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Abstract

L0 gradient minimization can be applied to an input sig-

nal to control the number of non-zero gradients. This is

useful in reducing small gradients generally associated with

signal noise, while preserving important signal features. In

computer vision, L0 gradient minimization has found ap-

plications in image denoising, 3D mesh denoising, and im-

age enhancement. Minimizing the L0 norm, however, is an

NP-hard problem because of its non-convex property. As a

result, existing methods rely on approximation strategies to

perform the minimization. In this paper, we present a new

method to perform L0 gradient minimization that is fast and

effective. Our method uses a descent approach based on re-

gion fusion that converges faster than other methods while

providing a better approximation of the optimal L0 norm.

In addition, our method can be applied to both 2D images

and 3D mesh topologies. The effectiveness of our approach

is demonstrated on a number of examples.

1. Introduction and Related Work

This paper focuses on L0 gradient minimization applied

to images and 3D meshes. L0 gradient minimization is used

to control the global number of non-zero gradients between

neighbors in a graph. When done properly, L0 gradient

minimization effectively creates a series of piecewise con-

stant functions whose transitions correspond to important

changes in the original function. This can be considered

as a feature-preserving filter that has many applications in

computer vision, from image and mesh denoising, to image

enhancement and segmentation.

There are a number of feature-preserving filters in the lit-

erature. These can be broadly categorized as local or global

filters. The trade-off among these various methods lies in

their overall effectiveness for the task at hand and time com-

plexity. Well-known local filters include the anisotropic fil-

ter [1, 16], the bilateral filter [2, 6, 15, 21, 26, 27], the

guided filter [10, 11, 28], and the geodesic filter [9, 4].

These filters were originally designed for use on images,

but have been extended to other domains, including 3D

(a) Input 

(d) Cheng et al. [3]  (f) Ours 

T = 27.93,  F =  29093  

T = 19.20, F =  16819  T = 1.47, F =  16698 

(c) Xu et al. [24] ( = ͳ.Ͳ5) (b) Xu et al. [24] ( = ʹ) 

(e) Storath et al. [19]  

T = 2.05,  F =  67309  

T = 23.15, F =  16441 

Figure 1. This figure shows the results of applying L0 gradient

minimization on an image by Xu et al. [24], Cheng et al. [3],

Storath et al. [19], and our method. Parameters for each method

was tuned to produce the best results (closest result to L0). The

plots under each image show a 1D scanline from the green chan-

nel. We also report the running time T (in seconds) and the final

objective function value F (defined in Equation 2) which includes

the L0 regularization.

meshes [8, 29]. Local filters are popular given their sim-

plicity and effectiveness in smoothing noise while preserv-

ing edges, however, they do require the tuning of the filter’s

local support size. In addition, as discussed in [7], it can

often be difficult to use local filters to achieve progressive

coarsening.

L0 gradient minimization falls into the category of global

filters that impose a constraint on the entire image. Most

global filters are realized in an optimization framework.

One of the best known global methods is the work by Rudin

et al. [17] and subsequent variations (e.g. [5, 23, 25]) that

introduced the total variation (TV) minimization which es-

sentially imposes an L1 gradient minimization. Another ef-

fective global filter is the weighted-least-square filter [7, 13]

that solves an L2 objective function defined over the entire

image, using image affinity based on local image gradients.
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Recently, the L0 gradient minimization was used by Xu

et al. [24] for the task of image smoothing. As previously

mentioned, this approach aims to limit the number of gra-

dient transitions in the output image. However, in terms

of computational complexity, minimizing the L0 norm is

NP-hard [14]. As such, approximation strategies must be

used. Xu et al. [24] split their optimization function into two

subproblems by introducing auxiliary variables and solved

them by an L0-L2 iteration framework. A parameter κ was

used to balance the influence of the L0 norm on the final

filtered signal. A smaller κ weights the L0 regularization

more, but at the cost of a longer running time. Figure 1

shows an example, where F represents the final optimiza-

tion energy and T is the time in seconds. Cheng et al. [3]

extended this work to propose a better approximation algo-

rithm based on a fused-coordinate descent framework (as

shown in Figure 1-d). However, their method is also slow

to converge, often needing 700− 1000 iterations. Storath et

al. [19] proposed an optimization method based on dynamic

programming and alternating direction method of multipli-

ers. Their approach obtains a good approximation of the L0,

but requires a significantly large running time (as shown in

Figure 1-e). Shen et al. [18] defined a different optimization

function that changed the L2 norm term in the optimization

function into an L1 norm. As with local filters, the L0 gradi-

ent minimization has been extended beyond images to work

with 3D meshes (e.g. He et al. [12], Cheng et al. [3]).

Contribution We present a method for L0 gradient mini-

mization that is fast and is able to approximate the L0 norm

effectively. Our method uses a descent strategy based on

region fusing. We show that at each minimization step, the

objective function will decrease monotonically. This allows

our method to converge quickly. Moreover, our method

can be applied to arbitrary graphs such as image and mesh

topologies. We detail our algorithm and demonstrate its ef-

fectiveness on a number of experiments showing that it pro-

vides a good approximation of the L0 norm and is signifi-

cant faster than prior methods.

The remainder of paper is organized as follows. Sec-

tion 2 overviews the L0 gradient minimization framework

and its application to different graph topologies. Section 3

describes our descent and fusion approach for approximat-

ing L0 gradient minimization. Section 4 evaluates the per-

formance of our method against existing L0 minimization

approaches. Section 5 shows the effectiveness of our ap-

proach on a number of applications. The work is concluded

in Section 6.

2. L0 Gradient Minimization

Here we describe L0 gradient minimization for a general

input signal. Let I be the original signal and S represent the

filtered output. The gradient of the output S is denoted by

∇S. The objective function of the L0 gradient minimization

is formulated as follows:

F = min
S
||S − I||2 + λ||∇S||0, (1)

where || · || denotes the L2 norm, || · ||0 denotes L0 norm,

and λ is the parameter to control the level of sparseness in

the final signal S. A larger λ produces a coarser result with

less gradient.

Equation 1 can be rewritten as follows:

F = min
S

M
∑

i=1



||Si − Ii||
2 + λ/2

∑

j∈Ni

||Si − Sj ||0



, (2)

where M is the length of the signal and Ni is the neigh-

boring set of the ith element. Here, λ is divided by 2 since

the neighboring relationship between Si and Sj is counted

twice. The neighboring set Ni is defined for each case (e.g.

1D signal, 2D images, or 3D mesh models) as follows:

Ni =







{i− 1, i+ 1} 1D

{four-connected pixels} 2D

{all neighbor faces of the ith face} 3D

. (3)

3. Our Region Fusion Minimization

Our goal is to minimize the objective function introduced

in Equation 2. Our method uses a fusion technique that ex-

amines neighboring regions in the signal that have nearly

similar values and decides whether to fuse them to have

the same value. By combining two regions, we create a

larger single region, but also remove the gradients between

the regions. The work by Cheng et al. [3] used a some-

what similar method termed the fused-coordinate descent.

Their work, however, used a more complicated optimiza-

tion mechanism that separated the fusion step from the co-

ordinate descent step in a way that did not guarantee the ob-

jective function to monotonically decrease during the fusion

step (see accompanying supplemental material for more de-

tails). Their method also required a longer running time.

In contrast, our approach combines the fusion and descent

into a single step that guarantees a decrease of the objective

function and allows our method to converge quickly. Our

optimization approach is detailed in the following.

3.1. Optimization

As discussed in Section 1, the inclusion of the L0 norm

in the objective function makes it NP-hard. We approximate

this objective function by considering each pair of neighbor-

ing elements in the graph one at a time, instead of the entire

signal at once. Our descent optimization works as follows.

We first assign the output signal S to be the same as the

input signal I . Our algorithm then loops through all the

signal elements. At each step, we consider two neighboring

elements i and j. The amount these two elements contribute
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to the objective function F in Equation 2 can be expressed

as follows:

f = min
Si,Sj

||Si − Ii||
2 + ||Sj − Ij ||

2 + λ||Si − Sj ||0. (4)

Our goal here is to find the best Si and Sj that minimize

the sub-function f . To do this, we divide the problem into

two cases: Si 6= Sj , and Si = Sj to eliminate the L0 term

||Si − Sj ||0 in Equation 4.

• Case Si 6= Sj: The L0 term ||Si −Sj ||0 is equal to 1
and the function f in Equation 4 becomes:

f = min
Si,Sj

||Si − Ii||
2 + ||Sj − Ij ||

2 + λ. (5)

In this case, we have a trivial solution as follows:

{

Si = Ii, Sj = Ij
f = λ

. (6)

• Case Si = Sj: The L0 term ||Si −Sj ||0 is equal to 0
and the function f in Equation 4 becomes:

f = min
Si

||Si − Ii||
2 + ||Si − Ij ||

2. (7)

Equation 7 is a quadratic equation that requires only

one variable Si to be solved. By using the first deriva-

tive, its solution can be easily obtained as follows:

Si = (Ii + Ij)/2. Therefore, the solution for this case

is:
{

Si = Sj = (Ii + Ij)/2
f = (Ii − Ij)

2/2
. (8)

Combining these two cases together, we have the solu-

tion for Equation 4 as follows:

{Si, Sj} =

{

{A,A} if ||Ii − Ij ||
2/2 ≤ λ

{Ii, Ij} otherwise
, (9)

where A = (Ii + Ij)/2.

We call Equation 9 the fusion criterion. Note that Equa-

tion 9 still holds true in the case of Ii = Ij . According to

this fusion criterion, we will decide whether to fuse these

two elements into one group or not.

Our overall approach is described in Algorithm 1. Ele-

ments in the signal (e.g. pixels in an image or faces on a

mesh) are denoted as Ii. Group (connected regions) of el-

ements with the same values will be denoted as Gi. The

number of elements in each group is denote as wi. The

number elements that connect group i and j is denote as

ci,j . To initialize the algorithm, each group Gi contains ex-

actly one element i. Therefore, the number of elements of

each group wi is equal to 1. We use Yi to store the mean

value of all elements in group Gi which is initialized to the

1 1 1 1 2 2 

1 1 1 2 2 2 

1 1 1 2 2 2 

3 3 2 2 2 4 

3 3 3 4 4 4 

3 3 3 3 4 4 

1 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 

3 3 1 1 1 4 

3 3 3 4 4 4 

3 3 3 3 4 4 

Fuse �ʹ  
into �ͳ 

(a) (b) 

c1,2 = c2,1 = 5 c1,3 = c3,1 = 2 

c2,3 = c3,2 = 2 c2,4 = c4,2 = 4 

c3,4 = c4,3 = 3 

c1,3 = c3,1 = 4 c1,4 = c4,1 = 4 

c3,4 = c4,3 = 3 

Figure 2. This figure shows an example of the connection num-

bers for a 2D image. (a) shows the initial configuration with four

groups of pixels, while (b) shows the configuration after fusing

group G2 into G1. The numbers below each image show the corre-

sponding connection numbers for each pair of neighboring groups.

original signal Ii. All neighboring groups Ni are initial-

ized using Equation 3. We also define the number of initial

connections between two neighboring groups as follows:

ci,j =

{

1 if j ∈ Ni

0 otherwise
. (10)

The matrix that represents the connection numbers c is

very large, but sparse, since each element has only a few

neighbors. Therefore, we can use a sparse matrix represen-

tation storing only non-zero values to save memory. Note

that the connection number is equivalent to the number of

gradients between two neighboring groups. Figure 2-(a)

shows an example of group neighbors and the connection

numbers for a 2D image. All pixels that belong to the same

group have the same numerical value, e.g. G1 has 10 el-

ements in Figure 2-(a). Groups G1 and G2 have five el-

ements connections together (shown along the green line

with double arrows), therefore, their connection numbers

are c1,2 = c2,1 = 5. Note that these connections are

counted twice, once for ci,j and cj,i, and account for why λ
is divided by two in Equation 2.

Our algorithm loops through all groups of a current fil-

tered signal. For each group Gi, we consider its neighbors

Gj . Like prior methods, we use an auxiliary parameter β
(0 ≤ β ≤ λ) that increases for each iteration. Details to

this parameter are provided in Section 3.2. Factoring in the

auxiliary parameter, Equation 4 becomes as follows:

min
Si,Sj

wi||Si − Yi||
2 + wj ||Sj − Yj ||

2 + βci,j ||Si − Sj ||0.

(11)

Recall that Yi and Yj represent the mean signal values

for the groups Gi and Gj containing wi and wj elements

respectively. The above equation can be solved in the exact

same manner as described for Equation 4 as follows:
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Algorithm 1 Region Fusion Minimization for L0

Input: signal I of length M , the level of spareness λ
1: Gi ← {i}, Yi ← Ii, wi ← 1
2: Initialize Ni as Equation 3

3: Initialize ci,j as Equation 10

4: β ← 0, iter ← 0, P ←M
5: repeat

6: i← 1
7: while i ≤ P do

8: for all j ∈ Ni do

9: if wiwj ||Yi − Yj ||
2 ≤ βci,j(wi + wj) then

10: Gi ← Gi ∪Gj

11: Yi ← (wiYi + wjYj)/(wi + wj)
12: wi ← wi + wj

13: Remove j in Ni and delete ci,j
14: for all k ∈ Nj \ {i} do

15: if k ∈ Ni then

16: ci,k ← ci,k + cj,k
17: ck,i ← ci,k + cj,k
18: else

19: Ni ← Ni ∪ {k}
20: Nk ← Nk ∪ {i}
21: ci,k ← cj,k
22: ck,i ← cj,k
23: end if

24: Remove j in Nk and delete ck,j
25: end for

26: Delete Gj , Nj , wj

27: P ← P − 1, i← i+ 1
28: end if

29: end for

30: end while

31: iter ← iter + 1
32: β ← g(iter,K, λ) ⊲ Defined in Equation 13

33: until β > λ
34:

35: for i = 1→ P do ⊲ Reconstruct the output signal

36: for all j ∈ Gi do

37: Sj ← Yi

38: end for

39: end for

Output: filtered signal S of length M

{Si, Sj} =

{

{B,B} if wiwj ||Yi − Yj ||
2 ≤ βci,j(wi + wj)

{Yi, Yj} otherwise

(12)

where B = (wiYi + wjYj)/(wi + wj) is the weighted av-

erage of the two groups Gi and Gj .

The criterion in Equation 12 is used to decide whether to

fuse the group Gj into the group Gi or not. Note that chang-

ing the values of groups Gi and Gj can affect to the magni-
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Figure 3. This plot shows the value of the objective function in

Equation 2 for each iteration. The input signal is the image shown

in Figure 1. The objective function monotonically decreases at

each iteration.

tudes of gradients with their other neighbors but it does not

create any new non-zero gradients. Therefore, this will not

affect the other terms in Equation 2. In addition, β ≤ λ,

if β satisfies Equation 12, then λ does too. Therefore, the

total objective function F in Equation 2 will decrease by

λci,j − wiwj ||Yi − Yj ||
2/(wi + wj) if we preform the fu-

sion step, or will remain unchanged otherwise. As a result,

our fusion-based method acts as a descent strategy to either

lower the objective function or remain the same.

If these groups are fused, all elements in Gj are joined

into Gi, then the mean value Yi and the element number

wi are updated. Next, all the neighbors of Gj are inserted

into Ni and the corresponding connection numbers are up-

dated. After each fusion step, all the information of the

fused group Gj is deleted and the number of remaining

groups is reduced by one. Figure 2-(b) shows an exam-

ple of how the connection numbers are updated during the

fusion step. Here, group G2 is fused into G1. The connec-

tion numbers c1,3, c3,1 (between G1 and G3) and c1,4, c4,1
(between G1 and G4) are updated. All connection numbers

related to G2 are deleted.

Our algorithm is repeated until the auxiliary parameter β
reaches the regular parameter λ. At that time, the remaining

groups contain all elements in the signal. Finally, the out-

put value for each element Sj will be assigned by the mean

value of the group that it belongs to.

Figure 3 shows the value of the objective function, F ,

in Equation 2 with each iteration. For this example, the in-

put signal is the image shown in Figure 1. The objective

function monotonically decreases with each iteration, con-

verging after approximately 50 iterations.

3.2. Auxiliary Parameter β

Like the other prior works [3, 24], we use an auxiliary

parameter β which gradually increases from 0 to λ at each

iteration. This parameter is used to make pairs of neighbor-

ing groups that have small differences in their mean values

fuse together. We experimented with three different strate-

gies to increase β: linear, non-linear, and multiplicative, de-

211



10 20 30 40 50
1.6

1.7

1.8

1.9
x 10

4

10 20 30 40 50
0

1

2

3

4

O
b

je
ct

iv
e

 f
u

n
ct

io
n

 

Maximum iteration number Maximum iteration number 

R
u

n
n

in
g

 t
im

e
 (

s)
 

linear nonlinear multiplicative 

Figure 4. This figure shows the results with different values of

the maximum iteration number (e.g. 10, 20, 30, 40, 50) on three

strategies for increasing β, i.e. linear, nonlinear, and multiplica-

tive. The left shows the values for objective function, F , while the

corresponding running-time are shown in the right.

fined as follows:

g(iter,K, λ) =







(iter/K)λ linear

(iter/K)γλ nonlinear

α(iter−K)λ multiplicative

. (13)

Figure 4 shows the results with different values for the

maximum iteration number K (e.g. 10, 20, 30, 40, 50). The

left plot shows the values for objective function while the

corresponding run-time is shown in the right plot. Here, we

use γ = 2.2 for the nonlinear increase function and α = 1.5
for multiplication strategy. As shown in Figure 4, the multi-

plication strategy is the worst in terms of the objective func-

tion value and running time. The linear strategy is faster

than the nonlinear approach, but has a slightly larger value

for the objective function. Based on this, we choose the

nonlinear strategy for our L0 gradient minimization, since

it gives us the best approximation to the L0 norm.

4. Experiments

In this section, we compare our method with the three

other L0 gradient minimizations proposed by Xu et al. [24],

Cheng et al. [3], and Storath et al. [19]. The comparison ex-

amines the final objective function value F defined in Equa-

tion 2 and running-time T . All the experiments are run on

a dual core 3.10 GHz PC with 16.0 GB RAM. Our method

is implemented in C++. For processing an image sized ap-

proximately 600 × 400, our approach takes roughly 1 sec-

ond. The other methods [3, 19, 24] are implemented in C++,

Java, and Matlab by their authors. Xu et al.’s method [24]

has a parameter κ to control the amount of L0 minimiza-

tion. A smaller κ gives results with better L0 minimization,

but requires more iterations. In our experiments, we report

Xu et al.’s results for both κ = 2 and κ = 1.05.

Figure 5 shows the results of each method. As can be

seen, the objective function values, F , obtained from Xu et

al.’s method are notably large. This is because of L2 step

in their approximation that smooths the signal. As a re-

sult, there are still small gradients left in the output signal

(shown in the plot in second row). Our results are very close

to Storath et al. [19] that are the best in terms of minimizing

the objective function, however, our running-time is signif-

icantly faster.

5. Applications

In this section, we show our approach applied to several

applications involving images and 3D meshes. In particu-

lar, we demonstrate: image denoising, content-based color

quantization, clip art compression artifact removal, and 3D

mesh denoising. Additional results for each application are

also included in the supplemental material.

5.1. Image Denoising

The L0 gradient minimization can approximate the input

signal by a series of piecewise constant functions. There-

fore, it can be used to denoise the 2D images that have

sparse colors with sharp edges.

In this experiment, we compare our method against two

methods: the total variation method proposed by Dahl et

al. [5], and L0 gradient proposed by Storath et al. [19].

Figure 6 shows two examples of image denoising. Storath

et al. [19] obtain the best results in terms of signal-to-

noise-ratio (SNR). Our quantitative results are very close

to Storath et al.’s results, but again, our running-time is sig-

nificantly faster.

5.2. Content-Based Color Quantization

Content-based color quantization is used to reduce the

number of colors in an image. This is useful for tasks such

as image segmentation or image retrieval since it reduces

the color complexity of an imaged scene.

Figure 7 shows an example of content-based color quan-

tization. Figure 7-(a) shows the original input image that

over 100, 000 different colors (number of colors denote as

P ). Figure 7-(b)-(e) show our results with different values

for the level of spareness λ. Our method reduces the num-

ber of colors in image but still keep the overall image struc-

ture. Figure 8 shows some examples of content-based color

quantization on images. As can be seen, our approach can

obtain results with the least number of remaining colors in

the fastest time.

5.3. Clip Art Compression Artifact Removal

Using JPEG compression on clip art images often create

artifacts as shown in Figure 9-(a). Most of clip art images

have sparse colors with sharp edges and artifacts are most

noticeable near the sharp edges. Prior works [3, 22, 24]

showed that using local filters can reduce these artifacts, but

they also tend to blur the edges. The L0 gradient minimiza-

tion is well-suited to remove these artifacts.

In this experiment, we compare our method with Wang

et al. [22], Xu et al. [24], and Cheng et al. [3]. The work by
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(a) Input (b) Xu et al. [24] ( = ʹ) (d) Cheng et al. [3]  (f) Ours (c) Xu et al. [24] ( = ͳ.Ͳ5) 

T = 2.73, F = 58607 T = 35.89, F = 26092 T = 16.67, F = 11928  T = 1.49, F = 11924 

T = 2.83, F = 44198 T = 35.85, F = 21239 T = 11.39, F = 7752 T = 1.03, F = 7723 

(e) Storath et al. [19] 

T = 27.03, F = 11055 

T = 23.92, F = 7179 

Figure 5. This figure shows the details of the experiment that was already shown in Fig. 1 in Sec. 1. One more result for Xu et al.’s method

with κ = 2 is added in here. (a) Input images. (b)-(c) Results of Xu et al. [24] with different κ = 2, and κ = 1.05 (λ = 0.05). (d) Results

of Cheng et al. [3] (λ = 0.2). (e) Results of Storath et al. [19] (λ = 0.2). (f) Our results (λ = 0.2). The plot in the second row shows a 1D

scanline from the green channel. We also report the running time (in seconds) and the objective function value defined in Equation 2.

(a)  Ground truth  (b) Noisy input (c)  Dahl et al. [5]  (d) Storath et al. [19] (e)  Our  

SNR = 13.05 T = 2.97, SNR = 17.10 T = 0.42, SNR = 20.80 T = 5.16, SNR = 22.38 

SNR = 12.27 T = 3.04, SNR = 14.70  T = 0.93, SNR = 16.08 T = 11.52, SNR = 16.17 

Figure 6. This figure shows two examples of image denosing. (a) Ground truth images. (b) Noisy input images. (c) Results of total variation

method proposed by Dahl et al. [5]. (d) Results of Storath et al. [19]. (e) Our results. We also report the running time (in seconds) and the

signal-to-noise-ratio SNR (in dB).

(a) Input (P = 132752) (b)  = Ͳ.Ͳ5 (P = 4580) (c)  = Ͳ.ͳ (P = 964) (d)  = Ͳ.ʹ (P = 219) (e)  = Ͳ.Ͷ (P = 67) 

Figure 7. This figure shows an example of content-based color quantization. (a) The original input image with 132752 different colors.

(b)-(e) Our results with different values for λ. The numbers reported in parenthesis are the remaining colors P .
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(a) Input (e) Storath et al. [19] 

T = 4.60, P = 46 

(d) Cheng et al. [3] 

T = 14.70, P = 115 

T = 7.83, P = 139 

T = 32.24, P = 212 

T = 10.77, P = 1227 

T = 35.45, P = 6351 

(c) Xu et al. [24] ( = ͳ.Ͳ5) 

T = 0.78, P = 10821 

T = 3.40, P = 47611 

(b) Xu et al. [24] ( = ʹ) 

P = 130595 

P = 41290 

(f) Ours 

T = 0.44, P = 38 

T = 1.37, P = 95 

Figure 8. This figure shows several examples of content-based color quantization on images. This is useful for computer vision tasks such

as image segmentation or image retrieval. (a) Input images. (b)-(c) Results of Xu et al.’s method with different κ = 2 and κ = 1.05 . (d)

Result of Cheng et al.’s method. (e) Results of Storath et al.’s method. (f) Our results. We also report the running time T (in seconds) and

the number of remaining colors P .

Wang et al. [22] is explicitly designed for artifact reduction

for JPEG compressed clip art. Figure 9 shows two exam-

ples of artifact reduction. Our method obtains comparable

results to prior methods but with the fastest running time.

5.4. Mesh Denoising

Our approach can also be applied to 3D mesh topolo-

gies. We modified Algorithm 1 to use the two-step frame-

work proposed by Sun et al. [20]. In step one, we use our

L0 gradient minimization to filter the noisy face normals.

In step two, the vertex coordinates are reconstructed from

the filtered face normals using the iterative updating vertex

framework (see [20] for more details).

The nature of the L0 gradient minimization will approx-

imate the input signal by a series of piecewise constant

functions. Therefore, it can be used to denoise the 3D

meshes that have sharp transitions between their faces. In

this experiment, we test our approach on several sharp-edge

meshes and compare our results with the results of three

methods: Sun et al. [20], He et al. [12], and Cheng et al. [3].

Sun et al.’s method is a local filtering method based on the

weighted averaging of neighboring face normals. He et al.’s

method is an extension of Xu et al.’s method [24] to work

on 3D meshes. Figure 10 shows two examples of denoising

on 3D mesh models. Here, the noisy 3D models are syn-

thesized from the ground truth ones. The results show that

our approach produces the best results and with the fastest

running time.

6. Concluding Remarks

We have described a fusion-based descent method for L0

gradient minimization. The nature of L0 gradient minimiza-

tion will approximate the input signal by a series of piece-

wise constant functions. Therefore, applying L0 minimiza-

tion to smooth signals will create artifacts that may be un-

Input Xu et al. [24] Ours 

Figure 11. This figure shows the drawback of strong L0 gradient

minimization for images. For the task of image smoothing, the

method by Xu et al. [24] may be more appropriate, as our method

will introduce more noticeable color quantization into the result.

Noisy input Ground truth Ours He et al. [12] 

Figure 12. This figure shows the drawback of strong L0 gradi-

ent minimization for 3D meshes. If the original input has smooth

surfaces, these will be quantized to sharp edges, which could be

undesirable for certain tasks.

desirable. For example, Figure 11 shows the an example for

the task of image smoothing. The L0-L2 iterative strategy

proposed by Xu et al. [24] is arguably more appropriate than

our approach for this task. Similarly, for the mesh models

with smooth surfaces, our method creates a sharp mesh in-

stead of a smooth one. He et al.’s method [12] based on

Xu et al.’s strategy is more suitable when smooth regions

are present (see Figure 12). However, for tasks for which

L0 gradient minimization is needed, the proposed method

in this paper offers a fast and effective approach that can be

applied to both 2D images and 3D mesh topologies.
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(a) Input (b) Ground truth (c) Wang et al. [22] (d) Xu et al. [24] (e) Cheng et al. [3] (f) Ours 

T = 0.45 T= 0.82 T = 2.01 T= 0.59 

T = 0.87 T= 1.22 T = 6.23 T= 1.51 

Figure 9. This figure shows two examples of JPEG compression artifact removal on clip art images. The first and third rows show the

complete images, while the second and fourth rows shows the corresponding close-ups in these images. (a) Input JPEG compression

artifact images. (b) The ground truth images without compression. (c) Results of Wang et al. [22]. (d) Results of Xu et al. [24] (λ = 0.025,

κ = 1.5 for the first image, and λ = 0.01, κ = 1.5 for the second image). (e) Results of Cheng et al. [3] (λ = 0.26 for the first image, and

λ = 0.08 for the second image). (f) Our results (λ = 0.26 for the first image, and λ = 0.08 for the second image).

(b) Ground truth (a) Noisy input (e) Cheng et al. [3] (f) Ours (c) Sun et al. [20] (d) He et al. [12] 

T = 0.39 

T = 0.39 

T = 1.28 

T = 0.77 

T = 2.42 T = 17.55 

T = 4.35 T = 1.04 

Figure 10. This figure shows two examples of denoising 3D mesh models. The first model contains 24578 vertices and 49152 faces, while

the second one contains 10242 vertices and 20480 faces. (a) Noisy 3D mesh models. (b) The ground truth meshes. (c) Results of Sun et

al. [20] (τ = 0.55 for the first model, and τ = 0.4 for the second model). (d) Results of Cheng et al. [3] (λ = 0.5 for the first model, and

λ = 0.04 for the second model). (e) Our results (λ = 0.5 for the first model, and λ = 0.04 for the second model). We also report the

running-time T (in seconds) for each method.
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