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Abstract

Stereo reconstruction in presence of reality faces many

challenges that still need to be addressed. This paper con-

siders reflections, which introduce incorrect stereo matches

due to the observation violating the diffuse-world assump-

tion underlying the majority of stereo techniques. Unlike

most existing work, which employ regularization or robust

data terms to suppress such errors, we derive two least

squares models from first principles that generalize diffuse

world stereo and explicitly take reflections into account.

These models are parametrized by depth, orientation and

material properties, resulting in a total of up to 5 parame-

ters per pixel that have to be estimated. Additionally wide-

range non-local interactions between viewed and reflected

surface have to be taken into account. These two properties

make optimization of the model appear prohibitive, but we

present evidence that it is actually possible using a variant

of patch match stereo.

1. Introduction

The traditional approach to stereo matching frequently

models image formation as a world consisting of Lamber-

tian surfaces observed through a perfect pin hole camera.

While these assumptions, together with the right regular-

ization, do suffice in many settings, there remain real-world

situations where this is not the case. Recent benchmarks

and challenges [12, 32] have shown that there are often sit-

uations where the imaging model is violated, either geo-

metrically or radiometrically. Reflective surfaces violate the

Lambertian world assumption and cause the observed color

of a surface point to depend on the viewpoint. In turn, this

leads to false minima in stereo matching data terms that de-

pend on some form of brightness constancy (cf. Figure 1).

The traditional approach to handle specular surfaces is ei-

ther by robust data terms or by using strong regularization

techniques. The work presented here has a different goal

and was guided by the following questions: Is it possible to

Figure 1. Illustration of Errors Caused by Reflective Surfaces.

Left: Stereo image. Right: Typical Disparity Map. The color

observed on the road at the reflection of the silhouette depends on

the position of the camera. The algorithm therefore assigns erro-

neous disparity values at this location.

derive a data term that explicitly takes reflective materials

into account? And if so, is this model of any use? Can we

estimate scene parameters using this model?

Our findings on handling stereo with reflections are sum-

marized in Figure 2. By additionally modeling up to two

bidirectional reflectance distribution function (BRDF) pa-

rameters, it is not only possible to remove errors due to

reflective surfaces, but it is also possible to obtain mate-

rial information from the two images that can potentially be

used for segmentation purposes or view synthesis. Finally,

while not explicitly estimated, the separation of diffuse and

reflection components falls out of the box. Note that the

work presented does not include any form of global regu-

larization or post-processing on top of the presented results.

This derived from the goal to give insights upon the utility

of the proposed data-terms. The estimated parameters are

a sole result of local optimization of the proposed model

parameters.

In Section 3, we revisit the roots of stereo matching as a

least squares problem and from this derive simplified mod-

els that take reflections into account. Also, we show that

traditional diffuse world stereo is in fact just another spe-

cial case. The models are parametrized by per pixel depth,

normals and up to two surface material parameters which

encode strength of the reflection component and roughness
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of the reflecting surface. All in all, there are up to 5 pa-

rameters per pixel (cf. Fig. 2). The resulting optimiza-

tion problem is high dimensional and requires that the sur-

face belonging to each pixel ‘knows’ which surfaces it re-

flects from, thus yielding wide-range non-local interactions.

We demonstrate that the optimization still is tractable using

Stereo PatchMatch [7] with extensions that enable efficient

reflection computation and more accurate normal estima-

tion (cf. Section 4). While the computation of accurate

surface orientation is usually not the main goal in stereo

matching, it turns out that accurate normal estimation is the

key to handling reflective surfaces. These insights and the

properties of the resulting algorithms are further discussed

in Section 5.

2. Related Work

Early approaches in handling specular surfaces involved

the detection of specular highlights [3, 13, 21] and subse-

quent exclusion of the detected areas. Another approach

with a similar goal is the usage of a cost function that is

more robust towards specular highlights, for example the

image gradient [7] or rank-based costs [5, 15, 16]. Both of

these cost types achieve robustness towards image-wide or

low frequency radiometric differences in the input images,

but still have issues with strong specular highlights or high

frequency reflections. For handling stronger highlights, Jin

et. al. [18] make use of a rank-based cost, though in a multi-

view setting. All these methods have in common that they

do not change the diffuse world model but rather limit the

reconstruction to the diffuse parts implicitely or explicitely.

The apparent displacement of specular highlights provides

information on the normals and surface curvature of object

surfaces [6]. These displacements have been used to re-

cover mirror surfaces [27, 1] given controlled lighting con-

ditions. Another approach is layer separation, where

the world is treated as a set of semitransparent depth layers

mixing the color with each other. These methods either re-

quire user interaction [22] or operate in a multi-view setting

[8, 10, 31, 30]. These previous models still restrict the cor-

respondence of reflected objects to the horizontal scan line.

In reality however this does not have to hold[6].

The model presented here is different in that the physical

properties of the observed surfaces are modeled and these

implicitly define a second observable layer. By doing so, it

is possible to use reflection information in the image wher-

ever it is available and thus obtain a parameter map akin to

a material segmentation of the image.

An alternative might seem to be an example-based ap-

proach to material modeling [29], but such techniques

would require a prohibitively large number of examples to

learn any thing more than specular highlights.

The work presented here is also closely related to various

inverse rendering problems[25]. Common problems [25]

require that a certain subset of variables has to be known e.g.

inverse lighting [19] or inverse reflectometry [23]. Finally,

we note that the optimization problem that is required to

be solved here has a high-dimensional state vector at every

pixel and an energy with long-range interactions between

pairs of pixels. Moreover, the variables participating in the

interactions are themselves a function of the unknown pa-

rameters. Until recently, this would have appeared tractable

only for very simple greedy algorithms. However, recent

work on the PatchMatch algorithm [17] has shown that it is

an effective optimizer even for very high-dimensional state

vectors.

3. Reflections on Stereo

The scene parametrization is depicted in Figure 2. The

world is assumed to be representable on image grid Ω,

where each pixel i ∈ Ω represents a surface element

parametrized by radial distance di from the primary (left)

camera center, surface normal orientation (θi, φi), diffuse

color fi and additional material parameters (µi, σi). Next,

define V as the set of cameras expressed by their extrinsic

and intrinsic parameters. For stereo V = {L,R}. Note that

though di is a scalar, it implicitly corresponds to a 3D point

and also a ray direction by a function xv(di), defined only

by the (known) camera parameters v ∈ V . When the su-

perscript v is omitted, we refer to a 3D point in the primary

(L) camera system. Similarly, (θi, φi) define the normal

nv(θ, φ) and di and nv together define a plane pv(di,n
v).

Wherever it eases readability, we simply refer to these de-

rived values as xi, ni and pi respectively. The color vec-

tor fi is required only for the derivation of the model. With

the simplifications that will be made, we will see that fi can

be implicitly recovered from the observed color using the

other parameters (cf. Eqs. 8,16). For convenience, we de-

fine si = {di, fi, θi, φi, µi, σi} as the set of all unknown

parameters at i ∈ Ω. With bold face capital letters we

refer to the set of a single parameter over all pixels, e.g.

D = {di}, F = {fi}, S = {si}, ..., i ∈ Ω. Given v ∈ V ,

define πv : R3 → R
2, v ∈ V, as the mapping that projects

3D world points into view v. When applied to scalar di,

πv(di) = πv(xi(di)), Finally, let C be a color space and

let Iv : R2 → C, v ∈ V map the position on the 2D image

plane of camera v to the observed color at this point with

bilinear interpolation for non-integer coordinates. The least

squares stereo data term can then be expressed as the sum

of pixel-wise costs LSQ(S) =
∑

i∈Ω E(si,S\si), where

the pixel-wise cost E(si,S\si) is defined as

E(si,S\si) =
∑

v∈V

||Iv(πv
i (di))−m(si,S\si , v)||

2
2. (1)

The model function in Eq. 1 computes the observed color of

i in view v as a function of the parameters si, the set of all

other world parameters S\si and view v. Note that di ∈ si.
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Figure 2. Left: Stereo with Reflections. By explicitly parameterizing the BRDF as well as geometry (a total of 5 parameters per pixel),

and exploiting the ability of PatchMatch to efficiently optimize high-dimensional energies, it is possible to obtain the BRDF and a better

geometry. Right: Scene representation and illustration of screen-space render equation. Per pixel, surface geometry is parametrized

using the depth r along the pixel ray and the surface normal represented by the Euler angles (θ, φ). Materials are represented by a mixing

parameter µ and optionally the specular roughness σ. Larger µ corresponds to stronger reflections. Larger σ means more diffuse reflections.

The observed color from any viewpoint is most generally

explained by the rendering equation [20], which, modified

to our notation and assuming isotropic light sources is given

by (cf. Fig. 2, Right)

m(si,S\si , v) = ei +
∑

j∈Ω\i

c(si, sj , v)Lij . (2)

In essence, this equation states that the color observed at

a location (the pixel) from a surface point corresponds to

the amount of light ei that the surface patch emits itself and

the fraction c(si, sj , v) of light Lij received from another

surface point j that is reflected into the camera v. The func-

tion c corresponds to a discrete version of the BRDF, which,

as a reminder, is a material specific property that governs

how surfaces appear under different lighting and viewing

angles. Note that in general, the light Lij transported from

one surface to another depends on the light that the trans-

mitting surface receives from all other surfaces in the scene

etc. There is no analytical solution for the forward problem

so that renderers have to employ Monte Carlo or Finite el-

ement techniques to compute the full global light transport.

W.l.o.g. we assume that the BRDF c decomposes into a dif-

fuse, viewpoint independent part (i.e. a constant part) and a

viewpoint dependent specular part

c(si, sj , v) = cdiff
i + cspec(si, sj , v), (3)

such that Eq. (2) can be written as

m(si,S, v) = ei +
∑

j∈Ω\i

cdiffLij +
∑

j∈Ω\i

c(si, sj , v)Lij .

(4)

Since the amount of light received from the other surfaces

is viewpoint independent Lij , we define the diffuse color fi
of the surface point as

fi = ei +
∑

j∈Ω\i

cdiffLij . (5)

Finally, we make a single-bounce assumption: the light

received from another surface position only corresponds to

its diffuse color. Obviously, the model now cannot explain

multiple reflections, but this is an approximation required

to make the model tractable. Using this approximation, Eq.

(2) can be rewritten as

m(si,S, v) = fi +
∑

j∈Ω\i

cspec(si, sj , v)fj . (6)

The actual model that is now obtained depends on the defi-

nition of cspec. In the following, we will show that the stan-

dard stereo model is a special case of Eq. (6) with a diffuse

BRDF. Furthermore, we will present two other models that

are of interest and which arise by plugging in other BRDF

models.

Diffuse World Stereo (DN)1 For cspec(si, sj) ≡ 0, we

obtain

E(si,S) =
∑

v∈V

‖Iv(πv(di))− fi‖
2
2. (7)

The solution for F given V = {L,R} and depth map D is

f diffuse
i =

IL(πL(di)) + IR(πR(di))

2
. (8)

Inserting f diffuse
i into Eq. (7), we obtain

E(di) =
1

2

∑

i∈Ω

∥

∥IL(πL(di))− IR(πR(di))
∥

∥

2

2
, (9)

which coresponds to the standard least squares stereo

matching term.

Delta-BRDF Model (DNM)2 Consider

cspec(si, sj , v) =

{

µi if H(nv
i )x

v
i ×

(

xv
j − xv

i

)

= 0

0 otherwise ,

(10)

1Depth, Normals. The latter only used with cost aggregation
2Depth, Normals, Mu
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where H(n) = I − 2nnT is the Householder transform that

describes mirror reflection.

This BRDF model corresponds to a perfect mirror reflec-

tion which is only weighted by the parameter µi. The sum

in Eq. (6) reduces to

mDNM(si,S, v) = fi + µifρ(i,S,v), (11)

where the function ρ(i,S, v) finds the pixel corresponding

to the intersecting surface point. In practice ρ has to be im-

plemented by some form of ray tracing. In the next section,

we show how this is done efficiently in screen space. Also

note how this model is extremely sparse in the number of

interactions for a fixed choice of surface normals.

Rough Gloss Model (DNMS)3 Finally, we consider a

specular term of the form

c
spec(si, sj , v) =

{

µi

M(S,i,v)
if cd < σi

0 otherwise ,
(12)

cd =

〈

H(nv
i )x

v
i

||H(nv
i )x

v
i ||

,
xv
j − xv

i

||xv
j − xv

i ||

〉

, (13)

where M(S, i, v) is a normalizing factor corresponding to

the number of pixels for which the condition cd is true.

This type of BRDF implies a constant value if the angle

between mirror reflection direction and direction toward sj
is smaller than a certain threshold defined by the fourth pa-

rameter σ. With this kind of BRDF model, we emulate the

roughness parameters observed in common BRDF models

such as Phong, Gaussian or Ward BRDF models. The cor-

responding model is

mDNMS(si,S, v) = fi +
µi

M(S, i, v)

∑

j∈Ω̃v
i

fj . (14)

The differences to Eq. (6) are quite subtle. cspec can be

eliminated by reducing the support of the inner sum to those

pixels that lie in the valid range. The number of entries

in the sum can still get quite large with a larger distance

between viewed surface and reflected object, thus making

the evaluation of the objective very time-consuming. In the

next section a constant time screen space approximation for

the computation is presented.

Eliminating first bounce fi The two Eqs. (11) and (14)

both have the structure

m...(si,S, v) = fi + µir
v
i (S), (15)

where rvi (S) (abbr. rvi ) is the reflection component. Fol-

lowing the same arguments as in the diffuse case, the least

square solution for fi for fixed geometry is given by

IL(πL(di)) + IR(πR(di))− µi

(

rLi + rRi
)

2
, (16)

3Depth, Normals, Mu, Sigma

yielding the following per pixel cost for both models:

E(si,S) =
1

2

∥

∥

∥
IL(πL(di))− IR(πR(di))− µi

(

rLi − rRi

)
∥

∥

∥

2

2
.

(17)

While F has not been completely eliminated from the cost,

it now only appears in the reflection term. In the next

section, this is further simplified to compute reflections in

screen space.

Offscreen bounces Our model assumes that specular

bounces touch parts of the scene that are visible in the im-

age. In a similar vein, some readers may wonder why light

sources outside the scene were not mentioned at all. The

straight forward answer to this is model tractability. Some

form of prior information has to be introduced to estimate

effects from outside the scene. In the present work, the main

interest is in what can be derived only from information

available in the image. Therefore, instead of additionally

modeling lights and shading, the diffuse shading and dif-

fuse reflection of lights as well as surface emissivity are just

part of the diffuse color fi. Similarly, if the diffuse color is

not limited to lie in the [0, 1], fi can also model observed

light sources. The case when the model is still violated is

when a specular surface introduces the off screen bounces.

As mentioned, handling these is subject to future work.

4. Inference

The DNM and DNMS models still have wide-range non

local interactions as the reflected color observed in a cer-

tain pixel still depends on the geometry of the scene and the

diffuse color of the reflected pixels. In our experience, try-

ing to directly minimize the energy is slow and does not

yield any useful results. With variational techniques we

found that a good initial guess or a scale space approach

was needed. On most surfaces that are not purely glossy,

the reflected part of the signal bears similarities to a low-

pass version of the perfect mirror reflection. Therefore,

cues for the actual surface and the reflected surface appear

on different scales, thus violating the basic assumption of

scale space approaches that the estimated depth is consis-

tent over all scales. An observation made on many stereo

results that suffer from reflection is that erroneous depth

is only measured when texture or silhouette edges are re-

flected. Therefore, the geometry next to reflection artifacts

are often correct. On the other hand, the only areas that can

be used to reliably measure the material properties are pre-

cisely these edges, as they contain the required information

on µ and σ. A heuristic to account for the latter a patch

based aggregation strategy of costs lends itself while for the

former regions with correct geometry are required to some-

how propagate their information into erroneous regions.

PatchMatch Stereo [7] displays this kind of behavior, so

suggests itself as a framework to solve these models. In the

following, we show that by making some further simplifi-
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cations to the model and some extensions to the framework,

both DNM and DNMS models can be solved using stereo

Patchmatch. The basic strategy is to first solve for stan-

dard diffuse stereo to obtain an initial guess for geometry.

To achieve normal estimation of sufficient accuracy, Patch-

Match with continuous refinement is required. This novel

extension to PatchMatch optimization is described below.

Using this initial guess, again two iterations of continuous

PatchMatch are applied using the DNM or DNMS models

respectively to obtain the final result.

PatchMatch Stereo revisited PatchMatch stereo oper-

ates on an extended cost volume

C : Ω× R
N → R, (i, si,S\si) → Epm(si,S\si), (18)

which outputs the cost for assigning parameter si to pixel

location i. Epm is usually defined as a basic pixel

cost E(si,S\si) aggregated over a support neighborhood

Npm(i) around i, with

Epm(si,S\si
) =

∑

j∈Npm(i)

w
(

IL(i), IL(j)
)

E
(

τ(j, si),S\si

)

.

(19)

Here, w(IL(i), IL(j)) is an optional weighting term that

can either be constant or an color adaptive support weight

w
(

IL(i), IL(j)
)

= exp(γ−1||IL(i)− IL(j)||1). (20)

The mapping τ transforms the si, which is represented ac-

cording to pixel i into a representation according to pixel j.

For standard fronto-parallel stereo where disparities di are

estimated (si = di), the mapping is

τD : (j, di) → di. (21)

In [7] it is assumed that the patch geometry can be described

by a slanted plane, therefore we get

τDN : (j, {di, ni}) → {||xj ∩ pi||,ni}. (22)

The ∩ symbol denotes the intersection of the direction given

the pixel ray xj and the plane pi defined by (di,ni). This

maps the normals as they are, but transforms the depth such

that it belongs to the same plane as the surface described by

si in pixel i.

The algorithm then operates as follows: for initialization,

the si are drawn randomly from the feasible set of param-

eters. Then two steps are alternated for each pixel and all

pixel is traversed in some order:

In the propagation step, the current parameter set in i is

replaced by

snewi = argmin
{sj |j∈N(i)}

Epm(τ(i, sj),S\si), (23)

where N(i) describes some neighborhood of i. Note that

this is the same τ as defined above, but instead of apply-

ing the same si to several neighboring pixels, we are now

choosing the neighboring sj that gives the smallest cost

when applied to the current pixel i.

In random refinement the current parameter set in i is

then refined by drawing random parameters around the cur-

rent parameter according to some probability distribution

D(si, α) centered around si with additional parameter α

that usually corresponds to the variance of the distribution

snewi = argmin
s∼D(si,α)

E(τ(i, s),S\si). (24)

In stereo PatchMatch this D corresponds to a double expo-

nential distribution4. An intuition and a proof of why this

technique works are given in [4]. To sum it up, the method

works well if the scene consists of large homogeneous ar-

eas with the same or slowly varying parameter sets. This

is to some extent true for general depth maps and more so

for materials, as natural scenes often only consist of a few

different materials.

Proposed PatchMatch Variant We make three modi-

fications to the original PatchMatch implementation: First,

the refinement step is extended to do gradient-descent based

refinement after random refinement. This step significantly

improves the quality of the estimated geometry (especially

normals) even for diffuse PM. Next, the per pixel cost is

modified in such a way that it does not depend on the param-

eters in the other pixels. This enables the application of con-

tinuous PM also to the DNM and DNMS models. Finally,

data driven sampling routines are employed for the random

refinement step. In the following, we limit ourselves to a

general overview of each of these modifications and refer

to the supplemental material for additional implementation

details.

Continuous Refinement If the pixel-wise cost is defined

in such a way that it is differentiable w.r.t si, i.e. the Ja-

cobian JE(si) can be computed, it is possible to find the

local cost minimum using gradient descent or trust region

solvers. For the DN model this is evident if linear or higher

order spline interpolation between pixels is employed. For

DNM and DNMS this becomes a bit more challenging since

the evaluation of the cost requires a ray-tracing step. It is

also important to be able to compute the derivatives of the

reflected color with respect to the change of normal orien-

tation. In practice, the continuous part of the optimization

is implemented using the Ceres-Solver [2] library, which

computes exact derivatives using automatic differentiation

techniques [26] given a differentiable objective function.

Screen Space Reflection Computation For continuous

optimization of DNM(S) the reflected color at pixel i has to

be computed in a way that is differentiable. We achieve this

using a series of approximations illustrated in Fig. 3.

4The sampling strategy employed additionally stratifies the samples

into quantile brackets.
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Figure 3. Illustration of screen space reflection computation for

DNM and DNMS. First ρ(i,S, v) is computed by projecting

H(nv
i )x

v
i into the camera and searching for intersections along

the resulting line. Next, the geometry of the reflected world is ap-

proximated using pρ(i,S,v) enabling differentiation w.r.t. param-

eters in i. For DNMS the projection of the conic intersection is

approximated by a rectangle which is aggregated over using inte-

gral images [11].

First, we find the location ρ(i,S, v) of the mirror reflec-

tion by intersecting the mirror ray H(nv
i )x

v
i at i given view

v with the current geometry. To efficiently compute the in-

tersection, we borrow ideas from recent work in computer

graphics [14, 24]. H(nv
i )x

v
i is first projected into view v

resulting in a line in image space. We subsequently search

for the intersection along this line using [9].

Once ρ(i,S, v) is found the DNM reflection color can

be approximated as rvi ≈ Iv(ρ(i,S, v)). This term is not

differentiable w.r.t. the parameters at i. To obtain a differ-

entiable term a second approximation has to be made: we

assume that the geometry of the reflected world can be de-

scribed by the plane pv
ρ(i,S,v). Then rvi = Iv(πv(pv

ρ(i,S,v)∩

H(nv
i )x

v
i )). By setting pv

ρ(i,S,v) constant during continuous

refinement and only updating it during propagation and ran-

dom refinement we now obtain a differentiable term.

For the DNMS model, the contributions of many pix-

els have to be taken into account. Evaluating this cost can

therefore consume a large amount of time. We simplify this

in a similar manner as above, yielding a constant computa-

tional overhead, irrespective of the area of integration. First,

we compute the geometry of the reflected world in the same

way as above. Next, we project the intersection between this

plane and the cone given by Eq. 12 (cf. Fig. 3 bottom right)

into view v to obtain an area of support over which we have

to integrate the color. Finally, we approximate this region

using a rectangular shape, such that the sum can be com-

puted using bilinearly interpolated integral images [11] in

O(1) to obtain a differentiable reflection term for DNMS.

Data Driven Sampling Finally during random refine-

ment of the DNM/S models, we replace D(σ, θ) with a

screen space sampler. Given current reflected position sj ,

the sampler uniformly samples neighboring pixels as can-

didate reflection points s̃j . The orientation parameters are

then computed such that they satisfy s̃j to be the primary

point of reflection. This sampling is done additionally to

the standard exponential sampling of orientation to allow

for searching the proximity of s̃j more closely.

5. Experiments and Results

We refer to standard PatchMatch with PM and, simi-

larly, to continuous (data driven) PatchMatch with CPM and

CDDPM. Additionally, we prefix the optimization method

with the model that is to be inferred. DN-PM, DNM-PM,

DNMS-PM therefore refer to standard PatchMatch opti-

mization using the DN, DNM and DNMS models respec-

tively. The algorithms utilized a patch window of size 13 px

and an exponential color based adaptive support weight

(ASW) [7] with parameter 0.08 for images normalized be-

tween 0 and 1.

The DNM and DNMS models are more sensitive to the

choice of color-based ASW since strong reflected edges that

give the primary cues for estimating the material properties

also cause a strong down-weighting of pixels. The scenes

used in the following experiments were modeled in Blender

and rendered using the Blender-Cycles renderer that ap-

proximates global illumination. This allows for ground

truth evaluation and verification of the reconstructed param-

eters. Experiments were run on a Intel i7-4470K @ 3.50

GHz. The baseline (DN-PM) requires 5s per PM-iteration.

Continuous optimization (DN-CPM) induces a 3x overhead

(15 s/iter.). The proposed models require an additional

factor of 2.5 (DNM-CDDPM, 40s/iter) and 18 (DNMS-

CDDPM, 270s/iter) compared to DN-CPM. The bottleneck

here is the screen-space reflection computation. To project

Figure 4. Quality of Normals. Top to bottom: depth map, RGB-

coded normals and computed reflections. From left to right: a)

and b) results of DN-PM vs DN-CPM on a diffuse scene. c) and

d) result of DNM-PM vs DNM-CDDPM. Inputs are from Fig. 2
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the speed-up that is currently possible using a faster im-

plementation, we note that recent work on this topic re-

port real-time frame-rates for both DNM (500fps)[24] and

DNMS[14]. This indicates that it may be possible reduce

the overhead of these models to the level of DN-CPM.

Quality of Normals The continuous data driven Patch-

Match approach was motivated by the goal of achieving

high quality normals. To verify the effect of normal estima-

tion on handling reflections, we ran PM and CPM/CDDPM

on a fully diffuse scene and a scene containing a specular

surface. The results are illustrated in Figure 4. For the

diffuse scene (left half), the reconstructed depth maps are

nearly identical using DN-PM and DN-CPM (small devi-

ations can be observed in detail though). Yet, the normal

map reveals large differences. The computed mirror reflec-

tion using these normals also confirms these findings. For

the specular scene (right half), we compare two iterations of

DNM-PM after two iterations of DN-PM with 2 iterations

of DNM-CDDPM after two iterations of DN-CPM. The dif-

ferences here are more striking both in depth and normals.

Notice the (erroneous) low frequency normal error of the

lower surface in DN-CPM, which is no longer present in

DNM-CDDPM wherever the surface reflected something

else in the scene. This is a strong indicator that model-

ing reflection not only can correct errors due to reflections,

it actually can aid in more accurate geometry estimation.

The improved micro-structure of the lower surface is fur-

ther evidenced by the quality of the computed reflections.

Finally, some artifacts can still be observed in the DNM

result. These are due to reflections of occlusion boundaries

that have a similar effect as the ones normal occlusions have

in standard stereo. This is not a shortcoming of the model

per se, but a result of the simplifications made to compute

the reflected color.

Additional evaluation of the CPM vs PM performance

were carried out on the Middlebury Stereo Datasets [28].

While this dataset was not intended to evaluate normals we

do observe a consistent improvement of the bad-disparity

rate between DN-PM and DN-CPM of up to 1%. Further

analysis can be found in the supplemental material.

DNM/S Model Verification We compared DN-PM with

DN-CPM, DNM-CDDPM and DNMS-CDDPM for 11 dif-

ferent scenes of varying curvature (foreground@ 4-6 m,

background@ 60 m, 50◦ FOV) of the specular surface. The

ground truth BRDF parameters of the specular surface are

constant over the whole surface. For the evaluation of the

DNM model, for each scene the µ parameter for the lower

surface was varied between 0.0 and 0.4. The latter corre-

sponds to a peak diffuse signal to reflection ratio of over 0.6

in this scene. Similarly we report results for DNMS with

µ = 0.25 and σ = 0.01, 0.02, 0.04 and 0.1 created using

two iterations of DNM/S-CDDPM after two iterations of

DN-CPM . We display example results on DNMS-CDDPM

Figure 5. Summary of results for each scene for different ground

truth parameters (markers) of the specular surface. Y-Axis: De-

crease in number of bad pixels in percentage of total number of

pixels. Larger values are better. X-Axis: Enumeration of Scenes

(cf. Fig. 6). The box plot additionally mark median and quar-

tiles. The inlet table contains the bad pixel thresholds utilized. We

observe consistent improvements of the reconstructed parameters.

DNM: The overall trend is a deterioration of results for stronger

µ. DNMS: The overall trend is towards a smaller effect for larger

σ consistent with large σ corresponding to more diffuse surfaces.

in Fig. 6. Further results used in the subsequent analysis

can be found in the supplemental material. Fig. 5 quanti-

fies the results over all tested parameters and scenes for the

DNM and DNMS models respectively. In these plots, we
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Figure 6. Example Scenes Used for the ground truth evaluation (µ

= 0.25, σ = 0.01). From left to right: Left image, diffuse-depth,

DNMS-depth, diffuse-normals, DNMS-normals, µ, σ.

report the decrease in the number of ‘bad’ pixels (cf. Table

inset in Fig. 5) between results using DN-CPM and results

using DNM/S-CDDPM for each of the parameters.

The metrics mostly correspond to the 3D-space version

of the bad-pixel metric commonly used in Middlebury eval-

uations [28]. They were chosen as they are best suited

for the multi-modal, heavy-tailed error distributions that are

caused by reflections. Summarizing, DN-CPM consistently

decreases the GT error over DN-PM, and DNM/S-CDDPM

consistently further decreases the error. The scenes where

the relative decrease is low, correspond to the situation

where the actual area reflecting something is relatively

small (e.g. Scene 0-n45 (second row) in Fig. 6). The

remaining artifacts often correspond to the reflections of

depth edges. Also consistent with the findings above are

the normals that are improved upon in areas that reflect

other parts of the scene. The proposed method is able to

improve the geometry and recover meaningful parameters

over a wide range of different surface curvatures. The most

difficult situation happens to be a convex surface oriented

towards the camera as lot of reflected rays bounce back

into the direction of the camera. For larger values of µ,

Figure 7. Real Images. From left to right: Left image, Diffuse

depth, DNMS(top)/DNM(bottom) depthmaps. Note the reduction

of errors caused by specular reflections.

the proposed optimization strategy starts to fail, while for

larger values of σ the scene becomes indistinguishable from

a completely diffuse scene such that the DN model does not

produce artifacts.

Real Images As a proof of concept, we ran the methods

on a stairwell scene with diffuse specular reflections from a

grating (and outside) as well as a tabletop scene with mirror

reflections similar to the synthetic ones used above. While

we observe improvements in many parts of both scenes (re-

flection of grating, reflection of black and white surface),

there remain erroneous areas due to ambiguities and satura-

tion effects. Yet, we note that these are the results achieved

only using the local data term and expect further improve-

ments if regularization is included. A discussion of further

aspects important to the applicability to real images can be

found in the supplemental material.

6. Conclusion

This work addressed the matter of specular reflections

which violate the diffuse world model commonly used for

stereo matching. By including the second order terms of the

image formation model governed by the render equation,

we derived two data terms that are capable of explaining

specular reflections. We showed that the optimization of the

resulting optimization problem is possible using CDDPM.

In consequence, it was possible to estimate depth, normal

orientation and material parameters in each pixel. Ground

truth evaluation on synthetic datasets shows consistent im-

provement of estimated parameters and also indicates that

by harnessing reflection as opposed to suppressing it, it is

possible to estimate geometry with a higher accuracy.
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