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Abstract

This paper deals with the problem of registering a known

structured 3D scene and its metric Structure-from-Motion

(SfM) counterpart. The proposed work relies on a prior

plane segmentation of the 3D scene and aligns the data

obtained from both modalities by solving the point-to-

plane assignment problem. An inliers-maximization ap-

proach within a Branch-and-Bound (BnB) search scheme is

adopted. For the first time in this paper, a Sum-of-Squares

optimization theory framework is employed for identify-

ing point-to-plane mismatches (i.e. outliers) with certainty.

This allows us to iteratively build potential inliers sets and

converge to the solution satisfied by the largest number of

point-to-plane assignments. Furthermore, our approach is

boosted by new plane visibility conditions which are also

introduced in this paper. Using this framework, we solve

the registration problem in two cases: (i) a set of putative

point-to-plane correspondences (with possibly overwhelm-

ingly many outliers) is given as input and (ii) no initial cor-

respondences are given. In both cases, our approach yields

outstanding results in terms of robustness and optimality.

1. Introduction

The emergence of affordable 3D sensors and high qual-

ity 2D cameras has triggered a growing interest in combin-

ing both imaging modalities. 3D sensors allow us to ob-

tain faithful 3D scene models in the form of dense 3D point

clouds while images can be used to extract texture infor-

mation. High quality 3D models with mapped texture can

be obtained provided the 2D and 3D sensors are registered

in a common reference frame. The two imaging modal-

ities are generally registered off-line and the 2D and 3D

sensors kept rigidly attached at all time during acquisition.

Doing so may, however, be either impractical or impossi-

ble. On the one hand, suitable acquisition conditions for

one sensor may not be adequate for the other (e.g. lighting

conditions for cameras, surface orientation for 3D sensor,

etc.) and, on the other hand, some application-specific re-

quirements (e.g. camera on a drone and a 3D scanner on

a vehicle) may altogether prohibit the sensors to be rigidly

attached. When the cameras and the 3D sensor are free, re-

liable methods for registering the two modalities are highly

desirable. This consists in establishing feature correspon-

dences between the two modalities and estimating the rigid

transformation aligning their respective reference frames.

Structure-from-Motion (SfM) techniques allow us to

compute 3D point coordinates from pixel correspondences

across images. It is thus tempting to regard the registration

of 3D and 2D sensors as that of two 3D point sets: one set

induced by the images and the other obtained from scan-

ner measurements. Registering 3D point clouds is a well-

studied problem. Most methods use the Iterative Closest

Point (ICP) algorithm (or its variants) [31, 11, 24]. While

ICP is a local method, recent work by Yang et al. [35]

(Go-ICP) provides the very first globally optimal solution

to same-scale point set registration. However, because SfM

reconstructions suffer from a scale ambiguity, methods de-

vised for registering same-scale data cannot be employed.

Most methods handling the scale ambiguity rely on es-

tablishing correspondences either between the 3D mea-

surements obtained by both modalities or directly between

scanned data and images [17, 5, 8]. The sought transfor-

mation parameters are then obtained either by minimizing

the registration loss function or maximizing the consen-

sus set of inliers. Note that Random Sample Consensus

(RANSAC) [10] is the most widely used method for finding
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the maximum set of inliers. Methods based on loss function

minimization are more prone to outliers than their inlier-

set-maximization counterparts [1]. Some methods exploit

scene knowledge or the Manhattan World assumption. In

this regard, methods have been devised based on line seg-

ment matching [17], target segmentation [30], repeated pat-

terns detection [25], mutual information maximization [18],

and extended Chamfer matching [37]. Registration methods

that are based on establishing correspondences may be un-

dermined by unreliable visual feature descriptors. Alterna-

tive methods, not establishing initial correspondences, have

also been proposed [21, 7, 6]. The methods in [21, 7] use

variants of the ICP algorithm and hence remain susceptible

to partial scene overlap, scene occlusion, and high levels of

outliers. The method in [6] employs a RANSAC-based in-

lier set maximization in which the scale problem is handled

by an extension of the 4-point congruent sets algorithm.

As far as the problem of maximizing the set of in-

liers is concerned, RANSAC is non-deterministic and pro-

vides no guarantee with respect to the optimality of its

solution. Globally optimal inlier set maximization meth-

ods [16, 1] have recently been proposed for problems that

can be described using linear equations. However, exten-

sions to problems with nonlinear equations [36] is problem-

specific, difficult and may result in much more compli-

cated (possibly numerically intractable) mathematical for-

mulations. Note that a variety of methods for solving

systems of nonlinear polynomial equations exist. While

some are based on Gröbner bases or homotopy continua-

tion [32], others use Sum-of-Squares (SoS) polynomial op-

timization [26, 15, 20]. However, such methods are dedi-

cated to solving outlier-free nonlinear systems and dealing

with outliers is carried out through RANSAC.

In this paper, we address the problem of registering the

3D scan and a set of images of a structured scene captured

by calibrated cameras. Our assumption is that the scene is

structured in the sense that it can be segmented into and rep-

resented by planes (or planar patches). Such representation

is compact [2] and can also be useful for scene knowledge-

based refinement methods [29]. The plane-based assump-

tion is particularly valid when dealing with man-made envi-

ronments, including (but not limited to) Manhattan World,

urban and indoor scenes that are abundant with planes. In

our approach, we seek the metric transformation relating

the scene’s planes and SfM-induced 3D points. Note that

point-to-plane registration methods are known to perform

better than their point-to-point counterparts [27]. We rely

on the fact that, under metric ambiguity, a point-to-plane as-

signment can be expressed as a second degree polynomial

in scaled-quaternion and translation parameters. Our ap-

proach aims at maximizing the set of point-to-plane inliers

with guaranteed optimality of the consensus set. The con-

sensus set maximization methods [16, 1] discussed above

are not applicable because of the nonlinearity of the prob-

lem at hand. In our approach, we use the Branch-and-

Bound (BnB) algorithmic paradigm to explore the scaled-

quaternion and translation parameter space. As in [16, 1],

we rely on establishing optimistic and pessimistic sets of

point-to-plane inliers for pruning branches whose most op-

timistic sets are worse than the best pessimistic one. In this

context, our contribution is threefold: (i) we propose a novel

modeling of the point-to-plane (and point-to-patch) corre-

spondence problem. Our modeling is based on a rigorous

Sum-of-Squares polynomial optimization theory that allows

us to identify, with certainty, point-to-plane mismatches

within parameters’ bounds. This is used to derive optimistic

sets of inliers where each point-to-plane assignment is con-

sidered independently from the others; (ii) we introduce

SfM-specific constraints in our modeling, namely, a plane

visibility criterion and optional vague constraints on the po-

sitions of the camera; (iii) based on our modeling and con-

straints, we propose a globally optimal approach for point-

to-plane inlier set maximization in the presence of putative

correspondences along with its non-combinatorial counter-

part in the absence of point-to-plane correspondences.

2. The SoS theory

Definition 2.1 (SoS and PSD). Let R[x] be the ring of poly-

nomials in n variables, x = (x1, x2, . . . , xn), with real-

valued coefficients. A polynomial f(x) ∈ R[x] is

- Positive Semi-Definite (PSD) (or nonnegative) if f(x) ≥ 0
for all x ∈ R

n;

- Sum-of-Squares (SoS) if there exist polynomials fi(x) ∈
R[x] such that f(x) =

∑

i fi(x)
2.

A SoS is obviously always PSD and the converse is gen-

erally untrue. However, Hilbert [13] proved that, for some

classes of polynomials including quadratic ones, a poly-

nomial is PSD if and only if it is SoS. Checking whether

a polynomial is PSD is NP-hard (though decidable) while

checking whether a polynomial is SoS is computationally

tractable using Semi-definite Programming (SDP) and em-

ploying the so-called Gram matrix of the polynomial.

Definition 2.2 (Gram matrix [22]). Consider a polynomial

f(x) ∈ R[x] of degree 2d. Let Zd(x) be the vector of mono-

mials of f(x) up to monomials of degree d. The matrix G

such that f(x) = Zd(x)
⊺GZd(x) is a Gram matrix of f(x).

Theorem 2.3 ([4, 22]). A polynomial f(x) ∈ R[x] of degree

2d is SoS if and only if there exists a real symmetric positive

semi-definite Gram matrix of f(x).

Note that since odd-degree polynomials cannot be SoS,

only even-degree polynomials are concerned by such test.

Checking for the existence of a positive semi-definite Gram

matrix G boils down to solving a Linear Matrix Inequality

(LMI) feasibility problem. LMI feasibility can be efficiently

solved using the interior-point algorithm [3]. Theorem 2.3
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allows us to check whether a polynomial f(x) is nonnega-

tive for every x ∈ R
n. One is often interested in checking

whether f(x) is nonnegative in a semi-algebraic set K de-

fined by polynomials gi(x) ∈ R[x] such that

K = {x ∈ R
n : gi(x) ≥ 0, i = 1 . . .m}. (1)

This can be answered via the so-called Positivstellensatz

(Psatz) [20]. The Psatz states that f(x) is nonnegative on

K if there exist SoS polynomials σv(x) such that

f(x) =
∑

v∈{0,1}m

σv(x)g1(x)
v1g2(x)

v2 . . . gm(x)vm . (2)

Exploiting Psatz is difficult and may turn numerically in-

tractable in practice because (2) requires 2m SoS σv poly-

nomials. Putinar [23] provides a much simpler Psatz under

Archimedean conditions on the so-called quadratic module.

Definition 2.4 (Quadratic module [34]). The quadratic

module M(g) = M(g1, . . . , gm) ⊂ R[x] of polynomials

g1(x), g2(x), . . . , gm(x) is the set

M(g) = {σ0(x) +
m
∑

i=1

σi(x)gi(x) : each σi is SoS}. (3)

Definition 2.5 (Archimedean [34]). The quadratic mod-

ule M(g) of polynomials g1(x), g2(x), . . . , gm(x) is

Archimedean if N − ‖x‖2 ∈M(g) for some N ∈ N.

Theorem 2.6 (Putinar’s Positivstellensatz [23]). Assume the

quadratic module M(g) is Archimedean. If f(x) > 0 on K
(defined by (1)), then f(x) ∈M(g).

3. SoS point-to-plane assignment conditions

We consider a set of two or more calibrated cameras ob-

serving a scene consisting of a set P of at least four distinct

planes in general positions. The scene has been scanned by

a 3D sensor and segmented into these planes. We also con-

sider the set Y of seven or more points (lying on at least four

distinct scene planes) whose projections are matched across

two or more cameras. Let y ∈ R
3 be the SfM-induced [12]

cartesian coordinate vector of a point Y ∈ Y . The coordi-

nates of the SfM-reconstructed points and those of the scene

planes are represented in two distinct reference frames. A

plane Π ∈ P is given by its normal 3-vector π and signed

distance to the origin d. Because the image-induced re-

construction is metric, the transformation aligning the SfM-

reconstructed points and the scanned scene is represented

by a 3×3 scaled-rotation matrix Q and a translation 3-vector

t. A quaternion representation with no enforcement of unit

quaternion q = ( z u v w )⊺ is used to represent the

scaled-rotation matrix Q as follows:

Q=





z2 + u2 − v2 − w2 2uv − 2wz 2uw + 2vz
2uv + 2wz z2 − u2 + v2 − w2 2vw − 2uz
2uw − 2vz 2vw + 2uz z2 − u2 − v2 + w2



 .

Let A ⊂ Y × P be the set of putative point-to-plane

assignments (× refers to the cartesian product) and a =
(Y,Π) ∈ A is one such assignment. Furthermore, we de-

note by x ∈ R
7 the vector x = (q⊺, t⊺)⊺ and let fa(x) be

the polynomial in R[x] induced by a such that:

fa(x) := π⊺(Qy + t)− d. (4)

If x is the true registration parameter vector, then for ev-

ery correct assignment a ∈ A, fa(x) = 0. Our goal is to

simultaneously estimate the registration parameters x and

associated set of correct point-to-plane assignments. Our

approach is based on the BnB algorithmic paradigm and

branching is carried out on the space of registration parame-

ters x. At each iteration, we are given parameter intervals, in

the form of two vectors x and x in R
7 whose respective en-

tries xk and xk satisfy xk ≤ xk for k = 1 . . . 7. Although the

full approach is detailed further in the paper, the idea is that

such intervals are to be probed for point-to-plane potential

assignments by attempting to solve the following problem:

Problem 3.1. For a given a ∈ A, is there a vector x ∈ R
7

satisfying xk ≤ xk ≤ xk, k = 1 . . . 7 such that fa(x) = 0?

In other words, one would like to know whether the poly-

nomial crosses zero within the considered bounds. The

point-to-plane assignment would then qualify as a potential

inlier, i.e. possible correct assignment, within the consid-

ered bounds. This is however difficult to answer, unless the

following alternative problem is considered:

Problem 3.2. For a given a ∈ A, is there a λa ∈ R

such that λafa(x) > 0 for every x satisfying xk ≤ xk ≤
xk for k = 1 . . . 7?

If λafa(x) > 0, then the assignment a is definitely an

outlier, i.e. incorrect assignment, within the bounds. Oth-

erwise, it is a potential inlier. Indeed, if the question of

Problem 3.2 is answered in the affirmative, the one of Prob-

lem 3.1 is answered in the negative: i.e. there exist no x

in the interval with which fa(x) crosses zero. Furthermore,

one can rely on Putinar’s Theorem 2.6 to solve Problem 3.2.

To do so, assume we are given a set of polynomials gi(x)
whose quadratic module M(g) is Archimedean: if, for λa
a scalar, λafa(x) > 0 for all x ∈ K = {x ∈ R

7 : gi(x) ≥
0, i = 1 . . .m}, then λafa(x) ∈ M(g). Hence, there must

exist SoS polynomials σi such that:

λafa(x)−
m
∑

i=1

σi(x)gi(x) is SoS. (5)

Note that, in general, if (5) is satisfied, then λafa(x) may

not be necessarily positive in K since K could possibly be

empty. However, so long asK is not empty and σi SoS poly-

nomials can be found, one is guaranteed that λafa(x) > 0
everywhere in K since

∑m
i=1 σi(x)gi(x) > 0 in K.

There are two main pending issues before one is able to

use (5). First, one needs to find a set of polynomials gi(x),
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representative of the parameter intervals, whose quadratic

module M(g) is Archimedean. Second, it is so far unclear

how the σi SoS polynomials can be found. Let us explore

now the first of these issues. Note that the Archimedean

property is a matter of representation and the quadratic

module of the set constructed from the linear interval con-

straints xk − xk ≥ 0 and xk − xk ≥ 0 is not Archimedean.

In the following, we show that quadratic polynomial in-

equalities derived from such bound constraints yield an

Archimedean quadratic module.

Proposition 3.3. Consider the polynomials gk(x) = (xk −
xk)(xk − xk), k = 1 . . . 7. The quadratic module M(g) of

these polynomials is Archimedean.

Proof. As per Definition 2.5, for M(g) to qualify as

Archimedean, one must show that N − ‖x‖2 ∈ M(g)
for some N ∈ N. In other words, there exist SoS σ0(x)

and σk(x), k = 1 . . . 7, such that N − ∑7
k=1 x

2
k =

σ0(x)+
∑7

k=1 σk(x)gk(x). Equivalently, one needs to show

that N −
∑7

k=1 x
2
k −

∑7
k=1 σk(x)gk(x) is SoS. Upon ex-

panding and factorizing the latter polynomial, we obtain
∑7

k=1(σk(x) − 1)x2k −
∑7

k=1 σk(x)(xk + xk)xk + (N +
∑7

k=1 σk(x)xkxk). Using zero-degree SoS polynomials σk,

i.e. nonnegative real scalars, one can always find σk > 1
and sufficiently large value of N such that this polynomial

is always positive. Notice that the polynomial is quadratic

in which case PSD and SoS are equivalent [13].

Let us now consider the problem of checking whether

or not (5) is SoS when considering the polynomials gk(x),
k = 1 . . . 7 of Proposition 3.3. If so the assignment a is def-

initely an outlier within the bounds. If one knows before-

hand that λafa(x) must be positive, a sequence of σk(x)
of increasing degree can be used until a positivity certifi-

cate is obtained. However, for the problem at hand, when

a set of σk(x) of some degree fails to deliver such certifi-

cate, it is either because λafa(x) indeed crosses zero (in-

lier) or the required degree for a positivity certificate has

not been reached. The good news here is that, within a BnB

search, the considered bound intervals [x, x] get smaller and

we show in the following that using nonnegative scalars σk
rather than SoS polynomials of higher degree suffices. To

see this, consider the following proposition:

Proposition 3.4. Let x̂ ∈ R
7 with known entries. The fol-

lowing statements are equivalent

(i) λafa(x̂) > 0.

(ii) ∃ nonnegative scalars σk ∈ R, k = 1 . . . 7:

λafa(x) +

7
∑

k=1

(xk − x̂k)
2σk > 0. (6)

Proof. (ii) =⇒ (i) is straightforward. For (i) =⇒ (ii), con-

sider fa(x)’s Gram matrix Gf and Gx that of
∑7

k=1(xk −

x̂k)
2. These matrices are defined by: fa(x) = x⊺Gfx

and
∑7

k=1(xk − x̂k)
2 = x⊺Gxx. Note that Gx is PSD

and can be written as Gx = U⊺U with Ux̂ = 0. The

Gram matrix of the polynomial in (6) is then written as

λaGf + U⊺diag(σ1, σ2, . . . , σ7)U. A direct application

of Finsler’s lemma [9] is that the latter matrix is positive-

definite if and only if λax̂
⊺Gf x̂ > 0. This not only shows

(i) =⇒ (ii) but also proves the equivalence.

We now state the following preliminary result:

Result 3.5. Consider two vectors x and x in R
7 whose re-

spective entries xk and xk satisfy xk ≤ xk for k = 1 . . . 7.

Let Kb be the set

Kb = {x ∈ R
7 : gk(x) := (xk − xk)(xk − xk) ≥ 0}. (7)

If ∃ a scalar λa and nonnegative scalars σk such that

λafa(x)−
7

∑

k=1

gk(x)σk (8)

is SoS, then λafa(x) > 0 for every xk ≤ xk ≤ xk. In

this case, the assignment a is guaranteed to be an outlier

(a point-to-plane mismatch) within the considered bounds.

Otherwise, a is a potential inlier. Furthermore, a conse-

quence of Proposition 3.4 is that when xk − xk tends to-

wards zero, we are guaranteed that any outlier within the

bound is detected. Indeed, this can be seen by noticing that

when xk = xk = x̂k, polynomial (8) turns into (6).

Whether (8) is SoS can be tested by converting it into its

corresponding Gram matrix LMI feasibility problem for the

λa and σk indeterminates. Although the guarantee of iden-

tifying outliers using scalar σk multipliers is demonstrated

with a zero-gap bound, in practice, outliers are detected very

early in the process. As demonstrated in our experiments,

the ability to detect outliers is improved with every size re-

duction of the investigated bounds. It may be tempting to

use higher degree σk(x) SoS polynomials to boost the pro-

cess. However, this is unnecessary and yields slower per-

formances compared to branching.

4. Registration

Our goal is to register a SfM-induced reconstruction and

a plane-segmented scene. Unlike when dealing with 3D-

3D registration, additional constraints emanating from the

cameras can be exploited. Some may be implicit such as

plane visibility, others, as vague camera locations, may be

obtained from extra knowledge. In addition, when dealing

with segmented scenes, one is given planar patches rather

than infinite planes. Such additional constraints can aug-

ment the set Kb derived from the bound constraints for ear-

lier outlier detection. Note that adding new polynomial in-

equalities in Kb has no effect on the Archimedean property

of its quadratic module and Proposition 3.4 still holds.
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Patches: Consider a scene plane Π and three or more planes

Φk, not necessarily from the scene, orthogonal to it. The Φk

planes must be chosen such that their intersection with Π
defines a convex region on Π. The set of points on Π within

this convex region is a patch. In practice, four such planes

are adequate to represent meaningful patches in man-made

environments. Each Φk is described by its normal vector φk
and signed distance dk. Let us denote by Φ the set {Φk}4k=1

and let δk = ±1 be the known sign, with respect to Φk, of a

scanned point lying within the considered region. One can

then identify outliers by checking whether fa(x) is positive

everywhere within x′s bounds and in the set

KΦ

a ={x ∈ R
7 : pk(x) := (φ⊺

k
(Qy + t)− dk)δk ≥ 0,

k = 1 . . . 4}.
(9)

Plane visibility: Consider a point Y on a scene plane Π. If

this point is imaged by two cameras, then these can only ob-

serve the same side of the plane: the one on which the point

lies. In order for the cameras to observe the same side of

the plane, their camera centers must lie on one side with re-

spect to Π. Camera centers can easily be obtained from the

SfM-calculated camera matrices: they are their right null

space. Let Ck be the camera centers of n ≥ 2 cameras with

cartesian coordinates ck. We define the set Kδ
Π such that

Kδ

Π ={x ∈ R
7 : vk(x) := (π⊺(Qck + t)− d)δ ≥ 0,

k = 1 . . . n}
(10)

where δ = ±1. We denote K+
Π the set Kδ

Π obtained us-

ing δ = +1 and K−
Π otherwise. A given assignment a is

a definite outlier if fa(x) > 0 in K+
Π and in K−

Π (in addi-

tion to patch and bounds conditions). Furthermore, planes

for which v1(x) and v2(x) (for two cameras 1 and 2) always

have opposite signs within x′s bounds cannot be assigned

any points visible in those cameras. This would indicate

that the plane always cuts the base-line of the two camera

and cannot contain points visible in both cameras. Testing

this can be carried out by checking, for δ = ±1, whether
{

∃σk : v1(x)−
∑

7

k=1
gk(x)σk is SoS,

∃σk : −v2(x)−
∑

7

k=1
gk(x)σk is SoS.

(11)

If for both values of δ, each polynomial in (11) is SoS, plane

Π shall not be considered for assigning SfM points emanat-

ing from those cameras.

Camera bounds: A camera center C may lie within a box

delimited by six planes in the set Ψ = {Ψk}6k=1 defined by

their normal vectors ψk and signed distances dk. Such in-

formation can be obtained from application-specific knowl-

edge (GPS, moving vehicle, etc.). This knowledge can be

used for further enforcing the search for point-to-plane out-

liers and turns very useful when no putative point-to-plane

correspondences are initially known. Consider the cartesian

coordinate vector c of the camera center and let

Kc ={x ∈ R
7 : hk(x) := (ψ⊺

k
(Qc+ t)− dk)δk ≥ 0,

k = 1 . . . 6}
(12)

where δk is the known sign, with respect to Φk, of any point

within the considered box. If hk(x) are positive, the camera

center is within the box. One can now test if λafa(x) > 0
whenever the camera center is in the box defined by Kc.

Quaternions and scale: In the absence of scale, quaternion

parameters demand that q⊺q = 1. When dealing with a

scaled scene, the rotation is represented by a scaled quater-

nion matrix and one can only enforce that q⊺q > 0. It is

understood that, in order to keep the problem numerically

tractable via the Archimedean property, all registration pa-

rameters need to be bounded. The scale of the scene is no

exception. When a better lower bound s > 0 on the scale

s is available, it is preferable to enforce that q⊺q ≥ s. This

condition does not appear in the set Kb and hence must be

accounted for. Assuming the entries xk, k = 1 . . . 4 of x

correspond the quaternion parameters, we consider the set

Kq = {x ∈ R
7 : q(x) := −s+

4
∑

k=1

x2k ≥ 0} (13)

Furthermore, since both q and −q yield the same rotation

matrix, the initial lower bound of one of the quaternion pa-

rameters may arbitrarily be chosen nonnegative. The rest

of the quaternion parameters may be initially bounded be-

tween −
√
s and

√
s where s is the scale’s upper bound.

We now state our main result:

Result 4.1. Assume we are given a putative point-to-plane

assignment a = (Y,Π) ∈ A, a patch on Π delimited by the

planes in the set Φ = {Φk}4k=1, lower x and upper x bounds

on the registration parameter vector x, bounds s and s on

the scale of the scene, and (optionally) bounds defined by

planes Ψ = {Ψk}6k=1 on the location of the camera centers

of one (possibly more) camera. One would like to know

whether or not the SfM-reconstructed point Y may lie on Π,

while Π is visible by the cameras observing Y , within the

patch Φ with registration parameters in the bounds x and x.

In order to establish whether such assignment is possible,

we consider the set

K = {x ∈ R
7 : x ∈ Kb ∩ KΦ

a ∩ Kδ
Π ∩ Kc ∩ Kq) (14)

resulting from the intersection of all the sets defined

by (7),(9),(10), (12) and (13). If there exist a scalar λa and

nonnegative scalars σk, σ′
k, σ′′

k , σ′′′
k and σ such that

λafa(x)−
∑

7

k=1
gk(x)σk −

∑
4

k=1
pk(x)σ

′

k

−
∑

n

k=1
vk(x)σ

′′

k −
∑

6

k=1
hk(x)σ

′′′

k − q(x)σ
(15)

is SOS, then λafa(x) > 0 in K and the assignment a is a

definite outlier. It is a potential inlier otherwise. Recall that

this can be solved as a LMI feasibility problem.

Our registration approach is based on Result 4.1. We

use in the following the term point-to-plane to refer to both

point-to-plane and point-to-patch assignments. The goal of
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the BnB algorithm is to estimate the registration parame-

ters yielding the largest number of inliers. Our algorithm is

provided a set of putative point-to-plane correspondences.

In the absence of such correspondences, we consider ev-

ery point to be putatively assigned to all the planes. A

dynamically-built search tree, whose nodes are registration

parameters’ bounds, allows to explore the space of param-

eters. Given point-to-plane assignments and bounds on the

registration parameters, the algorithm (see Algorithm 1) es-

timates the optimistic number of potential inliers using Re-

sult 4.1. A local method, a variant of the scaled-ICP al-

gorithm [7], is used to obtain a pessimistic number of in-

liers for each given node. The local algorithm is started in

the mid-values of the registration parameters’ bounds. It’s

variation from [7] resides in constraining the registration

solution to be within the investigated bounds in order to

be representative of the node. We keep track of the high-

est (bestPessimistic in Algorithm 1) of the pessimistic num-

ber of potential inliers over all bound intervals. Any node

whose optimistic number of inliers is worse than bestPes-

simistic is rejected. Otherwise, the node is qualified and

branched along its longest edge resulting in two new nodes

to be processed. The node corresponding to the bestPes-

simistic number of inliers is processed first. The algorithm

terminates when no node has an optimistic number of inliers

that is better than bestPessimistic.

Algorithm 1 Node processing

Input: bestPessimistic, registration param. bounds

Output: bestPessimistic

1. Count Optimistic no. of inliers using Result 4.1

2. If Optimistic < bestPessimistic, reject the bounds.

3. Count Pessimistic no. of inliers using local method.

4. If (bestPessimistic < Pessimistic),

then bestPessimistic← Pessimistic.

To qualify a point as an inlier, we distinguish two cases:

1) Putative point-to-plane correspondences are provided: a

point qualifies as a potential inlier if (15) is not proven SoS

when assigned to the considered plane.

2) No putative correspondences are provided: the point is

considered a potential inlier as soon as (15) is not proven

SoS when the point is assigned to one plane.

Discussion: In general, our method converges while the ex-

plored bounds are still quite large. The solution maximiz-

ing the inlier consensus set is the one returned by the local

method. When the bounds are large enough, polynomials

constructed from noisy data would still cross zero within

the bounds allowing inliers, although affected by noise, to

be accounted for. Therefore, the robustness to noise is more

influenced by the local method than it is by the SoS tests.

In our implementation, no special care was taken to further

deal with noise when using SoS tests. However, in the case

of highly noisy data, the proposed SoS framework may al-

low to deal more efficiently with noise by incorporating an

extra bounded variable ǫ (bounded by the allowed thresh-

old), accounting for noise, in each point-to-plane assign-

ment polynomial fa(x). In other words, though the assign-

ment polynomial does not cross zero at the sought solution,

fa(x) + ǫ (for some value of ǫ) would. Furthermore, we

have assumed throughout that the camera information fed

to our algorithm is, to some extent, reliable. Should in-

correct/noisy information about a camera be used, it may

cause, especially with small camera bounding boxes, the

registration to fail. In such cases, it is advised to include

the camera-to-box constraints in the set of assignments to

be accounted for when maximizing the consensus set.

5. Experiments

We conducted experiments with seven different bench-

mark real datasets shown in Figure 1 and whose details can

be found in [14] and [28]. Our algorithm was implemented

in MATLAB2014b and the SoS problems solved using the

LMI Control Toolbox. All experiments were carried out on

a 8GB RAM Pentium i7/3.40GHz. The SfM reconstruc-

tions and segmented scene planes were obtained using the

openMVG Toolbox [19] and Hough Transform based plane

detector [2]. For all the experiments, the initial bound on

reconstruction scale was set to 0.2–5.0 (five times in scale

in both directions). Four different error measurement met-

rics were defined to evaluate the registration quality: the

RMS 3D error on normalized point sets, errors in rotation

R, translation t, and scale s. For N experiments, these are

defined as follows: ∆R = ( 1
3N

N
∑

i=1

‖r∗i − r‖2)1/2, ∆T =

( 1
N(‖t‖2)

N
∑

i=1

‖t∗i − t‖2)1/2, ∆S = ( 1
N(s2)

N
∑

i=1

(s∗i − s)2)1/2,

where r is a vector obtained by stacking three rotation an-

gles in degrees. The estimated variables are represented

with * and variables without it are their ground truth.

5.1. Inlier set maximization with correspondences

The method was first tested for known putative corre-

spondences where the synthetic inliers/outliers were gener-

ated under real data setups. No bounds on cameras were

used in these experiments. To test the robustness, we varied

the number of outliers up to 90% for Scene73 and compared

the results against the linear 12-point RANSAC. Figure 2

shows that our method consistently detects 21 inliers for

every experiment while RANSAC fails to detect the least

number of required inliers starting from 45% of outliers.

Note that the numbers of inliers reported here are true-

positive inliers. Furthermore, our method does not detect

any false positive inliers. Figure 4(left) shows the errors in

rotation, translation, and scale for the same scene with vari-

ous levels of outliers. The convergence graph of our method
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Figure 1: Sample images from datasets (left to right): Scene23, Scene24, Scene27, Scene29, Scene73, Fountain, Herz-Jesu.
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Figure 2: Experiments on Scene73 with correspondences

and no camera bounds. Left: no. of processed points and

time taken for various levels of outliers. Right: no. of de-

tected inliers using RANSAC and our method.
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Figure 3: Experiments on Scene23 with correspondences,

no camera bounds, and 50% outliers. Left: remaining

nodes. Right: remaining volume.

∆R (degree) ∆T (%) ∆S (%) 3D error Time (sec)

Scene23 0.785 1.75 0.21 0.0163 168.95

Scene73 1.263 4.63 1.68 0.0219 153.39

Fountain 0.524 1.21 0.53 0.0056 546.41

Table 1: Experiments with correspondences and no camera

bounds: quantitative results obtained with 50% outliers.

with 50% outliers is shown in Figure 4(right) for Scene23,

Scene73, and Fountain whose quantitative results are shown

in Table 1. Figure 3 shows the evolution of the volume and

the number of nodes remaining to be processed for the first

50 iterations on Scene23 with 50% outliers.

5.2. Inlier set maximization w/o correspondences

In the absence of initial correspondences, each point

was assigned to all available planes. We conducted sev-

eral experiments with bounded cameras by changing the

number of bounded cameras and camera bounding box size.

The number of iterations taken for these configurations are

shown in Figure 6(left) for Scene23. The average time per

iteration is 1.15sec. In the same figure, we also provide the

number of iterations taken for the “with correspondences”

case with 50% outliers and 2m camera bounding boxes. The

case of a single bounded camera is equivalent to unbounded
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Figure 4: Experiments with correspondences and no camera

bounds. Left: Error in rotation, translation, and scale for

Scene73 vs. no. of outliers. Right: Convergence graph for

50% outliers (Top to bottom: Scene23, Scene73, Fountain).

cameras but bounded translation: plane visibility criterion

cannot be used in this case. We recall that initial bounds

on all the registration parameters are indispensable to en-

sure an Archimedean quadratic module of the constraints

set and hence employ Putinar’s Psatz. Figure 6(right) shows

the convergence graph, using Scene23, obtained with 3 1m-

box bounded cameras. It also shows how the residual error

on the registration parameters varies with the increase in the

number of pessimistic inliers. The reported box size is for

a normalized scene size of about 10 meters. In Figure 7,

we report the results obtained on Scene23 (with 3 1m-box

bounded cameras) using our method and a randomly started

scaled ICP (RS-ICP) for 100 independent trials. In each

trial, the scaled ICP was started at randomly picked regis-

tration parameter values satisfying bound and visibility con-

straints. The results show that, unlike RS-ICP which pro-

vides very large 3D errors, our method consistently detects

the same number of inliers with the same 3D error.

The results of our method for all scenes (with their cor-

responding configurations) are summarized in Table 2. In
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Figure 5: Left to right (Scene24): Segmented scene, reconstruction, registered point sets, two views of texture-mapped scene.

Scene Points Planes Recon. Rep. Camera Box Inlier ∆R ∆T (%) ∆S(%) 3D error Iter Time (sec)

Scene23 90 8 2.08134 0.8373 3 2m 41 3.4147 1.95 2.48 0.0619 482 599.738

Scene24 47 7 2.62791 0.8756 3 40cm 31 0.9591 2.31 2.09 0.0424 81 51.572

Scene27 49 4 1.61906 0.8127 8 50cm 20 2.5759 3.96 1.68 0.0131 133 141.837

Scene29 90 8 1.77408 0.9226 5 1m 45 2.9995 5.41 2.41 0.081 209 277.351

Scene73 71 8 3.21913 0.8654 5 1m 45 3.3463 4.78 2.73 0.0654 223 271.226

Fountain 29 7 0.81293 0.8495 4 40cm 11 2.8639 3.18 4.74 0.0570 102 55.730

Herz-Jesu 129 5 2.08134 0.6402 8 40cm 101 7.1958 4.02 1.99 0.0464 103 137.766

Table 2: Experiments w/o correspondences: quantitative results for seven different datasets.
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Figure 6: Experiments on Scene 23. Left: no. of iterations

vs. no. of cameras. Right: Convergence graph for the case

w/o correspondences with 3 1m-box bounded cameras.
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Figure 7: Experiments on Scene23 w/o correspondences

with 3 1m-box bounded cameras (100 independent trials).

Our method vs. randomly started scaled ICP (RS-ICP).

Left: no. of inliers detected. Right: 3D RMS error.

Scene Method Time (sec) ∆R ∆T (%) 3D error

Fountain

RISAG 805.680 8.6825 14.08 0.3275

Go-ICP 529.415 0.7225 1.63 0.0348

Our method 55.730 2.8639 3.18 0.0570

Herz-Jesu

RISAG 160.064 17.6378 5.70 0.1830

Go-ICP 31.254 3.2618 16.9 0.0725

Our method 137.766 7.1958 4.02 0.0464

Table 3: Results using RISAG, Go-ICP and our method.

the reported parameters, Points, Planes, Iter, and Inlier rep-

resent their numbers. “Recon.” is the quality of the SfM

reconstruction measured as the median reprojection error in

pixels while “Rep.” is the fraction of the scene points repre-

sented by fitted planes. Observe that the registration qual-

ity depends upon the reconstruction quality, representation

factor, and the number and size of the camera boxes. For a

qualitative evaluation, the results obtained for Scene24 are

shown in Figure 5 along with the registered point sets and

textured scene (after further refinement using [33]).

We also provide the results for two datasets obtained us-

ing RISAG [6], Go-ICP [35], and our method in Table 3.

Our method was used without correspondences in the set-

ting given in Table 2. Note that Go-ICP requires an Eu-

clidean reconstruction, which was obtained by upgrading

the metric reconstruction using ground truth measurements.

Comparison of these methods may be unfair because each

requires different initial conditions. Note that the poor per-

formance of RISAG could be due to its RANSAC-driven

nature (we used 104 RANSAC iterations).

6. Conclusion

We proposed a method for registering a 3D scan and

a set of images of a scene represented by planes (or pla-

nar patches). Using Branch-and-Bound and SoS theory, we

devised a robust and optimal method for inlier set maxi-

mization of point-to-plane correspondences. Although the

problem is nonlinear and combinatorial, our method has

provided outstanding results in terms of robustness. In

the absence of initial assignments, the proposed method

is non-combinatorial and can incorporate additional con-

straints that arise from plane visibility criterion and optional

vague camera position constraints. The employed optimiza-

tion framework has the potential to be efficiently applied to

other nonlinear Computer Vision problems.
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