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Abstract

Deep convolutional neural networks (DCNNs) trained

on a large number of images with strong pixel-level anno-

tations have recently significantly pushed the state-of-art in

semantic image segmentation. We study the more challeng-

ing problem of learning DCNNs for semantic image seg-

mentation from either (1) weakly annotated training data

such as bounding boxes or image-level labels or (2) a com-

bination of few strongly labeled and many weakly labeled

images, sourced from one or multiple datasets. We develop

Expectation-Maximization (EM) methods for semantic im-

age segmentation model training under these weakly super-

vised and semi-supervised settings. Extensive experimental

evaluation shows that the proposed techniques can learn

models delivering competitive results on the challenging

PASCAL VOC 2012 image segmentation benchmark, while

requiring significantly less annotation effort. We share

source code implementing the proposed system at https:

//bitbucket.org/deeplab/deeplab-public.

1. Introduction

Semantic image segmentation refers to the problem of

assigning a semantic label (such as “person”, “car” or

“dog”) to every pixel in the image. Various approaches have

been tried over the years, but according to the results on the

challenging Pascal VOC 2012 segmentation benchmark, the

best performing methods all use some kind of Deep Convo-

lutional Neural Network (DCNN) [2, 5, 8, 14, 25, 27, 41].

In this paper, we work with the DeepLab-CRF approach

of [5, 41]. This combines a DCNN with a fully connected

Conditional Random Field (CRF) [19], in order to get high

resolution segmentations. This model achieves state-of-

art results on the challenging PASCAL VOC segmentation

benchmark [13], delivering a mean intersection-over-union

(IOU) score exceeding 70%.

A key bottleneck in building this class of DCNN-based

∗The first two authors contributed equally to this work.

segmentation models is that they typically require pixel-

level annotated images during training. Acquiring such data

is an expensive, time-consuming annotation effort. Weak

annotations, in the form of bounding boxes (i.e., coarse

object locations) or image-level labels (i.e., information

about which object classes are present) are far easier to

collect than detailed pixel-level annotations. We develop

new methods for training DCNN image segmentation mod-

els from weak annotations, either alone or in combination

with a small number of strong annotations. Extensive ex-

periments, in which we achieve performance up to 69.0%,

demonstrate the effectiveness of the proposed techniques.

According to [24], collecting bounding boxes around

each class instance in the image is about 15 times

faster/cheaper than labeling images at the pixel level. We

demonstrate that it is possible to learn a DeepLab-CRF

model delivering 62.2% IOU on the PASCAL VOC 2012

test set by training it on a simple foreground/background

segmentation of the bounding box annotations.

An even cheaper form of data to collect is image-

level labels, which specify the presence or absence of se-

mantic classes, but not the object locations. Most exist-

ing approaches for training semantic segmentation models

from this kind of very weak labels use multiple instance

learning (MIL) techniques. However, even recent weakly-

supervised methods such as [25] deliver significantly infe-

rior results compared to their fully-supervised counterparts,

only achieving 25.7%. Including additional trainable ob-

jectness [7] or segmentation [1] modules that largely in-

crease the system complexity, [31] has improved perfor-

mance to 40.6%, which still significantly lags performance

of fully-supervised systems.

We develop novel online Expectation-Maximization

(EM) methods for training DCNN semantic segmentation

models from weakly annotated data. The proposed algo-

rithms alternate between estimating the latent pixel labels

(subject to the weak annotation constraints), and optimiz-

ing the DCNN parameters using stochastic gradient descent

(SGD). When we only have access to image-level anno-

tated training data, we achieve 39.6%, close to [31] but
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without relying on any external objectness or segmenta-

tion module. More importantly, our EM approach also

excels in the semi-supervised scenario which is very im-

portant in practice. Having access to a small number of

strongly (pixel-level) annotated images and a large number

of weakly (bounding box or image-level) annotated images,

the proposed algorithm can almost match the performance

of the fully-supervised system. For example, having access

to 2.9k pixel-level images and 9k image-level annotated im-

ages yields 68.5%, only 2% inferior the performance of the

system trained with all 12k images strongly annotated at the

pixel level. Finally, we show that using additional weak or

strong annotations from the MS-COCO dataset can further

improve results, yielding 73.9% on the PASCAL VOC 2012

benchmark.

Contributions In summary, our main contributions are:

1. We present EM algorithms for training with image-

level or bounding box annotation, applicable to both

the weakly-supervised and semi-supervised settings.

2. We show that our approach achieves excellent per-

formance when combining a small number of pixel-

level annotated images with a large number of image-

level or bounding box annotated images, nearly match-

ing the results achieved when all training images have

pixel-level annotations.

3. We show that combining weak or strong annotations

across datasets yields further improvements. In partic-

ular, we reach 73.9% IOU performance on PASCAL

VOC 2012 by combining annotations from the PAS-

CAL and MS-COCO datasets.

2. Related work

Training segmentation models with only image-level

labels has been a challenging problem in the literature

[12, 36, 37, 39]. Our work is most related to other re-

cent DCNN models such as [30, 31], who also study the

weakly supervised setting. They both develop MIL-based

algorithms for the problem. In contrast, our model em-

ploys an EM algorithm, which similarly to [26] takes into

account the weak labels when inferring the latent image seg-

mentations. Moreover, [31] proposed to smooth the predic-

tion results by region proposal algorithms, e.g., CPMC [3]

and MCG [1], learned on pixel-segmented images. Neither

[30, 31] cover the semi-supervised setting.

Bounding box annotations have been utilized for seman-

tic segmentation by [38, 42], while [15, 21, 40] describe

schemes exploiting both image-level labels and bounding

box annotations. [4] attained human-level accuracy for car

segmentation by using 3D bounding boxes. Bounding box

annotations are also commonly used in interactive segmen-

tation [22, 33]; we show that such foreground/background

Pixel annotationsImage

Deep Convolutional 
Neural Network

Loss

Figure 1. DeepLab model training from fully annotated images.

segmentation methods can effectively estimate object seg-

ments accurate enough for training a DCNN semantic seg-

mentation system. Working in a setting very similar to ours,

[9] employed MCG [1] (which requires training from pixel-

level annotations) to infer object masks from bounding box

labels during DCNN training.

3. Proposed Methods

We build on the DeepLab model for semantic image seg-

mentation proposed in [5]. This uses a DCNN to predict the

label distribution per pixel, followed by a fully-connected

(dense) CRF [19] to smooth the predictions while preserv-

ing image edges. In this paper, we focus for simplicity on

methods for training the DCNN parameters from weak la-

bels, only using the CRF at test time. Additional gains can

be obtained by integrated end-to-end training of the DCNN

and CRF parameters [41, 6].

Notation We denote by x the image values and y the seg-

mentation map. In particular, ym ∈ {0, . . . , L} is the pixel

label at position m ∈ {1, . . . ,M}, assuming that we have

the background as well as L possible foreground labels and

M is the number of pixels. Note that these pixel-level la-

bels may not be visible in the training set. We encode the

set of image-level labels by z, with zl = 1, if the l-th label

is present anywhere in the image, i.e., if
∑

m[ym = l] > 0.

3.1. Pixellevel annotations

In the fully supervised case illustrated in Fig. 1, the ob-

jective function is

J(θ) = logP (y|x;θ) =
M
∑

m=1

logP (ym|x;θ) , (1)

where θ is the vector of DCNN parameters. The per-pixel

label distributions are computed by

P (ym|x;θ) ∝ exp(fm(ym|x;θ)) , (2)

where fm(ym|x;θ) is the output of the DCNN at pixel m.

We optimize J(θ) by mini-batch SGD.

3.2. Imagelevel annotations

When only image-level annotation is available, we can

observe the image values x and the image-level labels z,

but the pixel-level segmentations y are latent variables. We
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Algorithm 1 Weakly-Supervised EM (fixed bias version)

Input: Initial CNN parameters θ′, potential parameters bl,

l ∈ {0, . . . , L}, image x, image-level label set z.

E-Step: For each image position m

1: f̂m(l) = fm(l|x;θ′) + bl, if zl = 1

2: f̂m(l) = fm(l|x;θ′), if zl = 0

3: ŷm = argmaxl f̂m(l)
M-Step:

4: Q(θ;θ′) = logP (ŷ|x,θ) =
∑M

m=1 logP (ŷm|x,θ)
5: Compute ∇θQ(θ;θ′) and use SGD to update θ′.

have the following probabilistic graphical model:

P (x,y, z;θ) = P (x)

(

M
∏

m=1

P (ym|x;θ)

)

P (z|y) . (3)

We pursue an EM-approach in order to learn the model

parameters θ from training data. If we ignore terms that do

not depend on θ, the expected complete-data log-likelihood

given the previous parameter estimate θ′ is

Q(θ;θ′) =
∑

y

P (y|x, z;θ′) logP (y|x;θ) ≈ logP (ŷ|x;θ) ,

(4)

where we adopt a hard-EM approximation, estimating in the

E-step of the algorithm the latent segmentation by

ŷ = argmax
y

P (y|x;θ′)P (z|y) (5)

= argmax
y

logP (y|x;θ′) + logP (z|y) (6)

= argmax
y

(

M
∑

m=1

fm(ym|x;θ′) + logP (z|y)

)

.(7)

In the M-step of the algorithm, we optimize Q(θ;θ′) ≈
logP (ŷ|x;θ) by mini-batch SGD similarly to (1), treating

ŷ as ground truth segmentation.

To completely identify the E-step (7), we need to specify

the observation model P (z|y). We have experimented with

two variants, EM-Fixed and EM-Adapt.

EM-Fixed In this variant, we assume that logP (z|y) fac-

torizes over pixel positions as

logP (z|y) =
M
∑

m=1

φ(ym, z) + (const) , (8)

allowing us to estimate the E-step segmentation at each

pixel separately

ŷm = argmax
ym

f̂m(ym)
.
= fm(ym|x;θ′) + φ(ym, z) . (9)

Image

Image annotations

Score maps

Weakly-Supervised E-step

FG/BG 
Bias

argmax

1. Cat
2. Person
3. Plant
4. Sofa

Deep Convolutional 
Neural Network

Loss

Figure 2. DeepLab model training using image-level labels.

We assume that

φ(ym = l, z) =

{

bl if zl = 1
0 if zl = 0

(10)

We set the parameters bl = bfg, if l > 0 and b0 = bbg,

with bfg > bbg > 0. Intuitively, this potential encourages a

pixel to be assigned to one of the image-level labels z. We

choose bfg > bbg, boosting present foreground classes more

than the background, to encourage full object coverage and

avoid a degenerate solution of all pixels being assigned to

background. The procedure is summarized in Algorithm 1

and illustrated in Fig. 2.

EM-Adapt In this method, we assume that logP (z|y) =
φ(y, z) + (const), where φ(y, z) takes the form of a cardi-

nality potential [23, 32, 35]. In particular, we encourage at

least a ρl portion of the image area to be assigned to class

l, if zl = 1, and enforce that no pixel is assigned to class

l, if zl = 0. We set the parameters ρl = ρfg, if l > 0 and

ρ0 = ρbg. Similar constraints appear in [10, 20].

In practice, we employ a variant of Algorithm 1. We

adaptively set the image- and class-dependent biases bl so

as the prescribed proportion of the image area is assigned to

the background or foreground object classes. This acts as a

powerful constraint that explicitly prevents the background

score from prevailing in the whole image, also promoting

higher foreground object coverage. The detailed algorithm

is described in the supplementary material.

EM vs. MIL It is instructive to compare our EM-based

approach with two recent Multiple Instance Learning (MIL)

methods for learning semantic image segmentation models

[30, 31]. The method in [30] defines an MIL classification

objective based on the per-class spatial maximum of the lo-

cal label distributions of (2), P̂ (l|x;θ)
.
= maxm P (ym =

l|x;θ), and [31] adopts a softmax function. While this

approach has worked well for image classification tasks

[28, 29], it is less suited for segmentation as it does not pro-

mote full object coverage: The DCNN becomes tuned to

focus on the most distinctive object parts (e.g., human face)

instead of capturing the whole object (e.g., human body).
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Figure 3. DeepLab model training from bounding boxes.

3.3. Bounding Box Annotations

We explore three alternative methods for training our

segmentation model from labeled bounding boxes.

The first Bbox-Rect method amounts to simply consider-

ing each pixel within the bounding box as positive example

for the respective object class. Ambiguities are resolved by

assigning pixels that belong to multiple bounding boxes to

the one that has the smallest area.

The bounding boxes fully surround objects but also

contain background pixels that contaminate the training

set with false positive examples for the respective object

classes. To filter out these background pixels, we have

also explored a second Bbox-Seg method in which we per-

form automatic foreground/background segmentation. To

perform this segmentation, we use the same CRF as in

DeepLab. More specifically, we constrain the center area of

the bounding box (α% of pixels within the box) to be fore-

ground, while we constrain pixels outside the bounding box

to be background. We implement this by appropriately set-

ting the unary terms of the CRF. We then infer the labels for

pixels in between. We cross-validate the CRF parameters

to maximize segmentation accuracy in a small held-out set

of fully-annotated images. This approach is similar to the

grabcut method of [33]. Examples of estimated segmenta-

tions with the two methods are shown in Fig. 4.

The two methods above, illustrated in Fig. 3, estimate

segmentation maps from the bounding box annotation as a

pre-processing step, then employ the training procedure of

Sec. 3.1, treating these estimated labels as ground-truth.

Our third Bbox-EM-Fixed method is an EM algorithm

that allows us to refine the estimated segmentation maps

throughout training. The method is a variant of the EM-

Fixed algorithm in Sec. 3.2, in which we boost the present

foreground object scores only within the bounding box area.

3.4. Mixed strong and weak annotations

In practice, we often have access to a large number of

weakly image-level annotated images and can only afford to

procure detailed pixel-level annotations for a small fraction

of these images. We handle this hybrid training scenario by

Image with Bbox Ground-Truth Bbox-Rect Bbox-Seg

Figure 4. Estimated segmentation from bounding box annotation.

Image  Annotations

+

Pixel Annotations

Weakly-Supervised E-step

FG/BG
Bias

argmax
1. Car
2. Person
3. Horse

Deep Convolutional 
Neural Network

Loss

Deep Convolutional 
Neural Network

Loss

Score maps

Figure 5. DeepLab model training on a union of full (strong labels)

and image-level (weak labels) annotations.

combining the methods presented in the previous sections,

as illustrated in Figure 5. In SGD training of our deep CNN

models, we bundle to each mini-batch a fixed proportion

of strongly/weakly annotated images, and employ our EM

algorithm in estimating at each iteration the latent semantic

segmentations for the weakly annotated images.

4. Experimental Evaluation

4.1. Experimental Protocol

Datasets The proposed training methods are evaluated

on the PASCAL VOC 2012 segmentation benchmark [13],

consisting of 20 foreground object classes and one back-

ground class. The segmentation part of the original PAS-

CAL VOC 2012 dataset contains 1464 (train), 1449 (val ),

and 1456 (test) images for training, validation, and test, re-

spectively. We also use the extra annotations provided by

[16], resulting in augmented sets of 10, 582 (train aug) and

12, 031 (trainval aug) images. We have also experimented

with the large MS-COCO 2014 dataset [24], which con-

tains 123, 287 images in its trainval set. The MS-COCO

2014 dataset has 80 foreground object classes and one back-

ground class and is also annotated at the pixel level.

The performance is measured in terms of pixel

intersection-over-union (IOU) averaged across the 21
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classes. We first evaluate our proposed methods on the PAS-

CAL VOC 2012 val set. We then report our results on the

official PASCAL VOC 2012 benchmark test set (whose an-

notations are not released). We also compare our test set

results with other competing methods.

Reproducibility We have implemented the proposed

methods by extending the excellent Caffe framework [18].

We share our source code, configuration files, and trained

models that allow reproducing the results in this paper

at a companion web site https://bitbucket.org/

deeplab/deeplab-public.

Weak annotations In order to simulate the situations

where only weak annotations are available and to have fair

comparisons (e.g., use the same images for all settings), we

generate the weak annotations from the pixel-level annota-

tions. The image-level labels are easily generated by sum-

marizing the pixel-level annotations, while the bounding

box annotations are produced by drawing rectangles tightly

containing each object instance (PASCAL VOC 2012 also

provides instance-level annotations) in the dataset.

Network architectures We have experimented with the

two DCNN architectures of [5], with parameters initialized

from the VGG-16 ImageNet [11] pretrained model of [34].

They differ in the receptive field of view (FOV) size. We

have found that large FOV (224×224) performs best when

at least some training images are annotated at the pixel level,

whereas small FOV (128×128) performs better when only

image-level annotations are available. In the main paper

we report the results of the best architecture for each setup

and defer the full comparison between the two FOVs to the

supplementary material.

Training We employ our proposed training methods to

learn the DCNN component of the DeepLab-CRF model of

[5]. For SGD, we use a mini-batch of 20-30 images and ini-

tial learning rate of 0.001 (0.01 for the final classifier layer),

multiplying the learning rate by 0.1 after a fixed number of

iterations. We use momentum of 0.9 and a weight decay of

0.0005. Fine-tuning our network on PASCAL VOC 2012

takes about 12 hours on a NVIDIA Tesla K40 GPU.

Similarly to [5], we decouple the DCNN and Dense CRF

training stages and learn the CRF parameters by cross val-

idation to maximize IOU segmentation accuracy in a held-

out set of 100 Pascal val fully-annotated images. We use 10

mean-field iterations for Dense CRF inference [19]. Note

that the IOU scores are typically 3-5% worse if we don’t

use the CRF for post-processing of the results.

4.2. Pixellevel annotations

We have first reproduced the results of [5]. Training

the DeepLab-CRF model with strong pixel-level annota-

tions on PASCAL VOC 2012, we achieve a mean IOU score

Method #Strong #Weak val IOU

EM-Fixed (Weak) - 10,582 20.8

EM-Adapt (Weak) - 10,582 38.2

EM-Fixed (Semi)

200 10,382 47.6

500 10,082 56.9

750 9,832 59.8

1,000 9,582 62.0

1,464 5,000 63.2

1,464 9,118 64.6

Strong
1,464 - 62.5

10,582 - 67.6

Table 1. VOC 2012 val performance for varying number of pixel-

level (strong) and image-level (weak) annotations (Sec. 4.3).

Method #Strong #Weak test IOU

MIL-FCN [30] - 10k 25.7

MIL-sppxl [31] - 760k 35.8

MIL-obj [31] BING 760k 37.0

MIL-seg [31] MCG 760k 40.6

EM-Adapt (Weak) - 12k 39.6

EM-Fixed (Semi)
1.4k 10k 66.2

2.9k 9k 68.5

Strong [5] 12k - 70.3

Table 2. VOC 2012 test performance for varying number of pixel-

level (strong) and image-level (weak) annotations (Sec. 4.3).

of 67.6% on val and 70.3% on test ; see method DeepLab-

CRF-LargeFOV in [5, Table 1].

4.3. Imagelevel annotations

Validation results We evaluate our proposed methods in

training the DeepLab-CRF model using image-level weak

annotations from the 10,582 PASCAL VOC 2012 train aug

set, generated as described in Sec. 4.1 above. We report

the val performance of our two weakly-supervised EM vari-

ants described in Sec. 3.2. In the EM-Fixed variant we use

bfg = 5 and bbg = 3 as fixed foreground and background

biases. We found the results to be quite sensitive to the dif-

ference bfg− bbg but not very sensitive to their absolute val-

ues. In the adaptive EM-Adapt variant we constrain at least

ρbg = 40% of the image area to be assigned to background

and at least ρfg = 20% of the image area to be assigned to

foreground (as specified by the weak label set).

We also examine using weak image-level annotations

in addition to a varying number of pixel-level annotations,

within the semi-supervised learning scheme of Sec. 3.4.

In this Semi setting we employ strong annotations of a

subset of PASCAL VOC 2012 train set and use the weak

image-level labels from another non-overlapping subset of

the train aug set. We perform segmentation inference for

the images that only have image-level labels by means of

EM-Fixed, which we have found to perform better than EM-

Adapt in the semi-supervised training setting.

The results are summarized in Table 1. We see that the

EM-Adapt algorithm works much better than the EM-Fixed

algorithm when we only have access to image level an-

notations, 20.8% vs. 38.2% validation IOU. Using 1,464

pixel-level and 9,118 image-level annotations in the EM-

Fixed semi-supervised setting significantly improves per-
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formance, yielding 64.6%. Note that image-level annota-

tions are helpful, as training only with the 1,464 pixel-level

annotations only yields 62.5%.

Test results In Table 2 we report our test results. We com-

pare the proposed methods with the recent MIL-based ap-

proaches of [30, 31], which also report results obtained with

image-level annotations on the VOC benchmark. Our EM-

Adapt method yields 39.6%, which improves over MIL-

FCN [30] by a large 13.9% margin. As [31] shows, MIL

can become more competitive if additional segmentation in-

formation is introduced: Using low-level superpixels, MIL-

sppxl [31] yields 35.8% and is still inferior to our EM algo-

rithm. Only if augmented with BING [7] or MCG [1] can

MIL obtain results comparable to ours (MIL-obj: 37.0%,

MIL-seg: 40.6%) [31]. Note, however, that both BING

and MCG have been trained with bounding box or pixel-

annotated data on the PASCAL train set, and thus both

MIL-obj and MIL-seg indirectly rely on bounding box or

pixel-level PASCAL annotations.

The more interesting finding of this experiment is that

including very few strongly annotated images in the semi-

supervised setting significantly improves the performance

compared to the pure weakly-supervised baseline. For

example, using 2.9k pixel-level annotations along with

9k image-level annotations in the semi-supervised setting

yields 68.5%. We would like to highlight that this re-

sult surpasses all techniques which are not based on the

DCNN+CRF pipeline of [5] (see Table 6), even if trained

with all available pixel-level annotations.

4.4. Bounding box annotations

Validation results In this experiment, we train the

DeepLab-CRF model using bounding box annotations from

the train aug set. We estimate the training set segmentations

in a pre-processing step using the Bbox-Rect and Bbox-Seg

methods described in Sec. 3.3. We assume that we also

have access to 100 fully-annotated PASCAL VOC 2012 val

images which we have used to cross-validate the value of

the single Bbox-Seg parameter α (percentage of the cen-

ter bounding box area constrained to be foreground). We

varied α from 20% to 80%, finding that α = 20% maxi-

mizes accuracy in terms of IOU in recovering the ground

truth foreground from the bounding box. We also examine

the effect of combining these weak bounding box annota-

tions with strong pixel-level annotations, using the semi-

supervised learning methods of Sec. 3.4.

The results are summarized in Table 3. When using only

bounding box annotations, we see that Bbox-Seg improves

over Bbox-Rect by 8.1%, and gets within 7.0% of the strong

pixel-level annotation result. We observe that combining

1,464 strong pixel-level annotations with weak bounding

box annotations yields 65.1%, only 2.5% worse than the

strong pixel-level annotation result. In the semi-supervised

Method #Strong #Box val IOU

Bbox-Rect (Weak) - 10,582 52.5

Bbox-EM-Fixed (Weak) - 10,582 54.1

Bbox-Seg (Weak) - 10,582 60.6

Bbox-Rect (Semi) 1,464 9,118 62.1

Bbox-EM-Fixed (Semi) 1,464 9,118 64.8

Bbox-Seg (Semi) 1,464 9,118 65.1

Strong
1,464 - 62.5

10,582 - 67.6

Table 3. VOC 2012 val performance for varying number of pixel-

level (strong) and bounding box (weak) annotations (Sec. 4.4).

Method #Strong #Box test IOU

BoxSup [9] MCG 10k 64.6

BoxSup [9] 1.4k (+MCG) 9k 66.2

Bbox-Rect (Weak) - 12k 54.2

Bbox-Seg (Weak) - 12k 62.2

Bbox-Seg (Semi) 1.4k 10k 66.6

Bbox-EM-Fixed (Semi) 1.4k 10k 66.6

Bbox-Seg (Semi) 2.9k 9k 68.0

Bbox-EM-Fixed (Semi) 2.9k 9k 69.0

Strong [5] 12k - 70.3

Table 4. VOC 2012 test performance for varying number of pixel-

level (strong) and bounding box (weak) annotations (Sec. 4.4).

learning settings and 1,464 strong annotations, Semi-Bbox-

EM-Fixed and Semi-Bbox-Seg perform similarly.

Test results In Table 4 we report our test results. We com-

pare the proposed methods with the very recent BoxSup ap-

proach of [9], which also uses bounding box annotations on

the VOC 2012 segmentation benchmark. Comparing our al-

ternative Bbox-Rect (54.2%) and Bbox-Seg (62.2%) meth-

ods, we see that simple foreground-background segmenta-

tion provides much better segmentation masks for DCNN

training than using the raw bounding boxes. BoxSup does

2.4% better, however it employs the MCG segmentation

proposal mechanism [1], which has been trained with pixel-

annotated data on the PASCAL train set; it thus indirectly

relies on pixel-level annotations.

When we also have access to pixel-level annotated im-

ages, our performance improves to 66.6% (1.4k strong

annotations) or 69.0% (2.9k strong annotations). In this

semi-supervised setting we outperform BoxSup (66.6% vs.

66.2% with 1.4k strong annotations), although we do not

use MCG. Interestingly, Bbox-EM-Fixed improves over

Bbox-Seg as we add more strong annotations, and it per-

forms 1.0% better (69.0% vs. 68.0%) with 2.9k strong an-

notations. This shows that the E-step of our EM algorithm

can estimate the object masks better than the foreground-

background segmentation pre-processing step when enough

pixel-level annotated images are available.

Comparing with Sec. 4.3, note that 2.9k strong + 9k

image-level annotations yield 68.5% (Table 2), while 2.9k

strong + 9k bounding box annotations yield 69.0% (Ta-

ble 3). This finding suggests that bounding box annotations

add little value over image-level annotations when a suffi-

cient number of pixel-level annotations is also available.

1747



Method #Strong COCO #Weak COCO val IOU

PASCAL-only - - 67.6

EM-Fixed (Semi) - 123,287 67.7

Cross-Joint (Semi) 5,000 118,287 70.0

Cross-Joint (Strong) 5,000 - 68.7

Cross-Pretrain (Strong) 123,287 - 71.0

Cross-Joint (Strong) 123,287 - 71.7

Table 5. VOC 2012 val performance using strong annotations for

all 10,582 train aug PASCAL images and a varying number of

strong and weak MS-COCO annotations (Sec. 4.5).

Method test IOU

MSRA-CFM [8] 61.8

FCN-8s [25] 62.2

Hypercolumn [17] 62.6

TTI-Zoomout-16 [27] 64.4

DeepLab-CRF-LargeFOV [5] 70.3

BoxSup (Semi, with weak COCO) [9] 71.0

DeepLab-CRF-LargeFOV (Multi-scale net) [5] 71.6

Oxford TVG CRF RNN VOC [41] 72.0

Oxford TVG CRF RNN COCO [41] 74.7

Cross-Pretrain (Strong) 72.7

Cross-Joint (Strong) 73.0

Cross-Pretrain (Strong, Multi-scale net) 73.6

Cross-Joint (Strong, Multi-scale net) 73.9

Table 6. VOC 2012 test performance using PASCAL and MS-

COCO annotations (Sec. 4.5).

4.5. Exploiting Annotations Across Datasets

Validation results We present experiments leveraging the

81-label MS-COCO dataset as an additional source of data

in learning the DeepLab model for the 21-label PASCAL

VOC 2012 segmentation task. We consider three scenarios:

• Cross-Pretrain (Strong) : Pre-train DeepLab on MS-

COCO, then replace the top-level network weights and

fine-tune on Pascal VOC 2012, using pixel-level anno-

tation in both datasets.

• Cross-Joint (Strong) : Jointly train DeepLab on Pas-

cal VOC 2012 and MS-COCO, sharing the top-level

network weights for the common classes, using pixel-

level annotation in both datasets.

• Cross-Joint (Semi) : Jointly train DeepLab on Pascal

VOC 2012 and MS-COCO, sharing the top-level net-

work weights for the common classes, using the pixel-

level labels from PASCAL and varying the number of

pixel- and image-level labels from MS-COCO.

In all cases we use strong pixel-level annotations for all

10,582 train aug PASCAL images.

We report our results on the PASCAL VOC 2012 val in

Table 5, also including for comparison our best PASCAL-

only 67.6% result exploiting all 10,582 strong annotations

as a baseline. When we employ the weak MS-COCO an-

notations (EM-Fixed (Semi) ) we obtain 67.7% IOU, which

does not improve over the PASCAL-only baseline. How-

ever, using strong labels from 5,000 MS-COCO images

(4.0% of the MS-COCO dataset) and weak labels from

the remaining MS-COCO images in the Cross-Joint (Semi)

semi-supervised scenario yields 70.0%, a significant 2.4%

boost over the baseline. This Cross-Joint (Semi) result is

also 1.3% better than the 68.7% performance obtained us-

ing only the 5,000 strong and no weak annotations from

MS-COCO. As expected, our best results are obtained by

using all 123,287 strong MS-COCO annotations, 71.0% for

Cross-Pretrain (Strong) and 71.7% for Cross-Joint (Strong).

We observe that cross-dataset augmentation improves by

4.1% over the best PASCAL-only result. Using only a small

portion of pixel-level annotations and a large portion of

image-level annotations in the semi-supervised setting reaps

about half of this benefit.

Test results We report our PASCAL VOC 2012 test re-

sults in Table 6. We include results of other leading models

from the PASCAL leaderboard. All our models have been

trained with pixel-level annotated images on the PASCAL

trainval aug and the MS-COCO 2014 trainval datasets.

Methods based on the DCNN+CRF pipeline of

DeepLab-CRF [5] are the most competitive, with perfor-

mance surpassing 70%, even when only trained on PAS-

CAL data. Leveraging the MS-COCO annotations brings

about 2% improvement. Our top model yields 73.9%, using

the multi-scale network architecture of [5]. Also see [41],

which also uses joint PASCAL and MS-COCO training, and

further improves performance (74.7%) by end-to-end learn-

ing of the DCNN and CRF parameters.

4.6. Qualitative Segmentation Results

In Fig. 6 we provide visual comparisons of the results

obtained by the DeepLab-CRF model learned with some of

the proposed training methods.

5. Conclusions

The paper has explored the use of weak or partial anno-

tation in training a state of art semantic image segmenta-

tion model. Extensive experiments on the challenging PAS-

CAL VOC 2012 dataset have shown that: (1) Using weak

annotation solely at the image-level seems insufficient to

train a high-quality segmentation model. (2) Using weak

bounding-box annotation in conjunction with careful seg-

mentation inference for images in the training set suffices

to train a competitive model. (3) Excellent performance is

obtained when combining a small number of pixel-level an-

notated images with a large number of weakly annotated

images in a semi-supervised setting, nearly matching the

results achieved when all training images have pixel-level

annotations. (4) Exploiting extra weak or strong annota-

tions from other datasets can lead to large improvements.
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Image EM-Adapt (Weak) Bbox-Seg (Weak) EM-Fixed (Semi) Bbox-EM-Fixed (Semi) Cross-Joint (Strong)

Figure 6. Qualitative DeepLab-CRF segmentation results on the PASCAL VOC 2012 val set. The last two rows show failure modes.
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