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Abstract

We present an approach to learn a dense pixel-wise la-

beling from image-level tags. Each image-level tag imposes

constraints on the output labeling of a Convolutional Neu-

ral Network (CNN) classifier. We propose Constrained CNN

(CCNN), a method which uses a novel loss function to op-

timize for any set of linear constraints on the output space

(i.e. predicted label distribution) of a CNN. Our loss formu-

lation is easy to optimize and can be incorporated directly

into standard stochastic gradient descent optimization. The

key idea is to phrase the training objective as a biconvex op-

timization for linear models, which we then relax to nonlin-

ear deep networks. Extensive experiments demonstrate the

generality of our new learning framework. The constrained

loss yields state-of-the-art results on weakly supervised se-

mantic image segmentation. We further demonstrate that

adding slightly more supervision can greatly improve the

performance of the learning algorithm.

1. Introduction

In recent years, standard computer vision tasks, such

as recognition or classification, have made tremendous

progress. This is primarily due to the widespread adop-

tion of Convolutional Neural Networks (CNNs) [11,19,20].

Existing models excel by their capacity to take advantage

of massive amounts of fully supervised training data [28].

This reliance on full supervision is a major limitation on

scalability with respect to the number of classes or tasks.

For structured prediction problems, such as semantic seg-

mentation, fully supervised, i.e. pixel-level, labels are both

expensive and time consuming to obtain. Summarization

of the semantic-labels in terms of weak supervision, e.g.

image-level tags or bounding box annotations, is often less

costly. Leveraging the full potential of these weak annota-

The implementation code and trained models are available at the au-

thor’s website.
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Figure 1: We train convolutional neural networks from a set

of linear constraints on the output variables. The network

output is encouraged to follow a latent probability distribu-

tion, which lies in the constraint manifold. The resulting

loss is easy to optimize and can incorporate arbitrary linear

constraints.

tions is challenging, and existing approaches are susceptible

to diverging into bad local optima from which recovery is

difficult [6, 16, 25].

In this paper, we present a framework to incorporate

weak supervision into the learning procedure through a se-

ries of linear constraints. In general, it is easier to express

simple constraints on the output space than to craft regu-

larizers or adhoc training procedures to guide the learning.

In semantic segmentation, such constraints can describe the

existence and expected distribution of labels from image-

level tags. For example, given a car is present in an image,

a certain number of pixels should be labeled as car.

We propose Constrained CNN (CCNN), a method which

uses a novel loss function to optimize convolutional net-

works with arbitrary linear constraints on the structured out-

put space of pixel labels. The non-convex nature of deep
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nets makes a direct optimization of the constraints diffi-

cult. Our key insight is to model a distribution over la-

tent “ground truth” labels while the output of the deep net

follows this latent distribution as closely as possible. This

allows us to enforce the constraints on the latent distribu-

tion instead of the network output, which greatly simplifies

the resulting optimization problem. The resulting objective

is a biconvex problem for linear models. For deep nonlin-

ear models, it results in an alternating convex and gradient

based optimization which can be naturally integrated into

standard stochastic gradient descent (SGD). As illustrated

in Figure 1, after each iteration the output is pulled towards

the closest point on the constrained manifold of plausible

semantic segmentation. Our Constrained CNN is guided by

weak annotations and trained end-to-end.

We evaluate CCNN on the problem of multi-class se-

mantic segmentation with varying levels of weak supervi-

sion defined by different linear constraints. Our approach

achieves state-of-the-art performance on Pascal VOC 2012

compared to other weak learning approaches. It does not

require pixel-level labels for any objects during the training

time, but infers them directly from the image-level tags. We

show that our constrained optimization framework can in-

corporate additional forms of weak supervision, such as a

rough estimate of the size of an object. The proposed tech-

nique is general, and can incorporate many forms of weak

supervision.

2. Related Work

Weakly supervised learning seeks to capture the signal

that is common to all the positives but absent from all the

negatives. This is challenging due to nuisance variables

such as pose, occlusion, and intra-class variation. Learn-

ing with weak labels is often phrased as Multiple Instance

Learning [8]. It is most frequently formulated as a maxi-

mum margin problem, although boosting [1,36] and Noisy-

OR models [15] have been explored as well. The multiple

instance max-margin classification problem is non-convex

and solved as an alternating minimization of a biconvex

objective [2]. MI-SVM [2] or LSVM [10] are two classic

methods in this paradigm. This setting naturally applies to

weakly-labeled detection [31, 34]. However, most of these

approaches are sensitive to the initialization of the detec-

tor [6]. Several heuristics have been proposed to address

these issues [30, 31], however they are usually specific to

detection.

Traditionally, the problem of weak segmentation and

scene parsing with image level labels has been addressed

using graphical models, and parametric structured mod-

els [32, 33, 37]. Most works exploit low-level image infor-

mation to connect regions similar in appearance [32]. Chen

et al. [5] exploit top-down segmentation priors based on vi-

sual subcategories for object discovery. Pinheiro et al. [26]

and Pathak et al. [25] extend the multiple-instance learning

framework from detection to semantic segmentation using

CNNs. Their methods iteratively reinforce well-predicted

outputs while suppressing erroneous segmentations contra-

dicting image-level tags. Both algorithms are very sensitive

to the initialization, and rely on carefully pretrained classi-

fiers for all layers in the convolutional network. In contrast,

our constrained optimization is much less sensitive and re-

covers a good solution from any random initialization of the

classification layer.

Papandreou et al. [24] include an adaptive bias into the

multi-instance learning framework. Their algorithm boosts

classes known to be present and suppresses all others. We

show that this simple heuristic can be viewed as a special

case of a constrained optimization, where the adaptive bias

controls the constraint satisfaction. However the constraints

that can be modeled by this adaptive bias are limited and

cannot leverage the full power of weak labels. In this paper,

we show how to apply more general linear constraints which

lead to better segmentation performance.

Constrained optimization problems have long been ap-

proximated by artificial neural networks [35]. These models

are usually non-parametric, and solve just a single instance

of a linear program. Platt et al. [27] show how to optimize

equality constraints on the output of a neural network. How-

ever the resulting objective is highly non-convex, which

makes a direct minimization hard. In this paper, we show

how to optimize a constrained objective by alternating be-

tween a convex and gradient-based optimization.

The resulting algorithm is similar to generalized expec-

tation [22] and posterior regularization [12] in natural lan-

guage processing. Both methods train a parametric model

that matches certain expectation constraints by applying a

penalty to the objective function. Generalized expectation

adds the expected constraint penalty directly to objective,

which for convolutional networks is hard and expensive to

evaluate directly. Ganchev et al. [12] constrain an auxil-

iary variable yielding an algorithm similar to our objective

in dual space.

3. Preliminaries

We define a pixel-wise labeling for an image I as a set of

random variables X = {x0, . . . , xn} where n is the num-

ber of pixles in an image. xi ∈ L takes one of m dis-

crete labels L = {1, . . . ,m}. CNN models a probability

distribution Q(X|θ, I) over those random variables, where

θ are the parameters of the network. The distribution is

commonly modeled as a product of independent marginals

Q(X|θ, I) =
∏

i qi(xi|θ, I), where each of the marginal

represents a softmax probability:
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Figure 2: Overview of our weak learning pipeline. In-

put image is passed through a fully convolutional network

(FCN) which produces an output labeling. The model is

trained such that the output labeling follows a set of simple

linear constraints imposed by image level tags.

qi(xi|θ, I) =
1

Zi

exp
(

fi(xi; θ, I)
)

(1)

where Zi =
∑

l∈L
exp

(

fi(l; θ, I)
)

is the partition func-

tion of a pixel i. The function fi represents the real-valued

score of the neural network. A higher score corresponds to

a higher likelihood.

Standard learning algorithms aim to maximize the like-

lihood of the observed training data under the model. This

requires full knowledge of the ground truth labeling, which

is not available in the weakly supervised setting. In the next

section, we show how to optimize the parameters of a CNN

using some high-level constraints on the distribution of out-

put labeling. An overview of this is given in Figure 2. In

Section 5, we then present a few examples of useful con-

straints for weak labeling.

4. Constrained Optimization

For notational convenience, let ~QI be the vectorized

form of network output Q(X|θ, I). The Constrained CNN

(CCNN) optimization can be framed as:

find θ

subject to AI
~QI ≥ ~bI ∀I, (2)

where AI ∈ R
k×nm and ~bI ∈ R

k enforce k individual

linear constraints on the output distribution of the convnet

on image I . In theory, many outputs ~QI satisfy these con-

straints. However all network outputs are parametrized by

a single parameter vector θ, which ties the output space of

different ~QI together. In practice, this leads to an output that

is both consistent with the input image and the constraints

imposed by the weak labels.

For notational simplicity, we derive our inference algo-

rithm for a single image with A = AI ,~b = ~bI and ~Q = ~QI .

The entire derivation generalizes to an arbitrary number of

images and constraints. Constraints include for example

lower and upper bounds on the expected number of fore-

ground and background pixel labels in a scene. For more

examples, see Section 5. In the first part of this section,

we assume that all constraints are satisfiable, meaning there

always exists a parameter setting θ such that A~Q ≥ ~b. In

Section 4.3, we lift this assumption by adding slack vari-

ables to each of the constraints.

While problem (2) is convex in the network output Q, it

is generally not convex with respect to the network param-

eters θ. For any non-linear function Q, the matrix A can be

chosen such that the constraint is an upper or lower bound

to Q, one of which is non-convex. This makes a direct opti-

mization hard. As a matter of fact, not even log-linear mod-

els, such as logistic regression, can be directly optimized

under this objective. Alternatively, one could optimize the

Lagrangian dual of (2). However this is computationally

very expensive, as we would need to optimize an entire con-

volutional neural network in an inner loop of a dual descent

algorithm.

In order to efficiently optimize problem (2), we introduce

a latent probability distribution P (X) over the semantic la-

bels X . We constrain P (X) to lie in the feasibility region

of the constrained objective while removing the constraints

on the network output Q. We then encourage P and Q to

model the same probability distribution by minimizing their

respective KL-divergence. The resulting problem is defined

as

minimize
θ,P

D (P (X)‖Q(X|θ))

subject to A~P ≥ ~b,
∑

X

P (X) = 1, (3)

where D (P (X)‖Q(X|θ)) =
∑

X P (X) logP (X) −

EX∼P [logQ(X|θ)] and ~P is the vectorized version of

P (X). If the constraints in (2) are satisfiable then the prob-

lems (2) and (3) are equivalent with a solution of (3) at

P that is equal to the feasible Q. This equality implies

that P (X) can be modeled as a product of independent

marginals P (X) =
∏

i pi(xi) without loss of generality,

with a minimum at pi(xi) = qi(xi|θ). A detailed proof is

provided in the supplementary material.

The new objective is much easier to optimize, as it de-

couples the constraints from the network output. For fixed

network parameters θ, the problem is convex in P . For a

fixed latent distribution P , the problem reduces to a stan-

dard cross entropy loss which is optimized using stochastic

gradient descent.

In the remainder of this section, we derive an algorithm

to optimize problem (3) using block coordinate descent.

Section 4.1 solves the constrained optimization for P while

keeping the network parameters θ fixed. Section 4.2 then

incorporates this optimization into standard stochastic gra-

dient descent, keeping P fixed while optimizing for θ. Each
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step is guaranteed to decrease the overall energy of prob-

lem (3), converging to a good local optimum. At the end of

this section, we show how to handle constraints that are not

directly satisfiable by adding a slack variable to the loss.

4.1. Latent distribution optimization

We first show how to optimize problem (3) with respect

to P while keeping the convnet output fixed. The objective

function is convex with linear constraints, which implies

Slaters condition and hence strong duality holds as long as

the constraints are satisfiable [3]. We can therefore optimize

problem (3) by maximizing its dual function, i.e.,

L(λ) = λ⊤~b−

n
∑

i=1

log
∑

l∈L

exp
(

fi(l; θ) +A⊤
i;lλ

)

, (4)

where λ ≥ 0 are the dual variables pertaining to the in-

equality constraints and fi(l; θ) is the score of the convnet

classifier for pixel i and label l. Ai;l is the column of A
corresponding to pi(l). A detailed derivation of this dual

function is provided in the supplementary material.

The dual function is concave and can be optimized glob-

ally using projected gradient ascent [3]. The gradient of the

dual function is given by ∂
∂λ

L(λ) = ~b−A~P , which results

into

pi(xi) =
1

Zi

exp
(

fi(xi; θ) +A⊤
i;xi

λ
)

,

where Zi =
∑

l exp
(

fi(l; θ) + A⊤
i;lλ

)

is the local partition

function ensuring that the distribution pi(xi) sums to one

for ∀xi ∈ L. Intuitively, the projected gradient descent al-

gorithm increases the dual variables for all constraints that

are not satisfied. Those dual variables in turn adjust the

distribution pi to fulfill the constraints. The projected dual

gradient descent algorithm usually converges within fewer

than 50 iterations, making the optimization highly efficient.

Next, we show how to incorporate this estimate of P (X)
into the standard stochastic gradient descent algorithm.

4.2. SGD

For a fixed latent distribution P , problem (3) reduces to

the standard cross entropy loss

L(θ) = −
∑

i

∑

xi

pi(xi) log qi(xi|θ). (5)

The gradient of this loss function is given by
∂

∂ ~fi(xi)
L(θ) = ~qi(xi|θ)− ~pi(xi). For linear models,

the loss function (5) is convex and can be optimized using

any gradient based optimization. For multi-layer deep

networks, we optimize it using back-propagation and

stochastic gradient descent (SGD) with momentum, as

implemented in Caffe [17].

Theoretically, we would need to keep the latent distribu-

tion P fixed for a few iterations of SGD until the objective

Q(0)

Q(1)

P (1)

P (0)

Constrained
Region

SGD

Figure 3: Illustration of our alternating convex optimization

and gradient descent optimization for t = 0. At each itera-

tion t, we compute a latent probability distribution P (t) as

the closest point in the constrained region. We then update

the convnet parameters to follow P (t) as closely as possible

using Stochastic Gradient Descent (SGD), which takes the

convnet output from Q(t) to Q(t+1).

value decreases. Otherwise, we are not strictly guaranteed

that the overall objective (3) decreases. However, in prac-

tice we found inferring a new latent distribution at every

step of SGD does not hurt the performance and leads to a

faster convergence.

In summary, we optimize problem (3) using SGD, where

at each iteration we infer a latent distribution P which de-

fines both our loss and loss gradient. Figure 3 shows an

overview of the training procedure. For more details, see

Section 6.

Up to this point, we assumed that all the constraints are

simultaneously satisfiable. While this might hold for care-

fully chosen constraints, our optimization should be robust

to arbitrary linear constraints. In the next section, we relax

this assumption by adding a slack variable to the constraint

set and show that this slack variable can then be easily inte-

grated into the optimization.

4.3. Constraints with slack variable

We relax problem (3) by adding a slack ξ ∈ R
k to the

linear constraints. The slack is regularized using a hinge

loss with weight β ∈ R
k. It results into the following opti-

mization:

minimize
θ,P,ξ

D (P (X)‖Q(X|θ)) + βT ξ

subject to A~P ≥ ~b−ξ,
∑

X

P (X)=1, ξ ≥ 0. (6)
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This objective is now guaranteed to be satisfiable for any as-

signment to P and any linear constraint. Similar to (4), this

is optimized using projected dual coordinate ascent. The

dual objective function is exactly same as (4). The weight-

ing term of the hinge loss β merely acts as an upper bound

on the dual variable i.e. 0 ≤ λ ≤ β. A detailed derivation

of this loss is given in the supplementary material.

This slack relaxed loss allows the optimization to ignore

certain constraints if they become too hard to enforce. It

also trades off between various competing constraints.

5. Constraints for Weak Semantic Segmenta-

tion

We now describe all constraints we use for our weakly

supervised semantic segmentation. For each training image

I , we are given a set of image-level labels LI . Our con-

straints affect different parts of the output space depending

on the image-level labels. All the constraints are comple-

mentary, and each constraint exploits the set of image-level

labels differently.

Suppression constraint The most natural constraint is to

suppress any label l that does not appear in the image.

n
∑

i=1

pi(l) ≤ 0 ∀ l /∈ LI . (7)

This constraint alone is not sufficient, as a solution involv-

ing all background labels satisfies it perfectly. We can easily

address this by adding a lower-bound constraint for labels

present in an image.

Foreground constraint

al ≤

n
∑

i=1

pi(l) ∀ l ∈ LI . (8)

This foreground constraint is very similar to the commonly

used multiple instance learning (MIL) paradigm, where at

least one pixel is constrained to be positive [2, 16, 25, 26].

Unlike MIL, our foreground constraint can encourage mul-

tiple pixels to take a specific foreground label by increasing

al. In practice, we set al = 0.05n with a slack of β = 2,

where n is the number of outputs of our network.

While this foreground constraint encourages some of the

pixels to take a specific label, it is often not strong enough

to encourage all pixels within an object to take the cor-

rect label. We could increase al to encourage more fore-

ground labels, but this would over-emphasize small objects.

A more natural solution is to constrain the total number of

foreground labels in the output, which is equivalent to con-

straining the overall area of the background label.

Background constraint

a0 ≤
n
∑

i=1

pi(0) ≤ b0. (9)

Here l = 0 is assumed to be the background label. We apply

both a lower and upper bound on the background label. This

indirectly controls the minimum and maximum combined

area of all foreground labels. We found a0 = 0.3n and

b0 = 0.7n to work well in practice.

The above constraints are all complementary and ensure

that the final labeling follows the image-level labels LI as

closely as possible. If we also have access to the rough

size of an object, we can exploit this information during

training. In our experiments, we show that substantial gains

can be made by simply knowing if a certain object class

covers more or less than 10% of the image.

Size constraint We exploit the size constraint in two

ways: We boost all classes larger than 10% of the image by

setting al = 0.1n. We also put an upper bound constraint

on the classes l that are guaranteed to be small

n
∑

i=1

pi(l) ≤ bl. (10)

In practice, a threshold bl < 0.01n works slightly better

than a tight threshold.

The EM-Adapt algorithm of Papandreou et al. [24] can

be seen as a special case of a constrained optimization prob-

lem with just suppression and foreground constraints. The

adaptive bias parameters then correspond to the Lagrangian

dual variables λ of our constrained optimization. How-

ever in the original algorithm of Papandreou et al., the con-

straints are not strictly enforced especially when some of

them conflict. In Section 7, we show that a principled opti-

mization of those constraints, CCNN, leads to a substantial

increase in performance.

6. Implementation Details

In this section, we discuss the overall pipeline of our al-

gorithm applied for semantic image segmentation. We con-

sider the weakly supervised setting i.e. only image-level

labels are present during training. At test time, the task is to

predict semantic segmentation mask for a given image.

Learning The CNN architecture used in our experiments

is derived from VGG 16-layer network [29]. It was pre-

trained on Imagenet 1K class dataset, and achieved win-

ning performance on ILSVRC14. We cast the fully con-

nected layers into convolutions in a similar fashion as sug-

gested in [21], and the last fc8 layer with 1K outputs is re-

placed by that containing 21 outputs corresponding to 20
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MIL-FCN [25] - - - - - - - - - - - - - - - - - - - - - 24.9

MIL-Base [26] 37.0 10.4 12.4 10.8 05.3 05.7 25.2 21.1 25.2 04.8 21.5 08.6 29.1 25.1 23.6 25.5 12.0 28.4 08.9 22.0 11.6 17.8

MIL-Base w/ ILP [26] 73.2 25.4 18.2 22.7 21.5 28.6 39.5 44.7 46.6 11.9 40.4 11.8 45.6 40.1 35.5 35.2 20.8 41.7 17.0 34.7 30.4 32.6

EM-Adapt w/o CRF [24] 65.3 28.2 16.9 27.4 21.1 28.1 45.4 40.5 42.3 13.2 32.1 23.3 38.7 32.0 39.9 31.3 22.7 34.2 22.8 37.0 30.0 32.0

EM-Adapt [24] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8

CCNN w/o CRF 66.3 24.6 17.2 24.3 19.5 34.4 45.6 44.3 44.7 14.4 33.8 21.4 40.8 31.6 42.8 39.1 28.8 33.2 21.5 37.4 34.4 33.3

CCNN 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3

Table 1: Comparison of weakly supervised semantic segmentation methods on PASCAL VOC 2012 validation set.

object classes in Pascal VOC and background class. The

overall network stride of this fully convolutional network

is 32s. However, we observe that the slightly modified ar-

chitecture with the denser 8s network stride proposed in [4]

gives better results in the weakly supervised training. Un-

like [25, 26], we do not learn any weights of the last layer

from Imagenet. Apart from the initial pre-training, all pa-

rameters are finetuned only on Pascal VOC. We initialize

the weights of the last layer with random Gaussian noise.

The FCN takes in arbitrarily sized images and produces

coarse heatmaps corresponding to each class in the dataset.

We apply the convex constrained optimization on these

coarse heatmaps, reducing the computational cost. The net-

work is trained using SGD with momentum. We follow [21]

and train our models with a batch size of 1, momentum

of 0.99 and an initial learning rate of 1e-6. We train for

60000 iterations, which corresponds to roughly 5 epochs.

The learning rate is decreased by a factor of 0.1 every 20000
iterations. We found this setup to outperform a batch size

of 20 with momentum of 0.9 [4]. The constrained optimiza-

tion for single image takes less than 30 ms on a CPU single

core, and could be accelerated using a GPU. The total train-

ing time is 8-9 hrs, comparable to [21, 24].

Inference At inference time, we optionally apply a fully

connected conditional random field model [18] to refine the

final segmentation. We used the default parameter provided

by the authors for all our experiments.

7. Experiments

We analyze and compare the performance of our con-

strained optimization for varying levels of supervision:

image-level tags and additional supervision such as object

size information. The objective is to learn models to predict

dense multi-class semantic segmentation i.e. pixel-wise la-

beling for any new image. We use the provided supervi-

sion with few simple spatial constraints on the output, and

don’t use any additional low-level graph-cut based meth-

ods in training. The goal is to demonstrate the strength of

training with constrained outputs, and how it helps with in-

creasing levels of supervision.

7.1. Dataset

We evaluate CCNNs for the task of semantic image seg-

mentation on PASCAL VOC dataset [9]. The dataset con-

tains pixel-level labels for 20 object classes and a separate

background class. For a fair comparison to prior work, we

use the similar setup to train all models. Training is per-

formed on the union of VOC 2012 train set and the larger

dataset collected by Hariharan et al. [13] summing upto a

total of 10,582 training images. The VOC12 validation set

containing a total of 1449 images is kept held-out during ab-

lation studies. The VGG network architecture used in our

algorithm was pre-trained on ILSVRC dataset [28] for clas-

sification task of 1K classes [29].

Results are reported in the form of standard intersection

over union (IoU) metric, also known as Jaccard Index. It is

defined per class as the percentage of pixels predicted cor-

rectly out of total pixels labeled or classified as that class.

Ablation studies and comparison with baseline methods for

both the weak settings are presented in the following sub-

sections.

7.2. Training from image­level tags

We start by training our model using just image-level

tags. We obtain these tags from the presence of a class

in the pixel-wise ground truth segmentation masks. The

constraints used in this setting are described in Equa-

tions (7), (8) and (9). Since some of the baseline methods

report results on the VOC12 validation set, we present the

performance on both validation and test set. Some methods

boost their performance by using a Dense CRF model [18]

to post process the final output labeling. To allow for a

fair comparison, we present results both with and without

a Dense CRF.

Table 1 compares all contemporary weak segmentation

methods. Our proposed method, CCNN, outperforms all

prior methods for weakly labeled semantic segmentation

by a significant margin. MIL-FCN [25] is an extension of

learning based on maximum scoring instance based MIL

to multi-class segmentation. The algorithm proposed by

Pinheiro et al. [26] introduces a soft version of MIL. It is

trained on 0.7 million images for 21 classes taken from
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Fully Supervised:

SDS [14] 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6

FCN-8s [21] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

TTIC Zoomout [23] 81.9 35.1 78.2 57.4 56.5 80.5 74.0 79.8 22.4 69.6 53.7 74.0 76.0 76.6 68.8 44.3 70.2 40.2 68.9 55.3 64.4

DeepLab-CRF [4] 78.4 33.1 78.2 55.6 65.3 81.3 75.5 78.6 25.3 69.2 52.7 75.2 69.0 79.1 77.6 54.7 78.3 45.1 73.3 56.2 66.4

Weakly Supervised:

CCNN w/ tags 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6

CCNN w/ size 36.7 23.6 47.1 30.2 40.6 59.5 54.3 51.9 15.9 43.3 34.8 48.2 42.5 59.2 43.1 35.5 45.2 31.4 46.2 42.2 43.3

CCNN w/ size (CRF tuned) 42.3 24.5 56.0 30.6 39.0 58.8 52.7 54.8 14.6 48.4 34.2 52.7 46.9 61.1 44.8 37.4 48.8 30.6 47.7 41.7 45.1

Table 2: Results on PASCAL VOC 2012 test. We compare our results to the fully supervised state-of-the-art methods.

ILSVRC13, which is 70 times more data than all other ap-

proaches used. They achieve boost in performance by re-

ranking the pixel probabilities with the image-level priors

(ILP) i.e. the probability of class to be present in the image.

This suppresses the negative classes and smooths out the

predicted segmentation mask. For the EM-Adapt [24] algo-

rithm, we reproduced the models using their publicly avail-

able implementation1. We apply similar set of constraints

on EM-Adapt to make sure it is purely a comparison of the

approach. Note that unconstrained MIL based approach re-

quire the final 21-class classifier to be well initialized for

reasonable performance. While our constrained optimiza-

tion can handle arbitrary random initializations.

We also directly compare our algorithm against the EM-

Adapt results as reported in Papandreou et al. [24] for weak

segmentation. However, their training procedure uses ran-

dom crops of both the original image and the segmentation

mask. The weak labels are then computed from those ran-

dom crops. This introduces limited information about the

spatial location of the weak tags. Taken to the extreme,

a 1 × 1 output crop reduces to full supervision. We thus

present this result in the next subsection on incorporating

increasing supervision.

7.3. Training with additional supervision

We now consider slightly more supervision than just the

image-level tags. Firstly, we consider the training with tags

on random crops of original image, following Papandreou

et al. [24]. We evaluate our constrained optimization on

the EM-Adapt architecture using random crops, and com-

pare to the result obtained from their released caffemodel as

shown in Table 3. Using limited spatial information our al-

gorithm slightly outperforms EM-Adapt, mainly due to the

more powerful background constraints. Note that the differ-

ence is not as striking as in the pure weak label setting. We

believe this is due to the fact that the spatial information in

combination with the foreground prior emulates the upper

1https://bitbucket.org/deeplab/deeplab-public/

overview

bound constraint on background, as a random crop is likely

to contain much fewer labels.

Method Training Supervision
mIoU mIoU

w/o CRF

EM-Adapt [24] Tags w/ random crops 34.3 36.0

CCNN Tags w/ random crops 34.4 36.4

EM-Adapt [24] Tags w/ object sizes – –

CCNN Tags w/ object sizes 40.5 42.4

Table 3: Results using additional supervision during train-

ing evaluated on the VOC 2012 validation set.

The main advantage of CCNN is that there is no restric-

tion of the type of linear constraints that can be used. To

demonstrate this further, we incorporate a simple size con-

straint. For each label, we use one additional bit of infor-

mation: whether a certain class occupies more than 10%
of the image or not. This additional constraint is described

in Equation (10). As shown in Table 3, using this one ad-

ditional bit of information dramatically increases the accu-

racy. Unfortunately, EM-Adapt heuristic cannot directly in-

corporate this more meaningful size constraint.

Table 2 reports our results on PASCAL VOC 2012 test

server and compares it to fully supervised approaches. To

better compare with these methods, we further add a re-

sult where the CRF parameters are tuned on 100 validation

images. As a final experiment, we gradually add fully su-

pervised images in addition to our weak objective and eval-

uate the model, i.e., semi-supervised learning. The graph

is shown in the supplementary material. Our model makes

good use of the additional supervision.

We also evaluate the sensitivity of our model to the pa-

rameters of the constraints. We performed line search along

each of the bounds while keeping others fixed. In general,

our method is very insensitive to wide range of constraint

bounds due to the presence of slack variables. The stan-

dard deviation in accuracy, averaged over all parameters, is

0.73%. Details are provided in the supplementary material.

Qualitative results are shown in Figure 4.
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(a) Original image (b) Ground truth (c) Image tags (d) Image tags + size

Figure 4: Qualitative results on the VOC 2012 dataset for different levels of supervision. We show the original image, ground

truth, our trained classifier with image level tags and with size constraints. Note that the size constraints localize the objects

much better than just image level tags at the cost of missing small objects in few examples.

7.4. Discussion

We further experimented with bounding box constraints.

We constrain 75% of pixels within a bounding box to take

a specific label, while we suppress any labels outside the

bounding box. This additional supervision allows us to

boost the IoU accuracy to 54%. This number is compet-

itive with a baseline for which we train a model on all

pixels within a bounding box, which gives 52.3% [24].

However it is not yet competitive with more sophisticated

systems that use more segmentation information within

bounding boxes [7, 24]. Those systems perform at roughly

58.5− 62.0% IoU accuracy. We believe the key to this per-

formance is a stronger use of the pixel level segmentation

information.

In conclusion, we presented CCNN which is a con-

strained optimization framework to optimize convolutional

networks. The framework is general and can incorporate

arbitrary linear constraints. It naturally integrates into stan-

dard Stochastic Gradient Descent, and can easily be used in

publicly available frameworks such as Caffe [17].

We showed that constraints are a natural way to describe

the desired output space of a labeling and can reduce the

amount of strong supervision CNNs require.
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