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Abstract

We address the problem of statistical learning of shape

models which are invariant to translation, rotation and

scale in compositional hierarchies when data spaces of

measurements and shape spaces are not topological man-

ifolds. In practice, this problem is observed while model-

ing shapes having multiple disconnected components, e.g.

partially occluded shapes in cluttered scenes. We resolve

the aforementioned problem by first reformulating the re-

lationship between data and shape spaces considering the

interaction between Receptive Fields (RFs) and Shape Man-

ifolds (SMs) in a compositional hierarchical shape vocab-

ulary. Then, we suggest a method to model the topological

structure of the SMs for statistical learning of the geomet-

ric transformations of the shapes that are defined by group

actions on the SMs. For this purpose, we design a disjoint

union topology using an indexing mechanism for the for-

mation of shape models on SMs in the vocabulary, recur-

sively. We represent the topological relationship between

shape components using graphs, which are aggregated to

construct a hierarchical graph structure for the shape vo-

cabulary. To this end, we introduce a framework to imple-

ment the indexing mechanisms for the employment of the vo-

cabulary for structural shape classification. The proposed

approach is used to construct invariant shape representa-

tions. Results on benchmark shape classification outper-

form state-of-the-art methods.

1. Introduction

Representation of shapes using manifolds has been stud-

ied for a long decade in Computer Vision [6, 14, 15, 19,

22, 26, 27, 29, 31, 36] and Statistical Shape Theory (SST)

[6, 11, 16, 17, 30]. In these works, shapes are assumed

Figure 1: Consider the figure of∞ in (a), and subparts of it

in (b) and (c). Each red line is a set of measurements. Of

these neither (a) nor (b) can be modeled on a shape mani-

fold, however the line in (c) can be modeled on a one di-

mensional manifold. Many such hard to model shapes are

observed in the natural world, due to having multiple dis-

connected components, e.g. due to occlusion in (d, e), or

occurrence of multiple objects as in (f, g).

to be represented in shape spaces with manifold structures.

However, this assumption fails if the shape spaces are not

manifolds because of the local singularities that occur in

the shape spaces [6, 16, 30].

In addition to the aforementioned singularity problem

[6, 16, 30], we address a case where the manifold assump-

tion1 of data2 and shape spaces fails as depicted in Figure 1.

For instance, we consider a scenario where data (measure-

ments) are obtained from a Receptive Field (RF)3 depicted

1In this work, a space is called a topological manifold if it is a i) locally

Euclidean, ii) second countable, iii) Hausdorff space.
2A set of all possible measurements is called a data space.
3We define a Receptive Field (RF) as co-domain of a shape manifold,

i.e. a spatial region covering measurements made from an image which is

used to represent a local component of a shape on a manifold in a shape

vocabulary. See Section 2.1.2 for the formal definition.
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with the light blue region to model a shape∞ given in Fig-

ure 1.a. However, the shape cannot be modeled on a shape

manifold since a measurement at the intersection point O of

two loops has no neighborhood homeomorphic to an open

subset in R. If we consider another RF with different size

and structure depicted by the red region in Figure 1.b, we

also observe that the red cross × cannot be modeled on

a shape manifold. The reason is that still the subspace

topology is not locally Euclidean at the intersection point

O due to the occurrence of multiple disconnected compo-

nents (e.g. edge-like structures) in a neighborhood of O

[33]. If the data and shape spaces each consist of mul-

tiple disconnected components due to the structure of the

shapes or occlusion, then the spaces may be disconnected

and non-smooth [21] (see Figure 1.a-b and d-g). In this

case, the methods which model shape deformations in con-

nected shape manifolds may fail.

Our motivation for modeling shapes using manifolds is

twofold. First, we propose a framework that will be em-

ployed for construction of different shape representations

with different geometric invariants, such as invariance to

Euclidean Similarity and Rigid-body Transformations. Sec-

ond, we aim to model the topological relationship between

shape components, such as connections between parts and

compositions deformed under geometric transformations in

a shape vocabulary on a Shape Manifold (SM). Therefore,

we address the aforementioned shape representation prob-

lem by providing a compositional hierarchical framework

by solving each of its subproblems, recursively. The nov-

elty of the paper can be summarized as follows:

1. Construction of SMs when data spaces are not

manifolds at the first layer l = 1 of a Compositional Hier-

archical Shape Vocabulary (CHSV): We reformulate the

relationship between data and shape spaces considering the

interaction between RFs and SMs at l = 1 of a CHSV. For

this purpose, we first define a RF as a co-domain of an SM

that is represented by a shape model in the CHSV. Then,

we suggest a method to design structures of RFs consider-

ing both the statistical properties of the data, the geometric

structure of the SMs, and the topological structure of the

models. We analyze the conditions that should be satis-

fied by the proposed methods to model shapes on SMs in

CHSVs.

2. Construction of invariant SMs and modeling topo-

logical properties of models at the higher layers l > 1 of

a CHSV: A disjoint union topology [9] of components of

shape representations is designed using an indexing mech-

anism for the recursive formation of shape models on SMs

in a CHSV. More precisely, we introduce a mathematical

framework to employ the indexing mechanism for i) con-

struction of SMs with various invariance properties for sta-

tistical learning of models at l > 1 of CHSVs, ii) modeling

topological relationships between parts and compositions of

shape models, and iii) the employment of the CHSV for

structural shape classification.

1.1. Related Work and Background

Statistical learning of shape representations on mani-

folds: Manifold embedding methods, such as Kernel meth-

ods and Density Representations (DR), represent shapes on

the embedded submanifolds [6, 10, 14, 15, 26]. However,

the methods suffer from the kernel selection and parameter

estimation problems. DR [10, 26] represent a shape using

a density function as a point on a manifold whose domain

is defined by RFs unlike our proposed model. Therefore,

topological relationships between parts and compositions

are not modeled by DR, and DR consider a statistical model

for shapes with multiple disconnected components.

Statistical learning algorithms, which implement extrin-

sic methods on manifolds, model shapes by (i) first map-

ping manifolds to tangent spaces, (ii) then computing the

statistical properties on tangent spaces, and finally (iii)
mapping the computed statistical models into manifolds

[1, 6, 14, 15, 16, 26]. However, the mappings may not exist,

and the assumption of the algorithms to construct the mod-

els using the mappings may fail. Moreover, the mappings

may not be invertible or unique [36]. The algorithms pro-

posed for computing the mappings have several limitations

such that the suggested representations and metrics may not

be invariant to translations, and they lack of physical inter-

pretations and topological models [15, 19, 26].

Topological properties and assumptions of models:

The manifold assumption of the aforementioned algorithms

regarding the structure of a D-dimensional shape space ΣN
D

defined by N landmarks may fail in cases where ΣN
D is

not a manifold. For instance, multiple length minimizing

geodesics between the redundant shape representations are

observed on ΣN
3 [6, 16]. Although a Riemannian manifold

can be obtained by removing redundant representations and

constructing shape spaces using the non-redundant repre-

sentations [6, 16, 30], it is not complete. Therefore, the

methods provide approximate solutions [6, 14, 15].

In the next section, we first analyze the aforementioned

approaches and methods used for Multi-component shape

representation problem. Then, we propose a new approach

to resolve the challenges of their assumptions by re-defining

the structures used for shape representation and developing

mathematical models of receptive fields, indexing mech-

anisms and model-based compositional hierarchical shape

representations. In Section 3, we suggest a method to em-

ploy a structural classification algorithm using the proposed

shape representation approach. In Section 4, the proposed

methods are examined on benchmark datasets for represen-

tation and classification of multi-component shapes by con-

structing shape models equipped with different invariants.

Section 5 concludes the paper.
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2. Multi-component Shape Representation

Multi-component (MC) shape representation problem

consists of three sub-problems, namely i) modeling SMs

with geometric invariants, ii) statistical learning of shape

representations on invariant SMs, and iii) modeling topo-

logical properties of invariant SMs.

2.1. Multicomponent Shape Representation Model

We assume that a subset of measurements are obtained

from an open ball B(xc, r) = {x′ ∶ ∥xc−x′∥2 < r, r ∈ R,x′ ∈
A} which is represented by a Receptive Field (RF) centered

at xc ∈ RD, where A ∈ RD is an open subset. In this work,

we use two-dimensional images, therefore D = 2 will be

considered in the rest of the paper, if not stated otherwise.

Additionally, we consider landmarks as Gabor features ex-

tracted from images at each image point x ∈ R
2 using a

two-dimensional Gabor kernel G(x,R), where R is a set

of parameters [12]. We construct SMs with different invari-

ants, such as invariance to scale, translation and rotation, at

each layer of a Compositional Hierarchical Shape Vocab-

ulary (CHSV). Therefore, we first provide an overview of

the geometric properties of SMs that will be employed for

representation of shape models in the following subsection.

2.1.1 Geometry of Shape Representation Models

In order to employ group operations on the measurements,

we denote a matrix representation of the measurements as

X ∈ RNj×D, where Nj = ∣Aj ∣, ∀j ∈ I, and the ith row of

X is xi ∈ Aj . In this work, we address the problem of con-

struction of shape manifolds for representation of shapes

which are invariant to scale, translation and rotation. There-

fore, we first define a set of translated, rotated and isotropi-

cally rescaled observations of X , called the Euclidean Sim-

ilarity Transformations (EST) of X , as

[X]est = {βXΓ + INj
γT ∶ β ∈ R+,Γ ∈ SO(D), γ ∈ RD},

(1)

where β ∈ R+ is a scale variable used for isotropic scaling,

Γ ∈ SO(D) is a rotation matrix, and γ ∈ RD is a translation

vector. A space consisting of all possible EST ofX is called

EST-Shape space and denoted as Sest. For β = 1, we obtain

the Rigid-body Transformations (RT) of X as

[X]rt = {XΓ + INj
γT ∶ Γ ∈ SO(D), γ ∈ RD}. (2)

The shape space consisting of all possible [X]rt is denoted

as Srbt. For an identity matrix Γ, we obtain a scaled and

translated (ST) shape of X , called a pre-shape, as

[X]st = {βX + INj
γT ∶ β ∈ R, γ ∈ RD}. (3)

Note that the ST space Sst, which is the space of all possible

pre-shapes, is scale and translation invariant [11, 16]. In

Figure 2: Measurement of shapes of two objects (a) in RFs

each of which is defined as co-domain of a mapping from a

subset of a manifold M (c) to a subset of R2 (b). See text

for details.

order to obtain a rotation invariant representation of pre-

shapes, we employ actions from the rotation group as

[X]s = {XstΓ ∶ Γ ∈ SO(D),Xst ∈ Sst}. (4)

The shape space consisting of all possible shapes [X]s is

denoted by Ss. ForD = 2, Sst is a 2k−3 dimensional sphere

S2k−3, and Ss is a quotient space S2k−3/SO(2) which is a

compact manifold. Once we obtain a shape manifold, we

employ extrinsic and intrinsic analysis on the manifold for

statistical learning of shape representations. The distance

functions that will be employed in the learning algorithms

are designed according to the geometric and topological

structure of the spaces as explained in the following section.

2.1.2 Topological Properties of Shape Manifolds

In order to assure the representation of shapes on SMs, we

consider a shape space as a manifold, and the measurements

obtained from a RF as a co-domain of the manifold at the

first layer of a CHSV.
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The co-domainU determined by a RF is defined together

with a manifold

P = {(Aj , φj)∣φj ∶ Aj ⊂M → Uj ⊂ RD,∀j ∈ I}, (5)

where I is a nonempty countable set (see Figure 2). We

call the manifold P a part, and (Aj , φj) is a chart of the P ,

∀j ∈ I. A part P can be considered as an element of a shape

space, which is also designed to be a manifold. Therefore,

we should first show that P is a manifold which is a non-

degenerate representation model. For this purpose, we will

first analyze the conditions which enable us to model the

manifold structure of a part P when there is an overlap

among the charts of the P , and among the corresponding

RFs in the data spaces.

Given any two charts (Ai, φi) and (Aj , φj) on P , where

Ai ∩Aj ≠ ∅, the transition maps are defined as [13]

φji ∶ φi(Ai ∩Aj)→ φj(Ai ∩Aj), (6)

φij ∶ φj(Ai ∩Aj)→ φi(Ai ∩Aj), (7)

φji = φj ○ φ−1i and φij = φi ○ φ−1j ,∀i, j ∈ I. (8)

Defining Uij = φi(Ai ∩ Aj) and Uji = φj(Ai ∩ Aj), we

compute a map φji ∶ Uij → Uji which is called a gluing

map in [13]. Then, a set of gluing measurements, which is

a superset of RFs used on the images, is defined as [13]

RF = {{Ui}i∈I,{Uij}(i,j)∈L,{φji}(i,j)∈L}, (9)

where L = {(i, j) ∈ I × I ∶ Uij ≠ ∅} is an index set.

In order to assure that there is a manifold with co-domain

and maps defined by RF, the maps should satisfy the fol-

lowing conditions [13]:

1. φii = idUi
, where idUi

is an identity map of Ui, ∀i ∈ I.

2. φij = φ−1ji , ∀(i, j) ∈ L.

3. If Uji ∩ Ujk ≠ ∅, then φij(Uji ∩Ujk) = Uij ∩Uik,

∀i, j, k ∈ I, and φki(x) = φkj ○ φji(x),
∀x ∈ (Uij ∩Uik).

4. There are open balls Vx and Vx′ centered at x and x′

such that no point of Vx′ ∩ Uji is the image of any

point of Vx ∩ Uij by φji, ∀(i, j) ∈ L with i ≠ j, and

∀x ∈ ∂(Uij)∩Ui, ∀x′ ∈ ∂(Uji)∩Uj , where ∂(Uij) is

the boundary of Uij .

By the employment of the conditions (1-4), we define

a set of algebraic operations in order to provide an alge-

braic framework for operations on parts and compositions

on a shape manifold M at the lth(l > 1) layer of composi-

tional hierarchical representation. In the first condition (1),

we assure the existence of an idempotent map of composi-

tion of maps, and, thereby, the existence of inverse maps.

The relationship between a composition of maps and its in-

verse induced by an index set is defined in the second con-

dition (2). Together with the third condition (3), we ob-

tain a property of composition of maps φij = φik ○ φ−1kj .

For example, we model φ64 = φ6 ○ φ−14 ∶ U46 → U64 and

φ46 = φ4 ○ φ−16 ∶ U64 → U46, in Figure 24. Following the

composition property, we obtain φ64 = φ65 ○ φ−154 . In addi-

tion, we model the relationship φ12 ○ φ−11 between U1 and

U12 by employing the composition property for i = 1, j = 12
and for each k = 2,3, . . . ,11, in our proposed approach4.

The conditions (1-3) show that a shape space M is

second-countable. Considering the fourth condition (4),

we assure that M is Hausdorff, thereby, M is a topologi-

cal manifold. Therefore, the conditions (1-4) and the pro-

posed approach provide a framework to associate the mea-

surement spaces and pre-shape spaces defined by RFs to D

dimensional shape manifolds. Next, we provide a theorem

by formalizing the observations depicted in Figure 2.

Theorem 2.1 ([13]). For every set RF defined in (9), there

is a D dimensional manifold whose transition maps are

{φji}(i,j)∈L, where L is an index set. More precisely, there

exists a manifold M = (RF,{ψi}i∈I), where ψi ∶ Ui → R
D

is defined as

ψi ≜ ψj ○ φji,∀(i, j) ∈ L. (10)

In the following Corollary, we show that a part P is a

manifold in our proposed framework.

Corollary 1. P is a manifold whose co-domain and tran-

sition maps are defined by RF with measurements on two-

dimensional images.

Following the shape space construction approach dis-

cussed in the previous section, parts will be constructed

using equivalence relations between shape representation

models through quotient maps of data and shape spaces.

Additionally, we have shown that a part P can be con-

structed as a manifold which is invariant to scale, transla-

tion and/or rotation using quotient maps at the first layer

l = 1 of CHSV. Next, we show that a composition of parts

constructed at l > 1 of the CHSV is a manifold.

Theorem 2.2. Given a collection of parts {Pn}n∈N,

where N is a set of indices, a composition C of parts de-

fined as

C = ∐
n∈N

Pn (11)

is a manifold.

Theorem 2.2 assures that a composition constructed in

the higher layers of the compositional hierarchical vocabu-

lary is a manifold. The formal proofs of the Theorems and

Corollary are given in the Supplemental Material.

4 The colored text given in the example refers to the sample maps in-

duced by the proposed indexing mechanism as depicted in Figure 2.
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2.2. Statistical Learning of Representations on SMs

In our statistical learning model, we aim to compute the

joint observation probability of two parts with different part

indices or ids in locally defined open sets on Shape Mani-

folds (SMs), which are clusters. In other words, we com-

pute a set of disjoint clusters Λk ⊂ C, ∀k = 1,2, . . . ,K,

such that
K⋃
k=1

Λk = C, assuming that Q is a probability dis-

tribution on C, {Ωn}n∈N are random variables associated to

{Pn}n∈N and drawn independent and identically distributed

(i.i.d.) from Q. Moreover, we require that if Λk ⊆ Λl, then

σ(Λk) ≤ σ(Λl), where σ(⋅) is a cost function used to avoid

obtaining redundant subsets of clusters. This condition has

been defined and used as the Monotone Clustering Property

(MCP) for clustering [8]. In our proposed model, we define

the cost function of an instance of a cluster as

σ(λk, ωn, ωm) = Pr(λk ∈ Λk ∣ωn ∈ Ωn, ωm ∈ Ωm) (12)

which is the probability of observing two given part in-

stances ωn ∈ Ωn and ωm ∈ Ωm in a cluster instance λk ∈ Λk,

∀k. Computation of a collection of clusters which maxi-

mize (12) is considered as a minimum entropy clustering

problem [8, 23] and defined as

K = argmin
K

∑
ωn∈Ωn

∑
ωm∈Ωm

∑
λk∈Λk

Pr α(λk ∣ωn, ωm) − 1,
(13)

where K is the set of all possible partitions of the dataset

among K clusters. We choose 0 < α < 1 unlike the cluster-

ing problem proposed in [2] to satisfy the MCP.

In a clustering algorithm [23] which computes (13), a

part Pm that resides in the neighborhood of a given part Pn

is selected to minimize the conditional entropy associated

with the conditional probability defined in (12). We com-

pute four distance functions [11] for the computation of the

neighborhood of Pn in each of the shape spaces:

Distance on scaled shape space Ss: Given two mea-

surements X1,X2 ∈ R
Nj×D, the full Procrustes distance

0 ≤ df(X1,X2) ≤ 1 is computed as

df(X1,X2) = inf
Γ∈SO(D),β∈R

∥X̂2 − βX̂1Γ∥

= (1 − (
D

∑
i=1

νi)),
(14)

where ν1 ≥ ν2 ≥ . . . ≥ ∣νD ∣ are square roots of the eigen-

values of X̂T
1 X̂2X̂

T
2 X̂1, and X̂1 and X̂2 are pre-shapes of

X1 and X2, respectively. For β = 1, the partial Procrustes

distance 0 ≤ dpp(X1,X2) ≤√2 is computed on Ss as

dpp(X1,X2) = inf
Γ∈SO(D)

∥X̂2 − X̂1Γ∥

= √2(1 − (
D

∑
i=1

νi))
1

2

.

(15)

Distance on pre-shape space Sst: On the unit

sphere, the Procrustes distance between two pre-shapes

0 ≤ dp(X1,X2) ≤ π
2

is computed as

dp(X1,X2) = arccos (
D

∑
i=1

νi). (16)

Distance on Sest: The ordinary Procrustes distance be-

tween two shapes is computed as

dop(X1,X2) = inf
Γ,β,γ

∥X2 − βX1Γ − INγ
T ∥

= ∥X2∥2 sin2(dp(X1,X2)),
(17)

where ∥X2∥ = (Tr(XT
2 X2)) 1

2 is the Euclidean norm,

Tr(⋅) is the matrix trace, and X1 and X2 are centered but

may not be unit sized matrices of the measurements. Note

that, dop(X1,X2) = d2f(X1,X2) for unit size measure-

ments. However, the parts and compositions may not be

unit size especially when Gabor features with different ge-

ometric structures are used as landmarks (see Figure 2).

Distance on Srbt: The ordinary Procrustes distance be-

tween two shapes is computed as

dopp(X1,X2) = inf
Γ,γ
∥X2 −X1Γ − INγ

T ∥
= Tr(XT

1 X1) + Tr(XT
2 X2)

− 2∥X1∥∥X2∥ cos(dp(X1,X2)).
(18)

2.3. Compositional Formation of Hierarchy of SMs

In the proposed approach, we construct parts {Pn}n∈N,

and a shape manifold C at each layer l of a compositional

hierarchical shape vocabulary by employing a disjoint

union operation and the indexing method proposed in Sec-

tion 2.1.2. In addition, we integrate a set of shape manifolds

{Cm}m∈M to construct a shape vocabulary Υ = ∐
m∈M

Cm,

where M is a nonempty countable set of indices. There-

fore, we consider a compositional approach for the forma-

tion of the vocabulary Υ. We represent a shape manifold

Clm constructed at the lth layer by a graph Glm = (V l
m,E lm),

∀m ∈M. V l
m is the set of nodes where each node vl+1i = n

represents an index label or id n ∈N of a subpart P l
n, ∀m5.

At l = 1, we have disconnected parts, therefore eij = ∅,

∀eij ∈ E1m, ∀m. For l > 1, if two parts P l
n and P l

n′ co-

occur in a cluster λk with probability σ(λk, ωn, ωn′) > 0,

vli = n and vlj = n′, then eij = k (Figure 3). Following

the recursive definition of the vocabulary, a shape mani-

fold Clm is considered as a part of another shape manifold

Cl+1 which is referred as a composition constructed at the

(l + 1)st layer (Figure 3.c). At each layer l, we can ap-

proximate geodesic between two parts by comparing their

5Note that, we can employ N = Il and M = Il+1, at each l of a CHSV,

where I is used to define parts in (5). For the sake of simplicity, we updated

the notation in this section.
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(b) Solving the sub-graph 

isomorphism problem for 

part selection at the Ɩth
 

layer, and composition of 

parts at the (Ɩ+1)
st

 layer. 

 

 

  

 

   (c) Graph representation 

 of a composition 

. 

 

Figure 3: At the lth layer, (a) the graph isomorphism prob-

lem is solved to approximate geodesics [5] between parts

and compositions on a manifold M l, (b) isomorphism be-

tween parts and compositions is achieved between consecu-

tive layers l and l+1 by solving the sub-graph isomorphism

problem. (c) A graph representation Gl+1m of a composition

Cl+1m constructed at the l + 1st layer.

graph representations considering the manifold structure of

shape spaces (Figure 3.a). Given two graphs Glm and Glm′ ,
deciding whether they are isomorphic is defined as a graph

isomorphism problem [28, 34].

At the first layer l = 1 in the vocabulary, we assure the

existence of a bijection b ∶ V l
n → V l

n′ between two graph

representations Gln and Gln′ of two parts P l
n and P l

n′ in

a SM Cl+1m , respectively. In other words, Gln ∼ Gln′ iff

Gln′ ∈ b(Gln),∀n,n′ ∈ N6 following the compositional for-

mation of parts as described in the previous section. For

l > 1, we search and select the graphs Gln of the partsP l
n that

are subgraphs and isomorphic to the graphs Gl+1m of compo-

sitions Cl+1m , ∀m ∈M. This problem has been defined and

studied as a sub-graph isomorphism problem [2, 28, 34]. In

this work, we select the subgraphs of compositions Cl+1m ,

∀m ∈M, solving the sub-graph isomorphism problem [2].

We search the SMs and increment the hierarchy until we ob-

tain a compact connected SM which contains a single com-

ponent at the highest layer of the hierarchy (Figure 3.b).

2.4. Inference of Shape Representations on Test
Data

We first employ the proposed indexing mechanism to

induce a disjoint union topology in an inference tree T .

6This condition is equivalent to the membership of node ids to L which

is employed to define RFs in (9), i.e. ∀(n,n′) ∈ L.

Thereby, we can represent measurements obtained from test

images and parts obtained from the learned vocabulary on a

manifold M l at each layer l of the hierarchy (Figure 3).

For this purpose, we first extract a set of landmarks or

features from a test image. Then, we represent the test

features as parts {P̌ l
n}n∈N and compositions {Člm}m∈M

at the first layer l = 1 of an inference tree T such that

Č1m = ∐
n∈N
P̌1
n, ∀m ∈M. At each consecutive layer l > 1,

we search for a set of graphs {Ǧlu ∶ u ∈ U} whose members

are graph isomorphic to the shape manifolds Gln, ∀n ∈ N
in the vocabulary Υ. More precisely, we first compute a set

of all graphs iso(Gln) which are isomorphic to Gln ∀n, and

then search the set of parts Ǧlu ∈ iso(Gln), ∀u ∈ U, where U

is a nonempty countable set of indices (Figure 3.a).

3. Shape Classification using Compositional

Hierarchical Shape Vocabularies

In the shape classification problem, we consider contri-

bution of each part and composition in the vocabulary to the

representation of classes using a top-down approach. For

this purpose, we employ the topological structure of the vo-

cabulary Υ which is induced by the indexing mechanism,

such as the recursive representation of parts and composi-

tions at each layer l > 1 of Υ.

After shape manifolds are formed in a hierarchical vo-

cabulary, we first compute training and test inference trees

T = {Tn ∶ n = 1,2, . . . ,N} and Ť using a set of N training

images and a given test image, respectively. Let F ∈ RN×H

denote an input matrix whose row vector fn represents the

detection of a feature by a part or a composition in Υ on the

nth image provided by an inference tree Tn. We encode the

class labels using 1-of-W coding of classes using a matrix

Y ∈ RN×W , where ynw = 1 if the nth image belongs to the

wth class, and ynw = 0, otherwise. In addition, we assume

a linear class model for each class variable as

yw = Fzw + ǫw,∀w = 1,2, . . . ,W, (19)

where zw ∈ RH is a vector of model coefficients, and ǫw is

a vector that represents model error. Then the class model

estimation problem is defined as [18]

Ẑ = argmin (
W

∑
w=1

(yw − Fzw)T (yw − Fzw) +L), (20)

where Ẑ is the matrix of estimated model variables, and L

is a structural loss function. In order to employ the structure

induced by the vocabulary in the classification models, we

define the loss function L as [18]

L ≜ ξ
H

∑
h=1

∑
υi∈Λint

µυi
∥zhΦυi

∥2 + ξ
H

∑
h=1

∑
υj∈Λleaf

µυj
∥zhΦυj

∥2,
(21)
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where ξ is a regularization parameter. Λleaf is a set of leaf

nodes which represent the detections by parts in Υ. Λint

is a set of internal nodes which represent the detections by

either parts or compositions in Υ according to the topol-

ogy induced by the indexing mechanism. In other words,

Λint consists of shared parts and compositions among dif-

ferent objects and different layers, and defines the overlap-

ping groups. µυi
and µυj

are the regularization weights

associated to each node υi ∈ Λint and υj ∈ Λleaf .

Φυi
and Φυj

are group structures whose members are

the indices of leaf nodes of the subtrees rooted at the nodes

υi ∈ Λint and υj ∈ Λleaf . Using the group structures en-

coded by the indexing mechanism, feature values detected

at the corresponding parts and compositions are encoded in

zh
Φυi

and zh
Φυj

, which are the vectors of variables zh̺i
,∀̺i ∈

Φυi
, ∀υi ∈ Λint and zh̺j

,∀̺j ∈ Φυj
, ∀υj ∈ Λint [18]. In the

proposed framework, we solve the problem (20) by mini-

mizing (21) for an ensemble of inference trees induced by

the learned hierarchical compositional shape vocabulary.

4. Experiments

We first examine the robustness and invariants of the

shape representations modeled by the proposed algorithms

using a benchmark dataset of shapes that are corrupted by

noise and geometric transformations for shape classifica-

tion. Then, we examine classification performance of the

proposed statistical learning algorithms on SMs represented

by CHSVs that are modeled by the proposed methods using

two benchmark datasets. Implementation details of the al-

gorithms are provided in the Supplemental Material. The

results are given for three different cases each of which is

denoted by MC-Z, where Z ∈ {1,2,3} represents the em-

ployment of statistical learning algorithms using distance

functions df (14), dop (17) and dopp (18) in the shape spaces

Ss, Sest and Srbt, respectively.

4.1. Experimental Analysis on Artificial Datasets
and Comparison with Stateoftheart Hier
archical Deep Representations

In this section, we examine the suggested approach

and the algorithms on three different benchmark artificial

datasets. The datasets are generated such that the shapes

consisting of single and/or multiple components are cor-

rupted by noise and geometric transformations [20].

Convex Shapes (CS) dataset [20] consists of 8000 train-

ing and 50000 test images each of which contains convex

and non-convex regions, and belong to two classes. In this

dataset, the classification problem is defined as a binary

classification of convex and non-convex regions. Mnist-

Rotation (M-R) dataset [20] consists of 12000 training and

50000 test images of the Mnist digits which belong to ten

classes and are rotated by an angle generated uniformly be-

Table 1: Classification performance (%) of the algorithms

on the benchmark shape datasets.

Algorithm CS M-R M-RBI

DBN-3 [20] 81.37 87.70 71.49

DAE2 [7] 81.56 88.06 55.08

CAE2 [7] 80.70 86.38 51.75

mDAE2 [7] 81.90 89.64 53.88

MC-1 (Ss) 83.20 89.29 78.26

MC-2 (Sest) 84.15 90.16 77.15

MC-3 (Srbt) 81.07 91.71 74.08

tween 0 and 2π radians. In the Mnist-RBI (M-RBI) dataset

[20], a random patch from a gray scale image is used as the

background for the rotated images obtained from the Mnist-

Rotation dataset. The size of each image is 28×28. The pro-

posed algorithms are compared with Deep Belief Networks

with three layers (DBN-3), Denoising (DAE-2), Contrac-

tive (CAE-2) and marginalized Denoising auto-enconder

(mDAE-2) algorithms with two layers.

The results given in Table 1 show that the proposed al-

gorithms outperform the state-of-the-art algorithms. In ad-

dition, we observe that the proposed algorithms can employ

invariant properties of shape manifolds on shape represen-

tations. For instance, EST invariant shape spaces are used in

MC-2 for encoding information about convexity of shapes.

Therefore, the best classification performance is observed

in MC-2 on the CS dataset. In addition, we observe that

Rigid-body Transformation invariant shape manifolds used

in MC-3 provide better representations of rotated shapes

obtained from the M-R dataset than the other shape spaces.

The proposed methods which model representations in

Sest and Ss outperform the algorithms in noisy images

which contain corrupted shapes (M-RBI dataset). The rea-

son of performance boost is that the patterns observed at

different scales in the background images are recognized

and removed from the shape representations by the pro-

posed graph compression algorithms. Moreover, MC-1 out-

performs MC-2 on M-RBI. The reason follows the hierar-

chical employment of invariants in MC-1 by first remov-

ing scale and translation in Sst, and then removing rotation

in Ss. Therefore, statistical relationship between parts is

modeled on Ss by a spectral analysis of geometric informa-

tion obtained from pre-shapes for computation of df (14).

However, MC-2 aims to construct a scale, translation and

rotation invariant representation in Sest, and model the sta-

tistical relationship by a geometric analysis of spectral in-

formation obtained from measurements for computation of

dop (17). Therefore, we observe different and complemen-

tary performances using the proposed methods according

to the geometric and statistical properties of the data. This

observation is analyzed in the following sections.
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Table 2: Classification performance (% Mean ± Variance) of algorithms using the Butterfly Dataset.

S-kFP [14] S-kFPG [15] MKL [14] SM [14] MC-1 (Ss) MC-2 (Sest) MC-3 (Srbt)

57.75 ± 2.0 60.37 ± 1.6 60.84 ± 2.0 63.98 ± 1.6 67.83 ± 2.1 66.17 ± 2.3 64.09 ± 1.1

4.2. Classification Results on Realworld Datasets

4.2.1 Comparison with State-of-the-art Shape Classifi-

cation Methods Employed on Shape Manifolds

In the first set of the experiments, we examined the clas-

sification performance of the proposed algorithms with the

state-of-the-art shape classification algorithms that are im-

plemented on shape manifolds using the Butterfly Dataset

[35]. The dataset contains 823 images belonging to 10

classes. Following the data setup suggested in [14], we ran-

domly selected 40 shapes from each class for training and

used the rest for testing. The procedure was repeated 10

times, and mean and variance of the classification perfor-

mance values are given in Table 2.

In the real world datasets which contain shapes that

are deformed by articulation and non-rigid body transfor-

mations, the algorithms need to model higher variance of

the geometric patterns distributed among different measure-

ments, objects and classes. Therefore, the algorithms which

use shape spaces with richer geometric properties perform

better than the other algorithms on these datasets. For in-

stance, S-kFP and MKL employ full Procrustes (FP) on

the Kendall’s shape space [14]. Similarly, we have used the

FP distance for statistical learning on the scaled Ss which

corresponds to the Kendall’s shape space in MC-1. Mean-

while, Grassmann manifolds are used in SM. Since our pro-

posed method considers the contribution of each part and

composition to the classification model, we obtain better

classification performances using Ss in MC-1.

4.2.2 Comparison with State-of-the-art Shape De-

scriptors and Vocabularies

In the second set of the experiments, we examined the clas-

sification performance of the algorithms using the Animals

Dataset [3] consisting of 2000 shapes belonging to 20 cat-

egories. We have used this dataset instead of the MPEG-7

dataset since the Animals dataset contains more images that

are deformed with more articulated and non-rigid transfor-

mations, and larger class-variation than the MPEG-7 dataset

[4]. 50 images per class were randomly chosen for training,

and the rest of the samples were used for testing as sug-

gested in [4]. The procedure is repeated 10 times for the

proposed algorithms and the results are compared with the

performances of the shape descriptors.

The results given in Table 3 show that the proposed al-

gorithms perform with higher average performance and less

Table 3: Classification performance (% Mean ± Variance)

of the proposed algorithms and the shape descriptors on the

Animals Dataset.

CSS [32] IDSC [25] CSSP [3] NN-SVM [4]

69.7 73.6 78.4 84.30 ± 1.0

Lim [24] MC-1 (Ss) MC-2 (Sest) MC-3 (Srbt)

80.4 84.2 ± 2.1 85.9 ± 2.4 84.9 ± 2.0

variance compared to the algorithms. Note that similar vari-

ance values are obtained for the proposed algorithms. In

addition, we report the performances of the proposed algo-

rithms over 10 sets of experiments unlike 100 sets of ex-

periments reported for the NN-SVM [4]. Therefore, the

higher variance of the performance values can be attributed

to the less variance of the data generated in the experimen-

tal setup. Additional experimental results are given in the

Supplemental Material.

5. Conclusion

Multi-component Shape Representation problem has

been proposed for design and construction of shape rep-

resentation models on manifolds in a Compositional Hier-

archical Shape Vocabulary (CHSV). Shape representations

are modeled with topologies induced by the statistical prop-

erties of the data and geometric properties of shape spaces

that we want to achieve. The relationship between data and

shape spaces has been reformulated using RFs in order con-

struct shape spaces with manifold structure at the first layer

of the CHSV.

We have suggested a mathematical framework of an in-

dexing mechanism to employ and encode the geometric in-

formation obtained from measurements in the shape mod-

els. We have modeled formation of shape models at the

higher layers of the CHSV using a disjoint union topol-

ogy of shape manifolds induced by the indexing struc-

ture of the CHSV. The proposed methods have been used

for structural shape classification. In the experiments, we

have constructed different shape models by designing vari-

ous shape manifolds with different invariance properties for

shape classification.
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