
Cutting Edge: Soft Correspondences in Multimodal Scene Parsing

Sarah Taghavi Namin1,2 Mohammad Najafi1,2 Mathieu Salzmann2,3 Lars Petersson1,2

1Australian National University (ANU) 2NICTA∗ 3CVLab, EPFL, Switzerland

{sarah.namin, mohammad.najafi, lars.petersson}@nicta.com.au mathieu.salzmann@epfl.ch

Abstract

Exploiting multiple modalities for semantic scene pars-

ing has been shown to improve accuracy over the single-

modality scenario. Existing methods, however, assume that

corresponding regions in two modalities have the same la-

bel. In this paper, we address the problem of data misalign-

ment and label inconsistencies, e.g., due to moving objects,

in semantic labeling, which violate the assumption of exist-

ing techniques. To this end, we formulate multimodal se-

mantic labeling as inference in a CRF, and introduce latent

nodes to explicitly model inconsistencies between two do-

mains. These latent nodes allow us not only to leverage

information from both domains to improve their labeling,

but also to cut the edges between inconsistent regions. To

eliminate the need for hand tuning the parameters of our

model, we propose to learn intra-domain and inter-domain

potential functions from training data. We demonstrate the

benefits of our approach on two publicly available datasets

containing 2D imagery and 3D point clouds. Thanks to our

latent nodes and our learning strategy, our method outper-

forms the state-of-the-art in both cases.

1. Introduction

Multi-modal scene analysis aims at leveraging comple-

mentary information captured by multiple sensing modal-

ities, such as 3D LIDAR and 2D imagery. In the con-

text of semantic labeling, where the goal is to assign a

class label to the elements of each modality, such as im-

age pixels and 3D points, this has been shown to consis-

tently yield increased accuracy over relying on a single do-

main [7, 25, 5, 2, 15, 17].

Nevertheless, existing methods suffer from an important

limitation: they typically assume that corresponding regions

in two modalities always have the same label. This assump-

tion is encoded either explicitly by having a single label

variable for all modalities [7, 5, 2], or implicitly by penal-

izing label differences between the domains [25, 15, 17].
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Figure 1. Top: Existing approaches typically directly connect cor-

responding regions in different modalities and penalize these re-

gions for taking different labels, thus producing wrong labeling in

the presence of data misalignment, or other causes of label dis-

agreement. Bottom: Here, we introduce latent nodes that are

placed between each connected pair of 2D and 3D nodes in the

graph and explicitly let us account for such inconsistencies, and

potentially cut edges between the different domains. Blue spheres

denote one domain (e.g., 3D) and orange squares another one (e.g.,

2D). Our latent nodes are represented as green triangles.

While this assumption may seem reasonable, it is often vi-

olated in realistic scenarios. Indeed, in practice, the differ-

ent modalities are typically not perfectly aligned/registered.

Furthermore, in dynamic scenes, moving objects may not

easily be captured by some sensors, such as 3D LIDAR,

due to their lower acquisition speed. To give a concrete ex-

ample, in the NICTA/2D3D dataset employed in our exper-

iments, 17% of the connections between the two modalities

correspond to inconsistent labels. As a consequence, since

they fail to model these inconsistencies, existing methods

will typically produce wrong labels in at least one modality.

In this paper, we introduce an approach to multimodal

semantic labeling that explicitly accounts for the incon-

sistencies of the domains. To this end, as illustrated in

Fig. 1, we formulate multimodal scene parsing as inference

in a Conditional Random Field (CRF), and introduce latent

nodes to handle conflicting evidence between the different

domains. The benefit of these latent nodes is twofold: First,
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they can leverage information from both domains to im-

prove their respective labeling. Second, and maybe more

importantly, these nodes allow us to cut the edges between

regions in different modalities when the local evidence of

the domains is inconsistent. As a result, our approach lets

us correctly assign different labels to the modalities.

More specifically, each connection between two domains

is encoded by a latent node, which can take either a label

from the same set as the regular nodes, or an additional la-

bel that explicitly represents a broken link. We then model

the connections between the latent nodes and the different

modalities with potential functions that allow us to handle

inconsistencies. While many such connections exist, they

come at little cost, because the only cases of interest are

when the latent node and the regular node have the same

label, and when the latent node indicates a broken edge. By

contrast, having direct links between two modalities would

require to consider potential functions for each combina-

tion of two labels (i.e., for L labels, L2 vs 2L in our model).

Furthermore, we also model intra-domain connections with

potential functions that encode some notion of label com-

patibility and thus let us model more accurately the rela-

tionships between different class labels. Altogether, these

connections allow the information to be transferred across

the domains, thus encoding the fact that some classes may

be easier to recognize in one modality than in the others.

Since such general potential functions cannot realistically

be manually tuned, we propose to learn them from train-

ing data. To this end, we make use of the truncated tree-

reweighted (TRW) learning algorithm of [4]. The resulting

method therefore incorporates local evidence from each do-

main, intra-domain relationships and inter-domain compat-

ibility via our latent nodes.

We demonstrate the effectiveness of our approach on

two publicly available 2D-3D scene analysis datasets: The

NICTA/2D3D dataset [17] and the CMU/VMR dataset [15].

Our experiments evidence the benefits of our latent nodes

and of learning potentials for multimodal scene parsing. In

particular, our approach outperforms the state-of-the-art on

both datasets.

2. Related Work

Semantic scene analysis has been an important problem

in computer vision for the past decade. In particular, scene

parsing from 2D imagery has been intensely studied, yield-

ing increasingly accurate results [20, 23, 11, 6, 24, 8]. With

the advent of 3D depth sensors, such as laser range sen-

sors (LIDAR) and RGB-D cameras (e.g., Kinect), it seems

natural to try and leverage these additional sources of in-

formation to reach even better levels of scene understand-

ing [16, 1, 19, 13].

As a matter of fact, combining 2D imagery and 3D point

clouds for semantic labeling has been the focus of several

recent works [7, 5, 25, 2, 15, 17]. In particular, [7, 5] defined

models on the variables corresponding to only one modality

and augmented them with information extracted from the

other domain. This approach, however, assumes that the

same portions of the scene are observed in both modalities,

which is virtually never the case in practice. By contrast, the

model of [2] incorporates variables for the two domains, but

still relies on a single variable for the corresponding regions

in both modalities. Therefore, this model still assumes that

the modalities are perfectly aligned. This, unfortunately,

can typically not be achieved in practice, and the above-

mentioned techniques will thus misclassify some regions in

at least one of the domains.

Some approaches have nonetheless proposed to relax this

assumption by having separate variables for the two modal-

ities, even for corresponding regions. In this context, [15]

designed a hierarchical labeling approach that alternatively

performs classification in each domain. However, since the

classification result of one modality is then transferred to

help labeling in the other domain (depending on the over-

lap area of the projection of the 3D segment onto the 2D

region), this method implicitly encodes the assumption that

corresponding regions should have the same label. In [25],

a framework to train a joint 2D-3D graph from unlabeled

data was proposed. As in [15], this framework transfers the

labels from one modality to the other, thus implicitly assum-

ing that corresponding 2D and 3D nodes belong to the same

class. Similarly, in [17], a multimodal graphical model

with separate nodes for each modality was introduced. This

method, however, relied on a Potts model as pairwise po-

tentials for both intra-domain and inter-domain edges. As a

consequence, it also implicitly attempts to assign the same

label to the corresponding nodes in each modality.

Here, by contrast, we propose to introduce latent nodes

in a CRF to explicitly model the inconsistencies between

two modalities. Furthermore, our approach lets us learn the

intra-domain and inter-domain relationships from training

data. Learning the parameters of CRFs for semantic label-

ing has been tackled by a number of works, such as [22, 10]

with mean-field inference, [12] with TRW, and [18] for

loopy belief propagation. Of more specific interest to us

is the problem of learning label compatibility, as studied

by [10] for 2D images and by [9] for 3D data. Here, we

consider label compatibility within and across domains. To

the best of our knowledge, this is the first time such a learn-

ing approach is employed for multimodal scene parsing.

3. A Multimodal CRF with Latent Nodes

We now introduce our approach to multimodal semantic

labeling in the presence of inconsistencies across the do-

mains. We focus the discussion on two modalities, 2D im-

agery and 3D point clouds, which are typically the most

popular ones for scene parsing. Note, however, that our
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approach generalizes to other modalities, such as hyper-

spectral or infrared data.

As mentioned above, we formulate multimodal semantic

labeling as inference in a CRF. Our CRF contains separate

nodes for 2D regions (i.e., superpixels) and 3D regions (i.e.,

3D segments). More details about these regions are pro-

vided in Section 5. In addition to these nodes, we propose

to introduce latent nodes that allow us to account for incon-

sistencies between the different domains. To this end, and

as illustrated in Fig. 1, we incorporate one such latent node

between each pair of corresponding 2D and 3D nodes. This

results in edges between either a 2D node and a latent node,

or a 3D node and a latent node, but no edges directly con-

necting a 2D node to a 3D node. Our latent nodes can then

either take a label from the same space as the 2D and 3D

nodes, or take another label indicating that the link between

the two modalities should be cut. Figs. 2 and 3 illustrate

how our latent nodes operate in the case of data misalign-

ment and moving objects, respectively.

Formally, let y2D = {y2D
i j
} , 1 ≤ i ≤ F , 1 ≤ j ≤ Ni be

the set of variables encoding the labels of the 2D nodes in

F frames, with frame i containing Ni 2D regions. Similarly,

let y3D = {y3D
i
} , 1 ≤ i ≤ M be the set of variables encod-

ing the label of M 3D nodes. Each of these variables, either

2D or 3D, can take a label in the set L = {1, · · · , L}. Fur-

thermore, let T be the number of pairs of corresponding 2D

and 3D nodes, found in the manner described in Section 5.

We then denote by y∆ = {y∆t } , 1 ≤ t ≤ T the latent nodes

associated with these correspondences. These variables can

be assigned a label from the space L′ = {0, 1, · · · , L}.

Given features extracted from the 2D and 3D regions,

x2D = {x2D
i j
} and x3D = {x3D

i
}, respectively, the joint distri-

bution of the 2D, 3D and latent nodes conditioned on the

features can be expressed as

P(y2D, y3D, y∆|x2D, x3D) =
1

Z
· (1)

exp
(

−

F
∑

i=1

Ni
∑

j=1

Φ2D
i j −

M
∑

i=1

Φ3D
i −

T
∑

t=1

Φ∆t −

F
∑

i=1

∑

( j,k)∈E2D
i

Ψ2D
i jk

−
∑

(i, j)∈E3D

Ψ3D
i j −

F
∑

i=1

∑

( j,t)∈E2D−∆

Ψ2D−∆
i jt −

∑

(i,t)∈E3D−∆

Ψ3D−∆
it

)

,

where Z is the partition function, and where Φ2D, Φ3D,

and Φ∆ denote the unary potentials of the 2D, 3D and latent

nodes, respectively. Ψ2D, Ψ3D, Ψ2D−∆ and Ψ3D−∆ denote

pairwise potentials defined over the set of edges E2D, E3D,

E2D−∆ and E3D−∆, respectively. To obtain a labeling, we per-

form inference in our CRF by making use of the truncated

TRW algorithm of [4]. In the remainder of this section, we

discuss the different potentials of Eq. 1 in details.

Unary potentials:

The unary potential of a node indicates the cost of assigning

Pole Sky
C

3D                Latent                  2D

Pole Pole
Pole

3D                Latent                  2D

Figure 2. Latent nodes for data misalignment. Left: The pro-

jection of pole from 3D to 2D covers some regions of sky, which

creates a connection between the corresponding 3D and 2D nodes.

Having access to both 3D and 2D features, the latent node should

detect the mismatch and cut this connection thus allowing the

nodes to take different labels. Right: In this case, the projection

is accurate. Therefore, the 2D and 3D features are both coherent

with the class label pole, and thus the latent node should keep the

edge active and predict the same class.

each label to the node, and is typically computed from local

evidence. For the 2D and 3D nodes, we define the cost of

assigning label l to the corresponding variables as

Φ2D
i j (y2D

i j = l) = A2D
l x2D

i j , (2)

and
Φ3D

i (y3D
i = l) = A3D

l x3D
j , (3)

respectively, where A2D ∈ RL×D2D and A3D ∈ RL×D3D are the

parameter matrices for the 2D and 3D unary potentials, with

A2D
l

the row of A2D corresponding to label l. Since they di-

rectly act on the local features x2D
i j

and x3D
i

, these matrices

encode how much each feature dimension should be relied

on to predict a specific label. Note that D2D and D3D refer

to the dimensions of the 2D and 3D feature vectors, respec-

tively.

Similarly, the unary potential for the latent nodes is de-

fined as

Φ∆t (y∆t = l) = A∆l x∆t , (4)

where A∆ is again a parameter matrix, which this time con-

tains L + 1 rows to represent the fact that a latent node can

take on an additional label to cut the connection between

a 2D and a 3D node. The feature vector of a latent node is

constructed by concatenating the features of the correspond-

ing 2D and 3D nodes, i.e., x∆t = [(x2D
i j

)T , (x3D
k

)T ]T . Having

access to both 2D and 3D features allows this unary to de-

tect mismatches in the 2D and 3D observations, and, in that

event, favor cutting the corresponding edge.

Pairwise potentials:

Pairwise potentials express the cost of all possible joint la-

bel assignments for two adjacent nodes in the graph. Here,

in contrast with existing techniques [17] that rely on the
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3D                Latent                  2D

Vehicle Vehicle
Vehicle
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Figure 3. Latent nodes for moving objects. Left: A vehicle can be observed in 2D, but was not present when the 3D laser sensor covered

this area. Therefore, the label of the 3D points is road instead of vehicle for 2D. By relying on both 2D and 3D features, the latent node

should predict that this connection must be cut. Middle: This represents the opposite scenario where the image depicts an empty road,

while the 3D points were acquired when a vehicle was passing. Here again, the latent node should cut the edge, thus allowing the nodes to

take different labels. Right: In contrast, here, the 2D and 3D regions belong to the same class and thus have coherent features. The latent

node should therefore leverage this information to help predicting the correct class vehicle.

simple Potts model and are thus limited to simply encour-

aging the nodes to share the same labels, we define gen-

eral pairwise potentials that let us encode sophisticated label

compatibilities. For the intra-domain edges, these potentials

are defined as

Ψ2D
i jk (y2D

i j = l, y2D
ik = m) = B2D

lm v2D
i jk , (5)

and

Ψ3D
jk (y3D

j = l, y3D
k = m) = B3D

lm v3D
jk , (6)

where B2D and B3D are parameter matrices with L2 rows

representing all possible combinations of two labels, and

B2D
lm

is the row of B2D corresponding to the combination of

label l with label m. In this case, as features v2D
i jk

and v3D
jk

, we

used the ℓ2-norm of the difference of a subset of the original

node features, which will be discussed in Section 5.

Similarly, the two pairwise potentials associated with the

latent nodes that connect the 2D and 3D domains are de-

fined as

Ψ2D−∆
i jt (y2D

i j = l, y∆t = m) = B2D−∆
lm v2D−∆

i jt , (7)

and
Ψ3D−∆

jt (y3D
j = l, y∆t = m) = B3D−∆

lm v3D−∆
jt , (8)

where the parameter matrices now have L × (L + 1) rows to

account for the extra label of the latent nodes, and where,

in practice, we set the feature vectors v2D−∆
i jt

and v3D−∆
jt

to a

single value of 1, thus resulting in L × (L + 1) parameters.

Note, however, that the effective number of parameters cor-

responding to these potentials is much smaller. The reason

is that the only cases of interest are when the latent node

and the regular node take the same label, and when the la-

tent node indicates a broken link. The cost of the other label

combinations should be heavily penalized since they never

occur in practice. This therefore truly results in 2L parame-

ters for each of these potentials.

4. Training our Multimodal Latent CRF

Our multimodal CRF contains many parameters, which

thus cannot be tuned manually. Here, we propose to learn

these parameters from training data. To this end, we make

use of the direct loss minimization method of [4].

More specifically, let {zi}, 1 ≤ i ≤ N be a set of N labeled

training examples, such that zi =
(

x2D
i

, x3D
i

, ỹ2D
i

, ỹ3D
i

, ỹ∆
i

)

,

where, with a slight abuse of notation compared to Sec-

tion 3, x2D
i

, resp. ỹ2D
i

, englobes the features, resp. ground-

truth labels, of all the nodes in the ith training sample, and

similarly for the other terms in zi. In practice, to obtain the

ground-truth labels of the latent nodes ỹ∆
i

, we simply check

if the ground-truth labels of the corresponding 2D and 3D

nodes agree, and set the label of the latent node to the same

label if they do, and to 0 otherwise.

Learning the parameters of our model is then achieved

by minimizing the empirical risk

r(Θ) =

N
∑

i=1

l(Θ, zi) (9)

w.r.t. Θ = {A2D, A3D, A∆, B2D, B3D, B2D−∆, B3D−∆}, where

l(Θ, zi) is a loss function.

Here, we use a marginal-based loss function, which mea-

sures how well the marginals obtained via inference in the

model match the ground-truth labels. In particular, we rely

on a loss function defined on the clique marginals [21]. This

can be expressed as l(Θ, zi) = −
∑

c log µ(zi,c;Θ) where c

sums over all the cliques in the CRF, i.e., all the inter-

domain and intra-domain pairwise cliques in our case, zi,c

denotes the variables of zi involved in a particular clique c,

Note that our nodes are latent in the sense that they do not correspond

to physical entities, not in the sense that we do not have access to their

ground-truth during training.
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and µ(zi,c;Θ) indicates the marginals of clique c obtained

by performing inference with parameters Θ.

We use the publicly available implementation of [4] with

truncated TRW as inference method. This method was

shown to converge to stable parameters in only a few it-

erations. In practice, we run a maximum of 5 iterations of

this algorithm.

5. Experiments

We evaluate our method on two publicly avail-

able 2D-3D multimodal datasets (NICTA/2D3D [17] and

CMU/VMR [15]) and compare it to the state-of-the-art al-

gorithms of [17] and [15]. In addition to these two base-

lines, we also provide the results of pairwise models with

learned potentials acting on a single domain, either 2D or

3D. We will refer to these models as Pairwise 2D (learned)

and Pairwise 3D (learned). Furthermore, to evidence the

effectiveness of our latent nodes, we also compare our ap-

proach to the same model as ours, but without latent nodes.

This model therefore relies on learned pairwise potentials

that directly connect corresponding 2D and 3D nodes (i.e.,

the same connections as in our model, but without going

via the latent nodes). These potentials have a similar form

as those in Eqs. 5, 6, 7 and 8, with a parameter matrix con-

taining L2 rows to encode all possible label combinations,

and with features obtained by concatenating a subset of the

2D and 3D features (details below). In our results, we refer

to this baseline as No Latent. Note that, while we treat this

model as a baseline, it has never been published in the litera-

ture, and therefore can, in some sense, also be considered as

a contribution of this paper. We followed the evaluation pro-

tocol of [17] and partitioned the data into 4 non-overlapping

folds. We then used three of the folds for training and the

remaining fold as test set. Below, we first provide some de-

tails regarding our features and potentials, and then discuss

our results.

5.1. Features and Potentials

3D nodes:

We extracted the following 3D shape features from the

point cloud data: Fast Point Feature Histogram descriptors,

eigenvalue descriptors, deviation from the vertical axis and

height. The 3D segments were obtained from these features

by first classifying them using an SVM and then performing

k-means clustering on the resulting classes. We then further

leveraged the SVM results and used the negative logarithm

of the multi-class SVM probabilities as features in our unary

potentials. The probabilities for a segment were obtained

by averaging over the points belonging to the segment. We

also used three eigenvalue descriptors and the vertical-axis

deviation as additional features.

2D nodes:

As 2D regions, we employed superpixels extracted by the

mean-shift algorithm [3]. As in the 3D case, we utilized

histogram of SIFT features [14], GLCM features and RGB

values to train an SVM classifier, and used the negative log-

arithm of the SVM probabilities as features in our unary

potentials. We augmented these features with six GLCM

features and three RGB features.

Latent nodes:

The features of the latent nodes were obtained by concate-

nating the features of their respective 2D and 3D nodes, de-

scribed above. Furthermore, we augmented these features

with the normalized overlap area of the projection of the

3D segment onto the 2D superpixel.

Edges:

For the intra-domain potentials, we employed the ℓ2-norm

of the difference of a subset of the local feature vectors

(RGB for 2D-2D edges and vertical-axis deviation for 3D-

3D edges) as pairwise features. The feature vectors of the

2D-∆ and 3D-∆ edges was set to a single value of 1. In

the case of the baseline model with no latent nodes, how-

ever, the feature vector of the 2D-3D edges was constructed

by concatenating the RGB values of the 2D node with the

eigenvalue features and the vertical-axis deviation of the 3D

node, as well as with the same normalized overlap area used

for the unary of the latent nodes. These features were se-

lected via an ablation study on a validation set. As evi-

denced by our results, they yield better accuracies than em-

ploying all of them, which causes overfitting. Note that the

2D-3D edges were obtained by projecting the 3D segments

onto the 2D superpixels and connecting the pairs of nodes

that have a significant projection overlap, i.e., intersection

over union more than 0.2).

5.2. Results on NICTA/2D3D

The NICTA/2D3D dataset contains 12 outdoor scenes

where each scene is described by a 3D point cloud block

together with 10-20 panoramic images. It comprises 14

classes (13 for 3D where sky was removed), which yields

the following sizes for the parameter matrices: A2D
[14×23]

,

A3D
[13×17]

, A∆
[15×41]

, B2D
[196×1]

, B3D
[169×1]

, B2D−∆
[210×1]

and B3D−∆
[195×1]

.

The baseline with no latent nodes involves a different pa-

rameter matrix of the form B2D−3D
[182×8]

and B2D−3D
[182×41]

.

Table 1 and Table 2 compare the results, as F1-scores,

of our approach and of the baselines on the 2D and 3D do-

mains, respectively. Note that no results for [15] are avail-

able on this dataset. The results in these tables evidence

the benefits of using latent nodes, especially on the narrow

classes that suffer more from misalignment. On average,

our approach clearly outperforms the baselines, and thus

achieves the state-of-the-art on this dataset. Furthermore,

note that the baseline that utilizes fewer features for the 2D-

3D edges is less likely to face overfitting and yields better

results.
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Real image 2D ground-truth 3D ground-truth 3D-2D projection 2D results [17] 3D results [17] Our 2D results Our 3D results

Grass Building Tree trunk Tree leaves Vehicle Road Pole Wire

Figure 4. Examples of how our latent nodes improve the labeling in practice. As shown in the 3D-2D projection, the data misalignment

and object motions have caused 3D points labeled as leaves to cover the pole (top) and 3D points labeled as road to project onto the vehicles

(bottom). As a consequence, with the method of [17] which encourages the modalities to have the same label, the pole was labeled as

leaves in 2D and the vehicle as road in 3D (indicated by a white arrow). By contrast, thanks to our latent nodes that can cut inconsistent

edges, our method produces the correct labels.

In Fig. 4, we illustrate the influence of our latent nodes

by two examples. As shown in the figure, cutting the edge

between the non-matching 2D and 3D nodes (which have

been connected because of misalignment), helps predicting

the correct class labels. Fig. 5 shows the results of our ap-

proach in one of the scenes in this dataset, compared to the

results of [17].

Our results on NICTA/2D3D indicate that, while our la-

tent nodes are in general beneficial, thanks to their ability

to cut incorrect connections, they still occasionally yield

lower performance than a model without such nodes. We

observed that this is mainly due to the inaccurate ground-

truth, or to the fact that, sometimes, while the 2D and 3D

features appear to be incompatible (e.g., due to challenging

viewing conditions), they still belong to the same class. The

stronger smoothness imposed by the model without latent

nodes is then able to address this issue.

5.3. Results on CMU/VMR

The CMU/VMR dataset is comprised of 372 pairs of ur-

ban images and corresponding 3D point cloud data. Impor-

tantly, the ground-truth of this data is such that the labels

of corresponding 2D and 3D nodes are always the same.

In other words, this dataset is not particularly well-suited

to our approach. However, it remains a standard bench-

mark, and no other dataset explicitly evidencing the mis-

alignment problem is available. The CMU/VMR dataset

contains 19 classes, which yields parameter matrices of the

form A2D
[19×28]

, A3D
[19×23]

, A∆
[20×52]

, B2D
[361×1]

, B3D
[361×1]

, B2D−∆
[380×1]

and B3D−∆
[380×1]

, with alternative matrices for the No Latent

Note that by looking at the data, one can observe that this ground-truth

is often wrong, because of the misalignment problem.

baseline of the form B2D−3D
[361×8]

and B2D−3D
[361×52]

.

We compare the results of our approach and the baselines

on this dataset in Table 3 and Table 4 for the 2D and 3D do-

mains, respectively. In this case, while our approach still

yields the best F1-scores on average, there is less difference

between our results and the No Latent method. This can

easily be explained by the fact that, as mentioned above, the

ground-truth labels of corresponding nodes in 2D and 3D

are always the same. Furthermore, we can also see that our

approach yields low accuracy on classes where few training

samples were available, such as the last 5 categories in the

tables. This should come at no surprise, since our learn-

ing strategy strongly relies on training data. A qualitative

comparison is provided in Fig. 6.

6. Conclusion

In this paper, we have addressed the problem of domain

inconsistencies in multimodal semantic labeling, which is

an important issue when multimodal data is concerned.

Such inconsistencies typically cause undesirable connec-

tions between 2D and 3D regions, which in turn lead to poor

labeling performance. We have therefore proposed a latent

CRF model, in which latent nodes supervise the pairwise

edges between two domains. Having access to the infor-

mation of both modalities, these nodes can either improve

the labeling in both domains or cut the links between in-

consistent 2D and 3D regions. Furthermore, we presented a

new set of data-driven learned potentials, which can model

complex relationships between the latent nodes and the two

domains. Thanks to our latent nodes and our learned po-

tentials, our model achieved state-of-the-art results on two

publicly available datasets.
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Table 1. Per class F1-scores for the 2D domain in the NICTA/2D3D dataset. We compare our model to the method of [17], a pairwise

model learned on the 2D domain only, and our model without latent nodes.

Grass
Build

ing

Tree trunk

Tree leaves

Vehicle

Road
Bush

Pole
Sign

Post
Barrier

W
ire

Sidewalk

Sky
avg

Unary 80 33 14 80 49 95 16 28 3 0 0 29 15 98 38

Pairwise 2D (learned) 85 57 17 85 55 95 18 30 0 0 3 34 20 99 43

Namin [17] 74 56 21 82 58 92 23 33 19 8 5 32 29 97 45

No latent (full features) 90 63 10 91 68 96 31 43 1 0 0 44 53 99 49

No latent (selected features) 92 64 18 92 69 98 36 34 3 0 28 40 60 99 52

Ours 95 71 28 93 76 97 44 44 10 5 21 38 68 99 56

Table 2. Per class F1-scores for the 3D domain in the NICTA/2D3D dataset. We compare our model to the method of [17], a pairwise

model learned on the 3D domain only, and our model without latent nodes.

Grass
Build

ing

Tree trunk

Tree leaves

Vehicle

Road
Bush

Pole
Sign

Post
Barrier

W
ire

Sidewalk

Sky
avg

Unary 52 61 27 87 58 82 10 24 19 43 19 74 0 # 43

Pairwise 3D (learned) 58 80 50 97 56 76 16 62 32 40 0 89 0 # 50

Namin [17] 63 81 41 96 70 76 21 38 28 47 23 87 0 # 52

No latent (full features) 72 75 27 95 77 90 42 62 31 9 0 89 0 # 52

No latent (selected features) 60 92 45 97 75 79 61 58 49 29 27 82 0 # 58

Ours 66 94 49 95 79 83 51 62 54 43 25 89 8 # 61

Table 3. Per class F1-scores for the 2D domain in the CMU/VMR dataset. We compare our model to the method of [15], the method

of [17], a pairwise model learned on the 2D domain only, and our model without latent nodes.

Road
Sidewalk

Gro
und

Build
ing

Barrier

Bus sto
p

Stairs
Shrub

Tree trunk

Tree top

Small Vehicle

Big
vehicle

Person

Tall lig
ht

Post
Sign

Utili
ty

pole

W
ire

Traffi
c Signal

avg

Unary 95 81 75 56 29 17 32 50 31 53 32 49 29 16 15 16 33 41 29 41

Pairwise 2D (learned) 89 77 74 84 25 17 40 62 37 89 78 57 38 1 5 3 16 12 9 43

Munoz [15] 96 90 70 83 50 16 33 62 30 86 84 50 47 2 9 16 14 2 17 45

Namin [17] 94 87 79 74 45 22 40 54 27 84 67 24 38 13 2 10 37 35 40 46

No latent (full features) 93 85 83 88 60 4 61 67 41 87 79 61 45 0 3 2 12 9 2 46

No latent (selected features) 93 80 80 87 60 1 70 67 37 90 84 67 54 7 4 4 21 15 3 49

Ours 94 84 84 84 65 4 75 64 43 89 84 58 52 11 6 2 25 18 3 50

Table 4. Per class F1-scores for the 3D domain in the CMU/VMR dataset. We compare our model to the method of [15], the method

of [17], a pairwise model learned on the 3D domain only, and our model without latent nodes.

Road
Sidewalk

Gro
und

Build
ing

Barrier

Bus sto
p

Stairs
Shrub

Tree trunk

Tree top

Small Vehicle

Big
vehicle

Person

Tall lig
ht

Post
Sign

Utili
ty

pole

W
ire

Traffi
c Signal

avg

Unary 70 49 62 67 34 2 19 26 11 67 34 4 13 2 0 1 2 0 0 24

Pairwise 3D (learned) 78 52 67 78 15 1 32 31 1 73 44 14 9 1 0 0 0 0 0 26

Munoz [15] 82 73 68 87 46 11 38 63 28 88 73 56 26 10 0 0 0 0 0 39

Namin [17] 92 85 81 85 50 16 42 55 29 82 70 16 43 6 2 7 29 9 23 43

No latent (full features) 90 86 87 90 59 2 64 69 31 79 70 29 47 1 1 0 5 0 0 43

No latent (selected features) 90 85 85 89 62 2 63 68 29 86 78 46 53 3 1 0 15 0 0 45

Ours 92 88 84 88 64 7 66 66 31 86 75 42 53 8 7 0 17 10 0 47
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Grass Building Tree trunk Tree leaves Vehicle Road Bush Pole Sign Post Barrier Wire Sidewalk Sky

Figure 5. Sample results on the NICTA/2D3D dataset. 1st row: Left: 2D ground-truth; Middle: 2D results of [17]; Right: our 2D results.

2nd row: Left: 3D ground-truth; Middle: 3D results of [17]; Right: our 3D results. Our method (the right column) has been able to fix

some of the mislabelings present in the results of [17], such as the tree trunks and poles in 2D images, and wires and vehicles in 3D data.

Note that these are the object classes that are most likely to be affected by misalignments.

Road Sidewalk Ground Building Barrier Bus stop Stairs Shrub Tree trunk Tree top

Small vehicle Big vehicle Person Tall light Post Sign Utility pole Wire Traffic signal

Figure 6. Sample results of two scenes in the CMU/VMR dataset. 1st row in each scene: Left: 2D ground-truth; Middle: the results

of [17]; Right: our 2D results. 2nd row: ground-truth of the 3D data; 3rd row: the results of [17]; 4th row: our 3D results. The circles

highlight mislabeling in the 3D ground-truth of this dataset, which occurred due to misalignments between 2D and 3D data, and illustrate

how our method has improved the results in those regions compared to [17].
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