t by:

p(st|y1:t) ∝ p(yt|st)p(st|y1:t−1), (2)

where p(yt|st) is the observation model, which is the key

component that evaluates the goodness of the corresponding

initial shape. We model it using group-sparse fitting errors

and introduce the details in Section 3.4.

This motion model guarantees that more initial shapes

with higher weights are sampled near the optimum, which

can effectively overcome the sensitivity issue. More im-

portantly, the ensemble makes it possible to conduct joint

alignment in an incremental manner since the congealing

can be achieved within the same frame.

3.2. Partbased Representation

Once K initial shapes are sampled, we can employ an

off-the-shelf generic face alignment approach, e.g., ESR

[6] and SDM [33], to obtain a batch of erroneous fittings

{S1, . . . , SK}. It is worth noting that the efficiency is guar-

anteed since generic approaches are highly efficient [23]

and we can conduct batch alignments in parallel.

To conduct batch alignment, former approaches [7, 27,

36] usually use holistic FDMs to parameterize the shape

and appearance separately and bridge the two by image

warping [9]. Apart from the very time-consuming warping

operations, this representation is susceptible to occlusions

and illumination changes due to the limitations of holistic

FDMs.

We propose a new part-based representation to jointly

depict the shape and appearance:

A = [(x1 − x̄)T f(x1)
T . . . (xL − x̄)T f(xL)

T ]T ,

where (x1− x̄) ∈ R
2 are centralized landmark coordinates,

f(x) ∈ R
d are feature vector extracted from the image

patch centered at x. This part-based representation is ex-

tremely fast to compute. The direct concatenation of the

landmark coordinates and feature vectors can greatly facili-

tate the constrained decomposition in the next section.
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3.3. Constrained Decomposition

The next goal is to recover the best fitting S∗ from

{S1, . . . , SK}. We propose a constrained decomposition

based on the following facts and observations. (a) Each of

{S1, . . . , SK} is aligned to the same face but with fitting er-

rors. (b) With respect to the kth shape, only a small number

of its landmarks are misaligned. (c) With respect to the lth

landmark, only a small number of shapes are misaligned.

Low-Rank Representation Constraint. Let U ∈
R

N×M denote an orthogonal subspace learned from anno-

tated training images, X = [A1, . . . ,AK ] ∈ R
N×K denote

the batch observation matrix. Based on the observation (a)

we have the following low-rank constraint:

arg min
C,E

rank(C), s. t. X = UC+E, (3)

where C ∈ R
M×K is the encoding matrix, E ∈ R

N×K

is the error matrix. In the ideal case, rank(C) = 1, since

all columns represent the same face. However, the correct

fitting is not unique, e.g., profile landmarks remain well-

aligned even when they move a little along the face contour.

Therefore, we seek for rank minimization for robustness.

In experiments, we find that only using encodings of

aligned shapes in current frame may cause the recovered

S∗ to deform arbitrarily in certain cases. To address this

problem, we incorporate prior knowledge for temporal con-

sistency in the low-rank constraint. That is, we minimize

rank([C|Co]) instead of rank(C), where Co ∈ R
M×Ko

are the encodings of well-aligned candidates from tracked

frames. We set Ko = K/10 in our experiments.

Group-Sparse Error Constraint. Owing to the special-

designed part-based representation, the error matrix E in

Equation 3 has the group structure:

E =







ǫ11 · · · ǫK1
...

. . .
...

ǫ1L · · · ǫKL






,

vec(E) =
[

ǫ11, . . . , ǫ
K
1 , . . . , ǫ

1
L, . . . , ǫ

K
L

]

,

(4)

where ǫkl ∈ R
2+d is the fitting errors of the lth landmark in

the kth shape. vec(·) performs block-wise vectorization.

According to observation (b)-(c), the nonzero entries of

E should be sparse with respect to both columns and rows,

which is equivalent to the group-sparse constraint:

arg min
C,E

‖p · vec(E)‖2,0, s. t. X = UC+E, (5)

where p =

[

I2×2 ⊗ ρ 0

0 Id×d

]

balances the error contribu-

tions between the shape and appearance. ρ is the mean ratio

from feature vectors to centralized landmark coordinates.

Robust Decomposition. Given the constraints in Equa-

tion 3 and 5, we can achieve the object function for robust

decomposition:

arg min
Cn,Ev,C,E

‖Z‖2F + λ1rank(Cn) + λ2‖Ev‖2,0

subject to Z = X−UC−E,

Cn = [C|Co] , Ev = p · vec(E).

(6)

where λ1, λ2 are non-negative parameters to balance con-

tributions between the two constraints. We present an effi-

cient solution for the optimization in Section 4.

3.4. Fitting Recovery

The error matrix E guarantees robust decomposition

against outliers such as illumination changes and partial oc-

clusions [24]. More importantly, we can recover a well-

aligned S∗ from {S1, . . . , SK} by investigating its group-

sparse structure.

Equation 4 indicates that ǫkl measures the fitting errors of

Sk at the lth landmark. Therefore, each row of E models

the errors distribution of all aligned shapes with respect to

the same indexed landmark. Let S∗ = {x∗1, . . . , x
∗
L}, x

∗
l

can be recovered by using the intra-row ℓ2-norm of E to

weight the same indexed landmark of all aligned shapes:

x∗
l =

1

ql

ΣK
k=1e

−‖ǫkl ‖2xk
l , where ql = ΣK

k=1e
−‖ǫkl ‖2 . (7)

Besides the row structure, we also investigate the column

structure of E to present the observation model p(yt|st) of

Equation 2. Considering the fact that the kth column of E

measures the overall fitting errors of Sk, we can use inter-

column ℓ2-norm of E to represent the observation model:

p(yt,k|st) =
e−rk

ΣK
k=1

e−rk
, where rk = ΣL

l=1‖ǫ
k
l ‖2. (8)

We compute p(yt,k|st) for each aligned shape at frame t,
and apply Equation 1 to predict the latent state for ensemble

initialization in frame t+ 1.

3.5. Personalized Adaptation

The offline trained U has limited representation power to

capture extensive online variations especially in wild con-

ditions, which motivates us to incrementally update U for

personalized modeling.

Given S∗ recovered, we first extract the part-based rep-

resentation X∗ ∈ R
N , and then compute C∗ ∈ R

M and

E∗ ∈ R
N by robust decomposition:

arg min
C∗,E∗

‖p · vec(E∗)‖2,0, s.t. X∗ = UC∗ + E∗, (9)

which can be efficiently solved using the same ALM op-

timization in Section 4 by introducing the augmented La-

grangian L∗ = ‖p ·vec(E∗)‖2,0+YT (X∗−UC∗−E∗)+
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µ
2
‖X∗ −UC∗ −E∗‖2F , where Y and µ are Lagrange mul-

tiplier and penalty parameter.

To efficiently update U, we adopt the concept of incre-

mental subspace adaptation on Grassmannian [17], which

in our case is a Riemannian manifold of all subspaces of

R
N with fixed dimension M . The key step is to specify the

gradient along the geodesic of Grassmannian:

dL∗

dU
= χπ

[

YC∗T − µ(X∗ −UπC
∗ − E∗)C∗T

]

, (10)

where χπ and Uπ are the |π| columns of an identity matrix

and U, respectively [13]. Due to the space limitation, we

directly present the final result of incremental update step:

∆U =

[

(cos(ψ)− 1)
UC∗

‖C∗‖
− sin(ψ)

Ω

‖Ω‖

]

C∗T

‖C∗‖
,

(11)

where ‖Ω‖ = (I − UUT )(Y ∗ + µ∗h∗), ψ = η‖Ω‖‖C∗‖
and η is the gradient step.

The incremental subspace adaption is well suited for our

intra-frame ensemble alignment framework. It is highly ef-

ficient and takes only O(M2) operations. Moreover, un-

like former personalized approach that blindly updates the

subspace without effective correction strategy [29], we can

utilize E and E∗ to obtain a robust criterion for erroneous

detection, which can significantly alleviate model drifting.

We use ‖E‖2 = ΣK
k=1

ΣL
l=1
‖ǫkl ‖2 to model the prior con-

fidence to recover S∗ since it measures the overall fitting er-

rors of all aligned shapes. Similarly, ‖E∗‖2 = ΣL
l=1
‖ǫ∗l ‖2

measures the posterior fitting errors given S∗ recovered.

Therefore we can achieve a robust criterion to distinguish

well and erroneous fittings:

max(‖E‖2,K‖E
∗‖2) < τ, (12)

whereK is the number of sampled initial shapes and thresh-

old τ can be computed from training images. S∗ that sat-

isfy Equation 12 are well-aligned candidates. We use them

to compose Co for consistency constraint and update U for

drift-free personalized modeling.

4. ALM Optimization

Directly minimizing rank(·) and ℓ2,0-norm in Equation

6 is NP-hard [24]. Therefore, we reformulate the optimiza-

tion with relaxed ℓ∗-norm and ℓ2,1-norm, respectively:

arg min
Cn,Ev,C,E

‖Cn‖∗ + λ‖Ev‖2,1

subject to X = UC+E,

Cn = [C|Co] , Ev = p · vec(E).

(13)

The intermediate variables Cn and Ev allows us to ef-

ficiently solve the Equation 6 with Augmented Lagrange

Multiplier (ALM) method [20].

Algorithm 1 Alternating Optimization of Equation 13

Input: X, U, Co, p, λ, γ
Output: Cn, Ev , C, E

1: Initialize: C = 0, Cn = [C|Co], E = 0,

2: Ev = p · vec(E), Y1−3 = 0, µ1−3 = 0.

3: while not converged do

4: Cn ← arg min
Cn

L(Cn,Ev,C,E,Y1−3, µ1−3)

5: ⇒ C∗
n = J 1

µ2

[

[C|Co] +
1

µ2

Y2

]

,

6: Ev ← arg min
Ev

L(Cn,Ev,C,E,Y1−3, µ1−3)

7: ⇒ E∗
v = L λ

µ3

[

p · vec(E) + 1

µ3

Y3

]

,

8: C← arg min
C

L(Cn,Ev,C,E,Y1−3, µ1−3)

9: ⇒ C∗ = Λ1

[

M+ 1

µ1

(UTY1 − [Y2]1:K)
]

,

10: where Λ1 = (1 + µ2

µ1

)−1I,

11: M = UT (X−E) + µ2

µ1

[Cn]1:K ,

12: E← arg min
E

L(Cn,Ev,C,E,Y1−3, µ1−3)

13: ⇒ E∗ = Λ2

[

W+ 1

µ1

(

UTY1 − vec
−1(Y3)

)

]

,

14: where Λ2 = (1 + µ3

µ1

)−1I,

15: W = X−UC+ µ3

µ1

[

vec−1(p−1Ev)
]

,

16: Y1 ← Y1 + µ1(X−UC−E),
17: Y2 ← Y2 + µ2([C|Co]−Cn),
18: Y3 ← Y3 + µ3(vec(E)−Ev),
19: µ1 ← γµ1, µ2 ← γµ2, µ3 ← γµ3.
20: end while

Let Y1−3 and µ1−3 denote the Lagrange multipliers

and non-negative penalty parameters respectively, the aug-

mented Lagrangian can be written in a scaled form:

L(Cn,Ev,C,E,Y1−3, µ1−3) = ‖Cn‖∗ + λ‖Ev‖2,1

+YT
1 (X−UC−E) +

µ1

2
‖X−UC−E‖2F

+YT
2 ([C|Co]−Cn) +

µ2

2
‖ [C|Co]−Cn‖

2
F

+YT
3 (p · vec(E)−Ev) +

µ3

2
‖p · vec(E)−Ev‖

2
F .

(14)

The augmented Lagrangian function can be optimized by

solving each of the variables alternately until converges.

The complex objective is broken into a sequence of least-

squares problems with efficient closed-form solutions. We

briefly describe the alternating optimization in Algorithm 1,

where the soft shrinkage operators are defined as:










Jτ (x) = U
[

sgn(x) [|x| − τ ]
+

]

V T ,

Lτ (x) = x

[

1−
τ

‖x‖2

]

+

.
(15)

The alternative iterations in Algorithm 1 converge very

fast with quadratic rate [3]. The computational bottleneck
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Figure 3: Comparions with generic alignment approaches on Face Movie dataset.

Figure 4: Examples on Face Movie dataset: first row, PIEFA-adap.; second row, ESR (column 1-5) and SDM (column 6-10).

PIEFA-adap. has substantial fitting accuracy improvement in wild conditions.

is the singular value decomposition (SVD) to update C∗
n in

Step 5, which needsO(M2K) operations. Other steps con-

sist of simple linear algebra with an average ofO(NK) op-

erations. Therefore, the total computational complexity is

O
(

(M2K +NK)ǫ−0.5
)

, where O(ǫ−0.5) is the iteration

number [37]. It is worth mentioning that the computation

complexity can be further cut down by employing more ef-

ficient SVD algorithm [5], given the fact that [C|Co] is low

rank. We leave it as our future work.

5. Experiments

In this section, we first introduce the implementation

details and experimental settings. Than, we compare our

approach with both generic and joint alignment methods

on three video datasets: Face Movie dataset, Talking Face

dataset and YouTube Celebrities dataset.

5.1. Implementation Details

To train the representation subspace U, we construct a

training set which consists of:

• Multi-PIE dataset [14] contains images of 337 subjects

under 15 view points, 7 expressions and a range of il-

lumination changes recorded in experimental environ-

ment. We collect 1,300 images from this dataset.

• LFPW dataset [4] is recorded in wild conditions,

showing extensive variations in both subject and imag-

ing conditions. Only 1,035 out of 1,400 images are

successfully downloaded due to some broken links.

• Helen dataset [19] is also collected in unconstrained

conditions. We include all the 2,000 training and 330

testing images in our training set.

All training images are annotated with 68-point scheme de-

fined in 300-W challenge [26]. We first perform procrustes

analysis [28] based on a mean shape to remove any rigid 2D

transformation among all training images. The interocular

distance is set to 50 pixels. Then, SIFT feature [16] is ex-

tracted around each landmark for part-based representation

as it is robust to illumination and scale variations. Finally,

U is trained by performing PCA and preserving 80% varia-

tions on the normalized training set.

For ensemble initialization, we define the latent state s ∈
R

4 to control scale, rotation and 2D translation of the initial

shape. We change the particle number K from 10 to 200,

and test the average fitting error and time cost. The results

indicate that we can empirically set K = 30, as it provides

a good trade-off between the fitting accuracy and efficiency.

Moreover, to address the particles degeneration issue, we

employ resampling technique [11] to initialize particles in

every 50 frames.

To set the threshold τ for robust subspace adaptation, we

construct {S∗+,S
∗
−} from the training set. {S∗+} contains

one annotated shape while {S∗−} contains ten perturbed
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Figure 5: Comparions with joint alignment approaches on Talking Face dataset.

shapes of each image to simulate well and erroneous fit-

tings, respectively. A perturbed shape is generated by ran-

domly shifting a subset (< 20%) of all landmarks away

from the annotation with a Gaussian distributions. Given

{S∗+,S
∗
−}, robust decomposition is performed using Equa-

tion 12 to get the corresponding error sets {E∗+, E
∗
−}. τ is set

to best separate {E∗+} and {E∗−}. We use Normalized Root

Mean Square Error (Norm RMSE) [26] for fitting evalua-

tion in all experiments.

5.2. Comparison on Face Movie Dataset

We conduct comparison between the proposed method

and generic alignment approaches on Face Movie dataset.

This in-the-wild dataset consists of movie clips that present

challenges in different aspects, such as violent head move-

ment, drastic expression variations and dynamic lighting

changes. We collected 6 clips and manually labeled 2150

frames for evaluation. Two state-of-the-art generic meth-

ods are employed for the comparison: (1) ESR [6], and (2)

SDM [33]. We use the same training set to train their static

FDMs offline. To best evaluate the performance, we tested

our approach with four different settings:

• Use ESR for alignment with personalized adaptation.

• Use ESR for alignment w/o personalized adaptation.

• Use SDM for alignment with personalized adaptation.

• Use SDM for alignment w/o personalized adaptation.

We report the average Norm RMSE of different ap-

proaches in Figure 3 and show some fitting comparisons

in Figure 4. The results show that both PIEFA-w/o adap.

and PIEFA-adap. outperform ESR and SDM with a sub-

stantial margin on all clips. The superior performance

of our approach is most obvious especially for landmarks

around mouth and face contour when extensive pose vari-

ations and expression changes exist, e.g., clip 4. In these

cases, the single initial shape used in ESR and SDM is usu-

ally far away from the ground-truth, which inevitably re-

sults in local optimum and unsatisfactory. Our approach,

on the other hand, takes advantage of both motion cues and

person-specific information for multiple initialization, and

can significantly improve the fitting accuracy in challeng-

ing conditions. More specifically, it has average 16.4% and

15.1% accuracy improvement compared to SDM and ESR,

respectively. This result highlights the validity of the pro-

pose ensemble initialization and constraint decomposition

to address the poor initialization issue.

The results also show that the proposed person-specific

modeling can also significantly improve fitting accuracy,

which demonstrates the validity of the proposed incremen-

tal subspace adaption. We also notice that person-specific

modeling has less fitting accuracy improvement in clip 6,

which contains a large number of blurring frames, than in

other clips. Since the personalized adaption is severely im-

peded by a large E∗ recovered in this case.

5.3. Comparison on Talking Face Dataset

We compare our approach with joint alignment ap-

proaches on Talking Face dataset [12]. This dataset con-

tains 5 consecutive clips of totally 5000 frames recorded in

controlled environment. We convert the original landmark

annotations to the standard 68-point scheme [26] for eval-

uation consistency. We implement two joint alignment ap-

proaches: (1) A-RASL [7], and (2) RAPS [27]. For fairly

comparison, we train the clean face subspace for RAPS on

the training set, and use SDM to provide initial fittings and

anchor shapes for RAPS and A-RASL, respectively.

For each of the 5 clips, we record the experimental re-

sults as the number of frames are increasing from 16 to

1000. The average Norm RMSE, CPU time and memory

usage are reported in Figure 5. We have three observations.

(1) For all the three methods, the average fitting errors de-

crease as the frame number increases, which makes sense

since more personalized information is involved in image

congealing [27]. The ensemble initialization and person-

specific modeling make our approach have the best perfor-

mance in general w.r.t. both converge speed and finial accu-

racy. (2) The CPU time costs of both A-RASL and RAPS
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Table 1: Comparisons of average Norm RMSE with state-of-the-arts on YouTube Celebrities dataset.

ESR [6] SDM [33] RAPS [27] A-RASL [7] RLMS [28] RLB [23] IFA [2] PIEFA-adap.

5.61% 5.85% 5.44% 8.63% 7.27% 5.37% 6.79% 4.92%

Figure 6: Examples on YouTube Celebrities dataset: first row, PIEFA-adap.; second row, RAPS (column 1-2), A-RASL

(3-4), RLMS (5-6), RLB (7-8) and IFA (9-10). PIEFA-adapt. outperforms others with respect to different challenges. There

are consistant improvement of fitting accuracy especially for lardmarks around eyes, mouth and face contour.

grows explosively when the number of frames increases,

since they perform joint alignment simultaneously for all

frames in the batch. Our approach, on the other hand, has

relatively constant time cost since the ensemble alignment

is performed in each, instead of all frames. (3) A-RASL

and RAPS consume more memory to process more frames,

while our approach has constant memory usage no matter

how many frames in the batch. These results prove that the

proposed incremental ensemble alignment outperforms tra-

ditional joint alignment methods w.r.t. fitting accuracy and

efficiency. Instead of loading all frames in a batch manner,

our approach can process each frame in a streaming man-

ner with constant computational cost, which is favored by

real-time and large-scale applications.

5.4. Comparison on YouTube Celebrities Dataset

To further investigate the performance in wild condi-

tions, we compare our approach with state-of-the-arts on

YouTube Celebrities dataset [18]. This database is collected

from internet under low resolution settings and presents

challenges in multiple aspects, e.g., pose, expression, illu-

mination and occlusion. We pick out 61 clips and manually

label 50% frames for quantitative evaluation. Besides the

aforementioned 4 methods, i.e., ESR, SDM, RAPS and A-

RASL, we add another 3 methods into the comparison: (1)

RLMS [28], (2) RLB [23], and (3) IFA [2]. They all have

public codes available, provided by their authors.

We report the average Norm RMSE in Table 1 and show

some fitting comparisons in Figure 4. The results show that

our approach achieves the best performance and has consis-

11) 0292 02 002 angelina jolie, 2) 0502 01 005 bruce willis,

3) 1198 01 012 julia roberts, 4) 1621 02 017 ronald reagan, 5)

1786 02 006 sylvester stallone, and 6) 1847 01 005 victoria beckham

tent fitting improvement in challenging conditions.

Besides our methods, the recently proposed RLB has

the second best performance in this dataset. The combi-

nation of part-based representation (shape indexed feature)

and regression-based fitting strategy guarantee its robust

and efficient performance in challenging conditions. More-

over, regression-based methods, e.g., SDM, have better per-

formance than optimization-based methods, e.g., RLMS,

which demonstrate the validity to learn the gradient descent

in a data-driven manner. We also notice that A-RASL has

the lowest fitting accuracy in general. A possible reason

is holistic FDMs and optimization-based methods are less

flexible and more susceptible to extensive variations.

To sum up, the experiments prove that the proposed

approach can effectively overcome the pool initialization

of existing generic methods. The proposed incremental

framework can process large-scale and real-time data with

constant computational cost, which is a significant merit

compared with traditional joint methods. Moreover, the

proposed incremental adaptation can achieve personalized

modeling, while the drifting issue is significantly mitigated,

even in wild conditions.

6. Conclusion

In this paper, we propose a novel approach for sequen-

tial face alignment. It can effectively address limitations

of generic and joint alignment methods. Extensive exper-

iments on challenging datasets validated our approach in

different aspects and demonstrated its superior performance

compared with state-of-the-arts. We plan to incorporate

learning-based temporal information and feature represen-

tation in our future work to further improve the fitting accu-

racy and efficiency.
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