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Abstract

A common issue in deformable object detection is find-

ing a good way to position the parts. This issue is even more

outspoken when considering detection and pose estimation

for 3D objects, where parts should be placed in a three-

dimensional space. Some methods extract the 3D shape of

the object from 3D CAD models. This limits their appli-

cability to categories for which such models are available.

Others represent the object with a pre-defined and simple

shape (e.g. a cuboid). This extends the applicability of the

model, but in many cases the pre-defined shape is too sim-

ple to properly represent the object in 3D. In this paper we

propose a new method for the detection and pose estima-

tion of 3D objects, that does not use any 3D CAD model or

other 3D information. Starting from a simple and general

3D shape, we learn in a weakly supervised manner the 3D

part locations that best fit the training data. As this method

builds on a iterative estimation of the part locations, we

introduce several speedups to make the method fast enough

for practical experiments. We evaluate our model for the de-

tection and pose estimation of faces and cars. Our method

obtains results comparable with the state of the art, it is

faster than most of the other approaches and does not need

any additional 3D information.

1. Introduction

For many practical applications, merely detecting the

bounding box of an object of interest is not enough. A more

precise localization of the object including also its 3D pose

is needed. For instance, think of a robotic arm that needs to

grasp an object. It needs to know not only where the object

is, but also its 3D pose. For the sake of brevity, in the rest

of the paper we use the term 3D detection to refer to ob-

ject detection (i.e. find the object bounding box) and pose

estimation (i.e. find the orientation or pose of the object).

Note that this term refers to the model representation, not
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Figure 1. Our 3D model representation for the ‘face’ class. Start-

ing from an RGB image (no depth), our model simultaneously

learns appearance and depth of each HOG part.

to the input data. We use ordinary 2D images as input, with

no depth information available during either training or test

time.

In recent years several methods for 3D detection have

been proposed. Among them, those based on extensions of

deformable part models (DPM) [3] to 3D [5, 10, 17, 19]

seem to be the best performing. However, they still have

several issues. First, the optimal part positioning in 3D is

an open issue. For the 2D case, the strategy proposed in

the original DPM [3] based on selecting the location with

higher discriminativity seems adequate. For 3D models the

problem becomes more complex because we want to asso-

ciate the same object part, seen from different viewpoints,

to the same model location. For instance we would like to

recognize the wheel of a car with the same model part, in-

dependently from the view.

Two main solutions have been proposed in the literature.

Pepik et al. [17] associate parts seen from different view-

point from 3D CAD models of the object class. It selects

a set of parts on the 3D CAD model and then it places

these on the training images using the ground truth orien-
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tation. This works quite well, but assumes availability of

a 3D CAD model for the object category to be detected.

Furthermore the CAD model should be general enough to

represent all the instances of a certain class. If this is not

the case, additional annotations are needed to associate the

CAD subclass with the training samples.

Fidler et al. [5] instead use a simpler 3D structure of the

object and parts are placed using a heuristic that does not

depend on the specific class considered. More specifically,

the object is represented with a cuboid whose dimensions

are estimated from the training data. Then, parts are po-

sitioned with a strategy similar to DPM and are allowed to

move only on the corresponding cuboid face. This approach

does not use any 3D model or additional part annotations,

but its representation is strongly limited to the similarity of

the object to a cuboid. If the faces of an object are not flat,

the location of the parts would be estimated wrongly and

therefore the learned model would underperform.

An additional issue that limits the use of 3D models is

their high computational cost. The main idea behind pose

estimation is to evaluate several projections of the model

with different poses and pick the best one as estimated pose.

Thus, their computational cost is linear in the number of

evaluated poses or views. Most of the methods, in practice,

for an accurate pose estimation need more than 10 views.

Thus, we can estimate that their computational cost is at

least 10 times the cost of the used 2D models.

In this paper we present a method to tackle these two is-

sues. We build a 3D deformable model as a composition

of HOG parts that lie in 3D space. Each part is defined by

its 3D position and orientation. At test time, the model is

projected to a 2D image plane and used to detect the ob-

ject. An example of a 3D model trained on a faces dataset

is shown in Fig. 1. For a fast evaluation of the HOG parts

on the image we adapt the technique proposed in [16] to

deformable objects (Sec. 3.1). Similarly to DPM, we let

the parts move to account for local distortion. However,

our parts move in 3D space, with a quadratic displacement

cost (Sec. 3.2). For a linear estimation of the quadratic cost,

we extend the generalized distance transform to allow non

axis-aligned deformation costs (also explained in Sec 3.2).

As in [5], the initial shape of our model is a cuboid com-

posed of HOG parts placed in 3D. However, during learning

(Sec. 3.3) we simultaneously learn not only the appearance

and deformation of each HOG part, but also their optimal

depth (Sec. 3.4). Thus, the model iteratively adapts its 3D

shape to the data. All together this results in a fast and ro-

bust 3D detector that can detect and estimate the fine pose

of an object with similar or better accuracy than previous

models (Sec. 4). All of this is performed in less than 30
seconds on a single CPU.

2. Related work

Many different methods have tackled the problem of 3D

detection. Our focus is on those based on HOG features

and deformable models. A recent trend is to use activations

of deep convolutional neural networks, leading to excellent

results. The HOG descriptors could be replaced by these.

However, for simplicity and to allow for a fair comparison

with our baselines, we left this as future work. Felzen-

szwalb et al. [3] introduced the deformable part model

(DPM), which extends the HOG detector [1] by introduc-

ing moving parts as latent variables and a principled way

to learn the model deformations. Our method is based on

DPM, the main difference being that our model is fully 3D,

where each part has full knowledge about its 3D location

and orientation, given a certain object pose.

Thus, our model can be considered as a 3D generaliza-

tion of DPM, which typically operates purely in 2D. DPM

assumes that object part locations can slightly vary due to

object deformations. However, in practice the main source

of 2D part displacement is not the deformation of the ob-

ject per se, but a viewpoint change1. If we consider the

part location in 3D, the part displacement due to viewpoint

is explicitly modeled. The deformation then only needs to

handle the real displacement of the part, i.e. due to a non-

rigid deformation or to instance-level differences. This re-

sults in smaller deformations, and therefore, one can expect

a reduction of false positive detections.

For the part initialization DPM uses a greedy strategy

sequentially placing each part at the 2D object location that

is estimated as most discriminative. This approach works

well, but cannot be generalized to 3D. For a fast computa-

tion of the optimal part deformations DPM uses a general-

ized distance transform that renders that computation linear

in the number of part locations. In our approach we show

how to use the fast generalized distance transform in 3D.

A possible way to detect an object and estimate its pose

is to use a representation composed of multiple 2D tem-

plates, each for a specific view of the object. An example of

such approach is proposed by Gu and Ren [8]. They learn

multiple templates at the same time and use them to detect

the location of the object and to predict its pose. A natural

extension of this work to deformable templates is presented

in [13], where it is also shown that using other poses as

negative samples improves pose estimation at the cost of

a reduction in detection accuracy. The same line of using

multiple deformable templates for pose estimation can be

found in [9, 18, 20, 21]. For instance, different variants of a

model based on a tree of parts were used for human pose es-

timation [20], human face pose estimation and facial point

localization [21], and 3D car viewpoint estimation [9].

1For instance, see the principal component analysis applied to defor-

mations shown in [21].
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Pepik et al. [18, 17] explicitly associate each moving part

of different templates to a 3D landmark. The model and the

deformation of the parts is then learned from 3D CAD sam-

ples, where the exact location of each part is known. In con-

trast, in our model we do not know anything about the parts

location. Unlike previous methods that learn an indepen-

dent template for each view, Xiang and Savarese [19] use

a single 3D representation. Their model is a composition

of planar surfaces or aspects that are estimated from a set of

3D CAD models. Similarly, our model uses a single 3D rep-

resentation of the object, but without the need of a 3D CAD

model. Additionally, in their approach the projection of the

3D model to the 2D plane is done by distorting the origi-

nal image, while in our method it is effectuated at feature

level, which is much faster. Another interesting approach

is the 3D object recognition by object reconstruction [10],

where object detection and pose estimation are effectuated

by synthesizing a view of the object in the HOG space from

a set of given 3D object representations. As the number of

possible views is very high, similar views are clustered.

All of the aforementioned methods that estimate the 3D

shape of an object class require some sort of 3D informa-

tion as input, either in form of 3D CAD models or object

instance landmarks. Our method instead handles the 3D of

the object without any specific 3D information, but directly

from the RGB data. We assign a reasonable initial 3D lo-

cation of the parts and then we refine their location during

training. The only method that builds a 3D model without

using an explicit CAD model is [9]. In this case however

the 3D detection is divided in two stages. The first one is

based on a 2D multi-view detector. The second builds a 3D

model to refine the pose estimation. However, for building

the 3D model the method needs 2D part annotations, which

are expensive to collect.

Fidler et al. [5] have proposed a method that has many

similarities with ours. Both methods are based on a 3D

cuboid composed of deformable parts. However, for the de-

tection of non-frontal parts Fidler et al. apply the distortion

at image level, as in [19]. More importantly, while Fidler et

al. use a cuboid representation, in our model the cuboid is

only used as initialization of a weakly supervised learning

procedure used to refine the 3D parts location.

3. Our 3D model

We define a 3D model for object detection such that a

single model can be used to represent any possible view of

the object class. Consequently, we define our model as a

set of 2D patches placed in a 3D world. Each patch has

a well-defined 3D location lO = (lx, ly, lz) and orienta-

tion nO = (nx, ny, nz) with respect to the object reference

location o = (ox, oy, oz) and rotation θ = (θx, θy, θz) as

shown in Fig. 2. A patch is a 2D representation of a small

region of a 3D object surface, whose appearance varies with
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Figure 2. Illustration of the three reference systems used in the

paper, one attached to the object O, another attached to the camera

C and one attached to the part location at resting position P .

the viewpoint from which the object is seen. In this sense

it has many similarities with what in computer graphics is

called a texture. However, as in this work we use these

patches for object detection in a similar way as in DPM,

where patches actually represent parts of an object, from

now on we will call them parts, as in DPM nomenclature.

Still, the reader should consider that these parts are quite

different from DPM parts, especially because our parts are

placed and can be moved in a 3D environment.

During inference, we project the learned model on the

image plane at any location o and with any possible pose

θ, defined as three sequential rotation angles of the model.

Detections with a certain location and pose are then ranked

based on their score. Notice that in principle, and in con-

trast to many 2D based methods, with this model we can

have a continuous estimate of the object pose. The final

accuracy will depend on the number of model evaluations,

which also influences the computational cost of the model.

In Sec. 3.1 we present a strategy to make the evaluation of

many possible poses computationally fast.

During training, as the location and pose of the object are

known, we project the 2D appearance of each training sam-

ple on the corresponding parts of the 3D model. In practice,

for each training sample, a specific set of parts is filled up

and the rest is set to zero. This representation is converted

into feature descriptors for support vector machine learning.

Negative samples are extracted from images not containing

the object and with randomly sampled poses. As the num-

ber of possible negatives is too high to fit into memory, a

negative mining strategy is used.

In the following we present in detail our model formu-

lation for inference and learning. We first define how to

compute the score of an object as a sum of 3D parts, ex-

plaining the choice of the orthographic camera model, and

how the extraction of HOG features is performed and sped-

up. Then, we extend the model considering that the object

parts can be displaced in 3D from their resting position with

a quadratic cost function. Next, we show how to use the dis-
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tance transform for 3D deformations in a fast way. Finally,

we present the learning formulation and extend it to also

learn the 3D part locations.

3.1. Inference

Scoring function The score of an object part i (whose ap-

pearance is represented by a set of learned weights w) de-

pends on its relative location lC and orientation nC with

respect to the camera:

< w, φ(I, lC , nC) >, (1)

where φ is the feature representation (discussed in detail

later).

Using basic geometry the transformation from part posi-

tions lO and orientations nO with respect to the object cen-

ter to part positions lC and orientation nC with respect to

the camera is:

lC = Rθ(l
O + o), nC = Rθn

O (2)

where Rθ is the rotation matrix composed as sequential ap-

plication of (θx, θy, θz) around the corresponding axes. The

score of a part is then:

scrp(w, lO, nO, o, θ, I) =< w, φ(I, Rθ(l
O+o), Rθn

O) >,

while the entire object scoring function becomes:

scr(W,L,N, o, θ, I) =
∑

i

scrp(wi, li, ni, o, θ) (3)

where L = {l0, l1, ..., lP } and N = {n0, n1, ..., nP } are

part locations and orientations with respect to the object ref-

erence system o and W = {w0, w1, ..., wP } are the corre-

sponding learned parameters.

Camera parameters We have defined φ(I, lC , nC) as a

function that extracts image features at the 3D location and

orientation of a part. However, our image is 2D and we

should now define a camera model to project the 3D points

into the 2D image. As we search for objects at multiple

scales, we assume the z-coordinate of a part lCz to be pro-

portional to its scale. However, we want to be able to de-

tect objects in uncalibrated camera images where the factor

that associates the distance of an object to its scale (i.e. the

camera focal length f ) is unknown. Thus, we should es-

timate the factor f for each image. Trying several values

of f and selecting the best one would be computationally

too expensive. Instead, we assume an orthographic projec-

tion (i.e. f = +∞) for a single object. In practice, for the

same object we assume that all parts have the same size and

their location is (lCx , l
C
y , oz). For objects far enough from

the camera the orthographic projection is a good enough

approximation of the object viewpoint which makes the es-

timation of camera parameters unnecessary. Considering

that the 3D structure of the model is a coarse approximation

of the real 3D shape, using a better projection model would

not help much; small errors in part localization can be ab-

sorbed by part deformations as explained in Sec. 3.2. Still,

we use the z-coordinate of the object center location oz as a

scale factor when searching for the object at multiple scales.

In this case, the absolute value of oz is not the real distance

of the object from the camera, but for our application that

is not really important. We also assume that an object will

mostly be observed in its standing pose (“upright” assump-

tion, common in object recognition) and therefore we do

not need to consider part rotations on the camera plane (z
axis). This limits our 3D model to fully rotate only over one

axis (in our case y) and partially over the other (in our case

x). We leave a detailed estimation of the camera parameters

and the extension to camera plane rotations as future work.

Feature extraction In this work we use HOG features [1]

for describing the appearance of each object part. However,

in principle the method can be applied to any dense feature

representation like bag-of-words [12] or activations of con-

volutional neural networks layers [11]. Given an image I
the corresponding HOG feature is constructed as:

φ(I, lC , nC) = V(HlCz
(TnC (I), lCx , l

C
y )), (4)

where Hs(I, x, y) is a function that extracts from image I
HOG features (as (x, y, d), with (x, y) being spatial dimen-

sions and d being the feature dimensionality, i.e. the gradi-

ent orientations for HOG) of a part at scale s and location

(x, y). TnC is a transformation that accounts for the per-

spective distortion of the part appearance when observed at

a certain orientation nC from the camera. Finally, V con-

verts the HOG features into a flat vector that is suitable for

multiplying with w. Assuming again an orthogonal projec-

tion, and defining (ηx, ηy, ηz) as the (x, y, z) components

of the part orientation vector nC in the camera reference

system C, TnC reduces to:

TnC (I(x, y)) =

{

I(ηxx, ηyy) if ηz > 0
~0 if ηz ≤ 0,

(5)

which is an affine transformation if the part faces the cam-

era (ηz > 0) and an image of zeros otherwise. Note that

this simple trick allows the method to reason about parts

self occlusion. This formulation gives satisfactory results,

but it is slow because a different image distortion and new

HOG features should be computed and evaluated for each

part orientation. In the following we propose a much faster

solution.

Since the HOG feature representation still maintains a

geometrical description of the appearance of a part, we can

move the geometrical transformation due to the part orien-
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tation TnC from image level to feature level:

HlCz
(TnC (I), lCx , l

C
y ) ≈

{

HlCz
(I, ηxl

C
x , ηyl

C
y ) if ηz > 0

~0 if ηz ≤ 0.

(6)

As shown in Fig. 3, this new formulation avoids applying

the transformation TnC at image level and therefore also

avoids computing different features for different transfor-

mations. As the HOG features have coarser granularity than

pixels, this transformation introduces a higher quantization

error. To reduce this error, rather than using an interpolation

algorithm, we use hand-tuned linear HOG combinations as

defined in [16]:

HlCz
(I, ηxl

C
x , ηyl

C
y ) ≈

∑

x,y

αx,y,ηx,ηy
(HlCz

(I, lCx +x, lCy +y)),

where αx,y,ηx,ηy
are coefficients that best approximate the

transformation TnC .

Considering the dot product linearity, we can compute

the score of the parts as in Eq. 3 on the non-distorted HOG

features. In this way we can compute the score of each HOG

cell of the frontal view (without distortion) for each part.

Afterwards, the score of any other view can be obtained as

a linear combination of frontal views. In practice, consid-

ering that the used HOG features have 32 dimensions per

cell, computing from scratch the score of a part with size

4 × 4 HOG cells at a given location requires 4 × 4 × 32
multiplications of the feature vector with the corresponding

parameter vector w. Instead, by pre-computing the score of

each HOG cell for the frontal appearance of the part, for any

other view we only need to calculate the linear combination

of 2 pre-computed HOG cell scores. Therefore, the new to-

tal cost is 4×4×2 with a neat gain of 16×. The final gain is

reduced because we still need to pre-compute the HOG cell

scores for the frontal appearances of the parts. However, es-

pecially if we want a precise estimation of the object pose,

a high number of possible views should be computed. The

pre-computation cost is then distributed over more views

and the final gain approximates the ideal case of 16.

3.2. 3D Deformations

Scoring function So far, we have considered that the part

position is defined only based on the 3D location o and

pose θ of the object. However, from DPM and max pool-

ing strategies, we know that allowing parts to have a small

neighborhood over which to search for the highest score can

highly enhance their discriminativity. Thus, in our model

we allow parts to move in the three dimensions x, y, z. We

define the deformation cost of a part i as a quadratic func-

tion over the part displacement mP = (mx,my,mz) with

respect to the part reference system defined by the part lo-

H
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Tn Tn

distortion 

at image-level
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Figure 3. Example of a transformation Tn in the image space and

in the feature space. Applying the transformation in the feature

space (right) is faster because you can avoid having to transform

the image and then compute the HOG features again (left).

cation l and orientation n:

mPT





dx 0 0
0 dy 0
0 0 dz



mP = mPTDmP , (7)

where (dx, dy, dz) defines the deformation costs that should

be learned and T as super-index of the vector m denotes the

transpose. Now, we can convert the local reference system

attached to part location and pose to the camera reference

system C: mC = RθRnm
P . We first convert the local ref-

erence system to the global object reference system through

Rn which is the rotation obtained from the part orientation

n. Then we transform this new vector to the camera coor-

dinate system through Rθ, which is the previously defined

object rotation matrix. See Fig. 2 for reference. We can ap-

ply these transformations directly on the quadratic function

as:

mCTRθRnDRT
nR

T
θ m

C = mCT





qx qxy qxz
qyz qy qyz
qxz qyz qz



mC =

mCTQθ,nm
C . (8)

The new scoring function considering also the parts defor-

mation is:

scr(W,L,N, o, θ, I) =
∑

i

max
mi

(

scrp(wi, li +mi, ni, θ, I)−mT
i Qθ,ni

mi

)

(9)

where mi is the vector that defines the 3D deformation

of part i in the camera coordinate system (we skipped the

super-index C for clarity).

As we work with an orthographic projection, changing

z-location of a part deformation mz does not affect the ap-

pearance seen by the part, although it affects its deforma-

tion cost. In practice the location in mz of a part is chosen

to minimize the deformation cost:

mTQθ,nm = min
mz

mTQθ,nm, (10)
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which can be solved in closed form and yields mz =
−(qxz ∗mx + qyz ∗my)/qz . The 2D deformation matrix is

then:

Q2D
θ,n =

[

qx − q2xz/qz qxy − qyzqxz/qz
qxy − qyzqxz/qz qy − q2yz/qz

]

. (11)

In this way we can convert the 3D quadratic function into

the corresponding 2D function which is then used for the

2D distance transform without any additional cost.

Notice that this formulation is similar to the one used

in [17], where the authors assume that the 2D deformation

cost for a certain view is the orthogonal projection of the 3D

deformation cost, implicitly assuming mz = 0. In contrast,

we also optimize over mz which leads to a better estimation

of the deformation cost.

Generalized Distance Transform As we transform the

3D quadratic form defined by Qθ,n to a quadratic form in

the 2D camera plane Q2D
θ,n, we obtain a 2D function that

still has a quadratic form in 2D, but in general not aligned

to the main image axes. In this case the generalized dis-

tance transform algorithm [4] which is linear in the number

of locations cannot be applied on each dimension indepen-

dently as in [4]. As we need to apply distance transform

to each view, it is important to compute it as fast as pos-

sible. For doing that, we find the eigenvalues of Q2D
θ,n so

that we find the principal axes of the deformation, rotate the

score image to align it to Q2D
θ,n, apply the standard linear 1D

distance transform algorithm on each axis and then rotate

back the result. This proves to be faster and simpler than

designing a specific 2D distance transform algorithm.

3.3. Learning

For each sample s we are given a tuple (Is, ys, os, θs)
composed of an image, a label that defines the presence

of the object, the location and the pose of the object (if

present). Our goal is to find the parameters W that mini-

mize the following objective function:

|W |2 + C
∑

s

max(0, 1− ysscr(W,L,N, os, θs, Is)),

where C is the commonly used trade-off factor between reg-

ularization and loss.

Now, due to the maximization over latent parameters (the

deformation of the object parts), the objective function is

not convex. Thus, for its optimization we use the strategy

defined in [3] where we optimize Eq. 9 using coordinate de-

scent. First, we optimize W fixing the value for the latent

variables for the positive samples. Then, with the obtained

W we estimate the new value for the latent variables. This

procedure is repeated until convergence, which is guaran-

teed because each steps leads to a reduction of the objective

function. To be able to deal with an exponential number of

configurations generated by all the possible locations, poses

and values for the latent variables we use a caching proce-

dure for the negative samples mining as in [3].

3.4. Shape estimation

In latent SVM the resting location of the parts is defined

at the beginning of the learning procedure and maintained

constant for the entire training procedure. We instead want

to update the location of the part. Note that this is a weakly

supervised task because no annotations of the correct parts

location are used. More specifically, we want to move each

part along the z component of the normal vectors n of a

part to best represent the object class. Moving parts along

x and y could also be useful. For example, it could be a

refinement of the initialization of the parts locations used

in [3]. This would allow the part location to move towards

the most discriminative location during training. However,

without any additional constraints, different parts could end

up at the same spatial location, which is to be avoided.

Instead, moving the part only along z makes more sense

because parts cannot overlap by construction and, more im-

portantly, learning the correct z-location of each part pro-

duces a better estimation of the 3D shape of the object. By

allowing the part to learn its best resting location tends to

reduce the errors in the localization of the object parts and

therefore it is likely to produce fewer false positive detec-

tions and a better pose estimation. We show this in Sec. 4.

Estimating the shape of the object class corresponds to

finding the most appropriate translation in the z direction of

the part orientation vector n, i.e. the part depth. We call this

value tz . We can find tz as the value that minimizes the sum

of the costs of the part displacements on the training data:

tz = argmin
t

S
∑

s=1

dz,s|mz,s − t|2 =
dz
S

S
∑

s=1

mz,s. (12)

Thus, in the learning algorithm, after estimating the part lo-

cations mz,p for the positive samples, we update the resting

position of the part to lOs = lOs + tznz . Note that this proce-

dure effectively minimizes the objective funtion. In fact, for

positive samples, tz is optimized to maximize their scoring

function, which corresponds to minimizing their loss. For

negative samples, the new tz would reduce their scores be-

cause it increases the costs of the parts displacements, but

this, for negative samples corresponds to decreasing their

loss.

4. Experiments

We validate the performance of our method for the task

of object detection and pose estimation and compare it with

state-of-the-art methods on two challenging datasets. We

also study the importance of the different components of our

method to observe their effect on the process of creating a
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Figure 4. Precision-Recall on AFW for detection (left) and pose

estimation (right) using different configurations of our 3D model.
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Figure 5. (left) Pose Estimation Precision-Recall on EPFL car over

training iterations: note the improvement obtained in the latent

SVM iterations. (right) 3D model trained on EPFL car.

robust and efficient 3D detector. For implementation details

and additional details about the training and evaluation see

the supplementary material.

AFW We evaluate our method for object detection and

pose estimation on the annotated faces in the wild (AFW)

dataset [21]. For object detection, we evaluate in terms of

average precision (AP), where a detection is considered cor-

rect if it overlaps (intersection over union) more than 50%
of the ground truth. For pose estimation, we use the pose

estimation average precision (PEAP). We also evaluate the

pose estimation in terms of pose accuracy at 15◦ and 30◦

(i.e. a pose is correct if the error is less than 15◦ or 30◦,

as defined in [21]). In Table 2 we compare our model with

state-of-the-art methods for detection and pose estimation.

We evaluate our method with the same training protocol as

in the original paper [21] which consists of training with

900 samples from MultiPIE [7]. Among these methods,

ours reaches the top performance in detection and is the sec-

ond best in pose estimation. For completeness in the table

we also include top-performing detection methods that have

been trained on different and much more training data.

In pose estimation our method obtains an accuracy close

to the one reported in [6] for DeCAF features which are

extracted from a pre-trained convolutional neural network.

Considering that our model does not use any additional data

(whereas DeCaf features are trained on 1 million images

and 1000 classes from ImageNet), and it mainly learns only

3 views of the model (whereas HOG templates and TSM use

13 different views), the obtained result is quite impressive.

Method MPPE8 MPPE16 MPPE36

MDPM [13] 73.7 66.0 -

3D2PM [18] 77.9 69.1 53.5

Fisher [6] 76.6 72.2 51.8

DeCaf [6] 80.6 67.8 45.9

Our 3D model 81.5 56.4 36.8

Table 1. Results on EPFL car dataset. Our method works well for

coarse pose estimation.

Method Detection Pose 15 Pose 30

multiview HOG [21] 75.5 74.6 85.0

3D model from [16] 78.8 71.4 -

TSM [21] 88.0 81.0 89.0

TSM shared [21] 76.2 76.9 87.0

Fisher [6] 88.3 78.6 90.6

DeCaf [6] 88.3 86.5 93.4

Our 3D model 90.18 85.9 92.1

DPM from [14] 97.21 - -

HeadHunter [14] 97.14 - -

Table 2. Results on the AFW dataset. Our model outperforms all

the methods based on HOG features and is very close to the results

obtained with more training data by DeCaf.

Effect of deformation When dealing with deformable

models, the importance of deformations has been ques-

tioned [2]. As shown in Fig. 4 (left), in our model the intro-

duction of deformation is fundamental to obtain good detec-

tion performance. By letting the parts of our model deform

with a learned quadratic cost we boost the AP from 81% to

88%. For this specific dataset this means moving from the

bottom to the top of the methods ranking! Considering pose

estimation (Fig. 4 (right)), the improvement is also relevant

moving from 66.9% to 69.5% PEAP.

Part positioning In Fig. 4 we report a quantitative evalu-

ation of the effect of estimating the location of each HOG

part in terms of detection and pose estimation. In both eval-

uations, it improves performance. While the improvement

is relatively small for detection (especially if compared with

the effect of deformation), for pose estimation the effect is

quite relevant. This was to be expected, as for a good es-

timation of the 3D location of an object it is important to

know the 3D location of its parts.

In Fig. 1 we show the learned 3D model for face on

AFW. We can see that the learned depth of each part makes

sense. In fact, starting from a cuboid, parts have adapted to

a more spherical shape that better represents a face model.

Also, we notice that the nose is more prominent than the

other parts of the face. All of this has been learned in

a weakly supervised way, without any information about

the correct location of the parts, neither in 3D nor in 2D.

Instead, their location is estimated during learning as ex-

plained in Sec. 3.4. To the best of our knowledge, this is

the first method that produces a rough estimate of the 3D

shape of an object class using only the bounding box loca-
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tion and pose of the annotated objects in the training data.

In Fig. 1 we can also see that the depth estimation of some

parts seem wrong. For instance, the two parts at the left and

right of the nose are also prominent. We belief that this is

due to the fact that the nose is actually represented by those

parts when the face is partially rotated. Thus, their depth

makes sense too, although it is not really what one would

expects for a 3D representation of a face. In this sense it is

important to consider that the shape estimation is learned in

an unsupervised way as side product of better detection and

pose estimation. When some parts cannot learn a discrim-

inative appearance, their 3D can be wrong. An example of

that in Fig. 1 is the part at the bottom right. As this part is

actually learning mostly background (note its appearance),

its estimation is wrong. In future work we will consider

some possible strategies to recognize and remove the parts

that are not useful.

Computational Cost By using the part approximation

explained in Sec. 3.1 the method without deformations is

relatively fast and scales well with the number of views.

For instance, it can evaluate using a single CPU the face

model on an image of 640×480 pixel size, over 13 views in

around 10 seconds. The deformable model is around three

times slower due to the computation of the distance trans-

form for each view. However, the current version of the

code is not optimized, so a faster version should be feasi-

ble. Still, our method is faster than most of the HOG based

methods that perform integrated detection and pose estima-

tion. These methods are generally based either on distort-

ing the image based on the viewpoint and computing and

evaluating the HOG features in all views like [5, 19], or on

applying a different model for each view [13, 18, 17]. Both

approaches are much slower than ours.

EPFL cars We evaluate the fine-grained pose estimation

on the EPFL car dataset [15]. As in [15], we use the first

10 videos for training and the other 10 for test. Detection

is relatively easy in this dataset as cars are big, centered in

the image and most of modern methods, includeing ours,

obtain a detection rate of around 99%. Pose estimation is

a more challenging task due to the high variability of the

car models and the reduced number of training models (just

10). In table 1 we compare our method for the discrete

pose estimation in terms of Mean precision Pose Estima-

tion (MPPE) with different numbers of bins (8,16 and 36).

Our model performs well for the coarse pose estimation,

but it performs worse than the other evaluated methods for

the finer pose estimation. We believe that this is due to the

structure of the model. In our model, we represent the en-

tire model always with 4 views while the other methods use

8,16 or 36 views, depending on the number of views needed

in evaluation. The reduced number of learned parameters

produces a better generalization of the model which allows

it performing better for the 8 bins MPPE. Note that for other

methods based on deformable HOG models, like [13, 17],

using a high number of views make the detector very slow.

In Fig. 5 (left) we report the pose estimation precision-

recall curves for several iterations of the latent SVM learn-

ing. It is noticeable how the pose estimation improves over

iterations. This shows the power of a weakly supervised

method where the deformation of the parts and their depth

are learned on the data. Without this procedure the perfor-

mance of the pose estimation would remain as at the first

learning iteration. In Fig. 5 (right) we also show the learned

3D model for car. The estimated shape of the car is not

as good as the face model. In particular, parts representing

the frontal glass of the car remain on their initial position

and do not really move much to the real 3D position of the

frontal glass. We believe that this is due to the initialization,

which is based on a cuboid. As the optimization is non con-

vex, it finds a local minimum of objective. In this sense, the

parts expected to move to the car frontal glass are probably

initialized too far from their actual 3D position and remain

stuck.

Limitations The proposed model aims to extend 2D HOG

based approaches to 3D without the need of additional an-

notations besides the object pose. Even though the method

attains very competitive results on the evaluated datasets,

in some aspects it is still more limited than 2D based ap-

proaches. In particular, when the variability of the object

class is high, as in PASCAL VOC, additionally to multi-

ple views, multiple appearances for the different subclasses

are needed. For multiview 2D HOG models there is no dis-

tinction between views and subclass appearances so multi-

ple views can deal with multiple subclass appearances. In

contrast, our 3D model (as other 3D HOG based models) as-

sumes a multiview but single subclass representation. Thus,

when dealing with subclasses with different appearance the

estimation of the depth of the parts is wrong and therefore

poor detection and classification are obtained.

5. Conclusions

In this paper we have presented a new and computation-

ally efficient model for 3D object class detection and view-

point estimation. The model is a composition of parts lo-

cated in the 3D space. During training the appearance of the

parts, their deformation cost and their location are learned

in a weakly supervised manner without the need of any ad-

ditional annotation or 3D information. Results show that

the approach attains results comparable with state-of-the-

art in both detection and pose estimation, but with less prior

knowledge of the object class, and with a faster detection.
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