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Abstract

Unsupervised and weakly-supervised visual learning in

large image collections are critical in order to avoid the

time-consuming and error-prone process of manual label-

ing. Standard approaches rely on methods like multiple-

instance learning or graphical models, which can be com-

putationally intensive and sensitive to initialization. On the

other hand, simpler component analysis or clustering meth-

ods usually cannot achieve meaningful invariances or se-

mantic interpretability. To address the issues of previous

work, we present a simple but effective method called Se-

mantic Component Analysis (SCA), which provides a de-

composition of images into semantic components.

Unsupervised SCA decomposes additive image repre-

sentations into spatially-meaningful visual components that

naturally correspond to object categories. Using an over-

complete representation that allows for rich instance-level

constraints and spatial priors, SCA gives improved results

and more interpretable components in comparison to tradi-

tional matrix factorization techniques. If weakly-supervised

information is available in the form of image-level tags,

SCA factorizes a set of images into semantic groups of su-

perpixels. We also provide qualitative connections to tradi-

tional methods for component analysis (e.g. Grassmann av-

erages, PCA, and NMF). The effectiveness of our approach

is validated through synthetic data and on the MSRC2 and

Sift Flow datasets, demonstrating competitive results in un-

supervised and weakly-supervised semantic segmentation.

1. Introduction

In the last decade, image classification has become an in-

credibly active research topic with widespread applications.

Most methods for visual recognition are fully-supervised

and make use of bounding boxes or pixel-wise segmenta-

tions to locate objects of interest. However, this type of

manual labeling is time consuming, error-prone, and poten-

tially suboptimal [29]. On the other hand, the increasing

prevalence of large image collections emphasizes the need

Figure 1. An overview of Semantic Component Analysis (SCA)

applied to the task of unsupervised object discovery. (a) From a

set of images containing multiple classes, (b) Bag-of-Words fea-

tures are extracted pooling information from the entire image. (c)

SCA decomposes these global representations into component his-

tograms associated with meaningful component objects. The seg-

ments corresponding to these object histograms are shown in (d).

for fully- or partially-automated techniques for analyzing

and archiving their content.

Real-world images are often composed of a number of

distinct (but semantically-related) regions. A natural aim

of visual learning is to find these meaningful regions in an

unsupervised or weakly-supervised manner. For instance,

consider Fig. 1(a): it is clear that there are four component

objects that can explain the given images. The question is

how to recover these semantic components with minimal

supervision. Algorithms that approach this problem face

many challenges, primarily in dealing with large intra-class

variability in appearance, illumination, and pose.

A generative model for image formation can be consid-

ered as mixing a number of semantic components: one for

each class present within an image. While the same local

image features (e.g. quantized sift descriptors) may ap-

pear in instances from different classes, the distributions of

features within semantic regions are often distinct across

classes. If these global image features could be unmixed

into their semantic components–each representing consis-

tent segmentations belonging only to a single class–then
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recognition tasks could be simplified dramatically. This

problem motivates a component analysis (CA) approach to

image understanding in which an image is decomposed into

semantic components.

Image decomposition is often accomplished through ma-

trix factorization techniques, such as Principal Compo-

nent Analysis (PCA) [38], Non-negative Matrix Factoriza-

tion (NMF) [21], or Probabilistic Latent Semantic Analy-

sis (pLSA) [36]. These methods approximate data as linear

combinations of latent factors by minimizing total recon-

struction error. While some variations of these approaches

can result in localized, semantically-meaningful, or parts-

based image decompositions, they are generally unable to

adhere to a key property of image formation: objects are

occlusive, i.e. image formation is nonlinear in pixel space

because an object occludes everything behind it. Thus, im-

ages tend to consist of contiguous groups of pixels that be-

long only to a single object class. On the other hand, matrix

decompositions represent each pixel as a superposition of

multiple components. Since they rely on a shared basis that

only approximates the original data, modifying these meth-

ods to enforce semantically-meaningful components by in-

corporating such nonlinear pixel-level constraints with real-

word, unaligned images is nontrivial.

This paper introduces Semantic Component Analysis

(SCA), a novel method for visual data decomposition that

finds semantic factorizations of visual data. Fig. 1 illustrates

SCA applied to Bag-of-Words (BoW) histograms extracted

from input images. Our algorithm decomposes these global

image features into class-specific histograms (Fig. 1c) con-

structed from partitions of semantically-related image seg-

ments (Fig. 1d). While existing factorization methods use

a global basis common to all images, the key idea of SCA

is the introduction of instance-specific sets of components

allowing for more complex image constraints and priors.

Specifically, we enforce that object partitions be spatially-

consistent. This type of coherence would not be not possi-

ble with a global basis because instances of the same class

vary in appearance and location across images.

For completeness, we analyze the relationship between

SCA and existing techniques for traditional component

analysis, empirically showing qualitative and quantitative

similarities with PCA, NMF, and the Grassmann aver-

age [12]. These relations suggest that SCA be considered as

a spatially-invariant extension to CA that adheres to pixel-

level assumptions about image formation without explicitly

requiring a parametric model of image transformation.

The effectiveness of SCA is validated through synthetic

data and on the MSRC2 and Sift Flow datasets, demonstrat-

ing the qualitatively-meaningful unsupervised clustering of

image regions and competitive results in weakly-supervised

semantic segmentation.

2. Related Work

Component Analysis (CA) and Matrix Factorization:

CA methods play a key role in many computer vision appli-

cations due to its ability for linear and non-linear dimen-

sionality reduction, denoising, feature extraction and ex-

ploratory data analysis. See [6] for a review of CA meth-

ods. Though successful, early CA applications such as

Eigenfaces [38] were unable to produce interprettable com-

ponents. This was partially resolved through NMF, which

demonstrated the ability to decompose images into more

natural components corresponding to localized parts [21].

Numerous extensions have since been proposed to im-

prove interpretability through localization constraints [23]

or sparsity-inducing regularization [15]. Other approaches

have explicitly modeled the physical process of occlusion

by introducing additional latent variables that encode the

ordering of objects in the scene [13]. However, all of these

methods still require that all objects in different images be

aligned, which is impractical for real images.

Transformation-Invariant Representations: Other

methods have attempted to explicitly address this need for

representations that are invariant to uninformative image

variations. This is usually accomplished by simultaneously

aligning and decomposing the images in an alternating man-

ner. For example, [8] introduced discrete latent variables

that select from predefined linear image transformations.

Similarly, [18] learned translation-invariant appearance and

occlusion models for videos. To be able to scale to higher

parametric models, [7] proposed parameterized CA. How-

ever, these types of methods are typically restricted to small

parametric classes of image transformations (e.g. transla-

tion or rotation) and cannot account for multiple objects or

strong changes in pose.

Object Localization and Segmentation: Identifying

and localizing the semantic classes within an image is an

example of a task for which invariances cannot be easily

parametrized. In addition to accounting for non-rigid trans-

formations, large intra-class appearance variations must

also be considered. Thus, none of the CA techniques

described above would be able to give a semantically-

meaningful separation into classes.

Instead, most approaches to this problem incorporate

prior knowledge about class appearance and image com-

position to guide image segmentations or bounding box

localizations. If fully-supervised training data is avail-

able, the most effective method is to train discriminative

models that can be used to directly classify individual im-

age regions. These local predictions are typically guided

towards global consistency using prior knowledge such

as local similarity [4, 9, 19], contextual geometric con-

straints [37], or agreement between multiple independent

segmentations [1, 16]. More recently, convolutional neural
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networks (CNNs) have been applied to region classification

with great success [10, 27].

Without pixel-wise labeling of training images, simple

discriminative models are no longer viable. Some weakly-

supervised approaches attempt to simultaneously learn dis-

criminative classifiers alongside object locations through al-

ternating methods like multiple-instance learning [14, 5] or

matrix completion [3]. Others use graphical models that

enforce consistency both within and across images to en-

sure class similarity [39, 41, 42]. However, exact infer-

ence in these models is typically intractable, so approxi-

mate methods must be used instead. Furthermore, all of

these methods require large, non-convex optimization prob-

lems that are sensitive to initialization and do not scale well

to large data sets. Leveraging the recent work in the op-

timization of deep networks, approaches based on CNNs

have resulted in high-quality segmentations even without

full supervision [33, 30, 34, 31, 32]. However, none of these

approaches can be used like SCA for the unsupervised clus-

tering of images into semantically-meaningful regions.

3. Semantic Component Analysis

Data decomposition techniques that rely on matrix fac-

torization approximate a matrix X (with data instances xi as

its columns) as the product of two lower-rank matrices W

and B, i.e. X ≈ BW⊺ (see notation 1). In other words, data

points are represented as linear combinations of a shared set

of basis components, i.e. xi ≈ Bwi =
∑

j wijbj where bj
are the columns of B and wi are the columns of W. While

modifications can be made depending on the application of

interest through constraints on the factors (e.g. NMF), dif-

ferent loss functions for measuring reconstruction error (e.g.

robust PCA), or regularization terms (e.g. sparse coding),

matrix factorization approaches are limited in their ability to

incorporate more complicated priors. It is also unclear how

they could be effectively applied to structured tasks like im-

age segmentation in which semantic regions are known to

be spatially localized in distinct, non-overlapping regions.

SCA addresses these issues by allowing for rich, instance-

level constraints that can depend on image content.

3.1. Semantic Constraints for Segmentation

Ideally, we seek a semantically-interpretable technique

for CA that represents each class as a single component.

In order to encourage that this be the case in the absence

of pixel-level annotations, we must rely on priors and con-

straints that summarize assumptions about how classes are

represented in images. Specifically, we note that images

tend to be separated into spatially-consistent partitions of

1 Bold capital letters X denote a matrix; Xi represents the ith column

of the matrix X. Bold lower-case letters a column vector x; xj denotes

the scalar in the jth element of x. All non-bold letters represent scalars.

object classes. However, because of intra-class variabil-

ity and differing spatial layouts across images, these con-

straints would be inconsistent and impossible to enforce in

traditional matrix factorization approaches.

Instead, we propose an exact data decomposition of each

image feature xi into it’s own distinct set of instance com-

ponents Hi (with columns hij) in lieu of a shared basis:

xi = Hiwi =
m
∑

j=1

wijhij ∀i = 1, . . . , n. (1)

Here, n represents the size of the dataset and m represents

the total number of semantically-related groups of compo-

nents (i.e. object classes) that we consider. Observe that

having a separate set of components for each image–where

the basis Hi depends on the image index i–differs from

traditional CA methods which use a global basis common

to every image. While learning m × n components from

only n training examples may seem intractable, we show

in Section 3.2 how this can be accomplished by enforcing

similarity between instance components with same index

j, i.e those belonging to the same object class. Expos-

ing these latent components allows for easily incorporat-

ing instance-level semantic constraints related to a priori

knowledge about individual data points, such as the layout

and composition of objects within images. Specific exam-

ples of these constraints are given in Section 4 for the appli-

cation of semantic segmentation, which allow hij to con-

tain the image features corresponding to the pixels in the ith

image assigned to the jth class.

This formulation assumes additive image representa-

tions, meaning that an image’s global feature vector can be

expressed as the sum of its segment feature vectors. Note

that many shallow representations share this property, in-

cluding all average-pooled local features. However, the re-

cently popularized deep features (extracted from interme-

diate activations in a convolutional neural network [17])

do not have this property due to the complicated nonlin-

ear interactions within the network. In this paper, we use as

image representations simple ℓ1-normalized Bag-of-Words

histograms over dense SIFT descriptors [28] quantized to

d = 1024 dictionary elements.

The rest of this section describes the intuitive instance

constraints that we enforce in order to encourage the se-

mantic interpretability of components.

3.1.1 Superpixel Oversegmentation

To introduce local consistency and reduce computational re-

quirements, we begin with an over-segmentation of each

image into pi locally-consistent superpixel feature vectors

of dimensionality d. Let Si ∈ R
d×pi be a matrix with the ith

image’s normalized superpixel features sik as its columns.

Let qik represent the proportion of the image taken up by the
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(a) Image (b) Ground Truth (c) λ = 0.05 (d) λ = 0

Figure 2. A comparison of segmentation results both with (c) and

without (d) spatial consistency regularization.

kth superpixel and denote by qi the vector with these values

as its elements. Thus, due to its additivity, xi = Siqi. That

is, the image histogram xi is a convex combination of its

superpixel histograms sik.

To account for object class occlusion in the image, we

enforce that the instance components hij come from non-

overlapping partitions of superpixels by defining indicator

variables zijk ∈ {0, 1} that are 1 if the kth superpixel be-

longs only to the j th class and 0 otherwise. Let zij be

the column vector formed by stacking the zijk for all k.

Then, the weighted component histograms can be written

as wijhij = Sidiag(qi)zij , where wij represents the pro-

portion of the ith image belonging to the jth class. This

also constrains the component by wij = q
⊺

i zij so that

0 ≤ wij ≤ 1 and
∑m

j=1
wij = 1.

3.1.2 Spatial Consistency via Spectral Clustering

While the over-segmentation of images into superpixels

provides some local spatial consistency, many superpixels

could still make up a single object. Thus, we incorporate an

additional regularization term borrowed from the spectral

clustering and co-segmentation literature [19] that promotes

smoothness between superpixels. Specifically, we define a

similarity matrix Wi that assigns each pair of superpixels

in an image a weight determined by their spatial proximity

and color similarity. Denote by Li the normalized graph

Laplacian constructed from Wi. Enforcing that the quan-

tity z
⊺

ijLizij be small (less than a threshold parameter ρ)

encourages nearby superpixels with similar color to take on

the same label. Fig. 2 shows an example of this.

3.1.3 Constraint Relaxation

Note that this set of constraints is non-convex since we en-

force zijk to be binary, which would make optimization dif-

ficult. Thus, we first relax this constraint by allowing zijk
to take on values within the continuous interval [0, 1]. Since
∑m

j=1
zijk = 1, zijk can be interpreted as the degree to

which the kth superpixel in the ith image belongs to the jth

class. The solution can then be rounded by selecting the

class with the highest value in order to produce a discrete

segmentation.

Combining this with the constraints in the previous sec-

tion allows us to write our semantic instance constraints as

follows in Eq. 2:

Ci =
{

wij ,hij : wijhij = Sidiag(qi)zij , z
⊺

ijLizij ≤ ρ,

wij = q
⊺

i zij ,

m
∑

j=1

zijk = 1, 0 ≤ zijk ≤ 1
}

(2)

This constraint set is very general and can be easily adapted

to include additional image priors or modified to be appli-

cable to tasks even beyond image segmentation. Even so,

these simple, intuitive constraints surprisingly still result in

semantically-meaningful decompositions. Furthermore, be-

cause this set is convex, it allows for convenient optimiza-

tion, as discussed later in Section 3.3.

3.2. Problem Formulation

While these instance-level constraints limit the segmen-

tations possible within a single image, there is no informa-

tion shared between images to aid in the consistent assign-

ment of classes. However, we can assume that regions be-

longing to the same class should be more similar than those

belonging to different classes, and so too should their corre-

sponding instance components. We formalize this intuition

with the optimization problem in Eq. 3, which constrains

the global image feature vector xi to equal a linear combi-

nation of its instance components hij while minimizing the

sum of weighted distances to exemplar components bj that

are representative of the semantic classes.

argmin
wij ,hij ,bj

n
∑

i=1

m
∑

j=1

w2

ij ‖hij − bj‖
2

2

s.t.

m
∑

j=1

wijhij = xi, {wij ,hij} ∈ Ci

(3)

This formulation attempts to regularize the solution for hij

by shrinking them towards other instance components of the

same class while adhering to the instance-level constraints

in Ci. Effectively, instead of minimizing the total recon-

struction error of each image, we minimize the variation

within classes. Inference in this paradigm for CA amounts

to finding instance components that adhere to image con-

straints and exactly reconstruct the data while being as close

as possible to shared exemplar components, in contrast to

traditional matrix factorization approaches which simply

project the data onto a shared basis.

3.3. Optimization

Because Eq. 3 is not jointly convex, we take an alter-

nating minimization approach for finding its solution that

is similar in spirit to Lloyd’s algorithm for k-means [26].
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After a random initialization, we alternate between solv-

ing first for the exemplar components and then for the indi-

vidual instance components and coefficients. This training

procedure is easily implementable with off-the-shelf solvers

and often requires very few iterations to converge.

With the coefficients wij and components hij fixed, the

exemplar components bj are given simply as the weighted

averages of all of the individual components that share the

same class (with weights given by w2

ij).

argmin
bj

n
∑

i=1

w2

ij ‖hij − bj‖
2

2
=

∑n

i=1
w2

ijhij
∑n

i=1
w2

ij

(4)

Then, we fix the exemplar components bj allowing for

the separation of our problem into n smaller, independent

subproblems–one per training image. This is accomplished

by considering augmented variables h̃ij formed by concate-

nating the unnormalized components wijhij with their cor-

responding coefficients wij , as shown in Eq. 5.

argmin
wij ,h̃ij

m
∑

j=1

h̃
⊺

ij

[

Id −bj
−b

⊺

j b
⊺

j bj

]

h̃ij s.t. h̃ij =

[

wijhij

wij

]

m
∑

j=1

[

Id 0
]

h̃ij = xi, {wij ,hij} ∈ Ci (5)

These subproblems are sparse, strictly convex quadratic

programs in both wij and hij as long as the constraint set Ci
is convex, resulting in a unique solution. (Note that while

the inner matrices are not positive definite in general, they

are when restricted to the affine subspace defined by the lin-

ear equality constraint.)

This optimization procedure is similar to the alternating

projection algorithm for finding the approximate intersec-

tion between two sets. Specifically, we have two competing

goals. On one hand, we want all instance components hij to

be (approximately) equal. Projection onto this set yields the

exemplar components bj given simply as the weighted aver-

age in Eq. 4. But on the other hand, all instance components

need to exactly reconstruct their corresponding data points

and satisfy any additional constraints. This projection is ac-

complished through Eq. 5. This type of algorithm is known

to converge to a solution when the two sets are convex [11]

or more generally when they are smooth manifolds that in-

tersect transversally [22]. In our case, the exact geometric

characterization of this problem is not obvious. However,

in Figures 3 and 4 we demonstrate empirically that our al-

gorithm converges quickly and is robust to initialization in

both unsupervised and weakly-supervised environments.

3.4. Introducing Supervision

While the formulation described thus far does not require

any training labels, various levels of supervision can be eas-

ily incorporated by simply fixing certain known elements
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Figure 3. Our algorithm’s convergence without constraints on syn-

thetic data and 50 random initializations. Despite its alternating

nature, our approach is robust to initialization and typically con-

verges very quickly in both objective value (a) and reconstruction

error from projection onto the exemplar components (b).
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Figure 4. Left: The convergence of our algorithm with the con-

straints in Eq. 2 on the MSRC2 data set with weak labels. Show-

ing 20 random initializations, both the objective value (a) and the

training accuracy (b) consistently converge to the same values after

only around 3 iterations. Right: Example segmentations at differ-

ent points in the training process. After iteration 1, the large water

and sky regions are successfully found, while iterations 2 and 3

segment the smaller boats.

during training. In particular, weak supervision can be in-

cluded by forcing the coefficients wij for all absent classes

to be zero, which effectively requires summing only over

those classes present in an image.

In the case of full supervision, the true class assignments

for each superpixel are known, so training reduces simply

to taking weighted averages over instance components be-

longing to the same class, as shown in Eq. 4.

3.5. Relation to Matrix Factorization

While SCA learns a separate set of instance components

for each image, the exemplar components bj can be repre-

sented simply as the weighted average of all instance com-

ponents hij sharing the same index j. Importantly, un-

like other methods employing high-dimensional and over-

complete bases, the many instance components of SCA are

not estimated independently; they are related through the

smaller set of exemplar components, which can be inter-

preted as a shared basis representative of the training data.

Despite their seemingly unfamiliar construction, we em-
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pirically found that the exemplar components of SCA share

close connections between the bases learned through tra-

ditional matrix factorization techniques. For comparison

purposes, we use the shared exemplar components as a

basis that can approximately reconstruct data in the same

manner as PCA or NMF. Without any additional semantic

constraints Ci, this basis consistently achieves reconstruc-

tion performance comparable to that of PCA despite the

different objective function. This is shown empirically in

Fig. 3. In addition, by introducing nonnegativity constraints

on both wij and hij , the resulting exemplar components

are qualitatively similar to the basis vectors found through

NMF. This is shown in Fig. 5, which gives a visual compar-

ison between our method and both PCA and NMF.

The key contribution of SCA is that, unlike matrix fac-

torization approaches, explicitly decomposing a shared ba-

sis into separate instance components allows for richer con-

straints that would otherwise not be possible.

3.6. Incorporating Robustness

The Grassmann Average [12] (GA) is a recent method

for scalable dimensionality reduction that represents data

points as one-dimensional subspaces and constructs a lead-

ing component as their spherical average. This is very sim-

ilar to our method which also represents components as

weighted averages.

Specifically, GA can be considered a special case of our

problem for a single component (m = 1) with the additional

constraints wi = ±1 and ‖b‖
2
= 1. After incorporating

these constraints, Eq. 3 can be written as:

argmax
wi,b

n
∑

i=1

wix
⊺

i b s.t. wi = ±1, ‖b‖
2
= 1 (6)

Note that wi = 1 if and only if x
⊺

i b is positive. Thus, the

objective can be equivalently represented by replacing the

multiplication of x
⊺

i b by wi with an absolute value, result-

ing in exactly the same problem solved by GA.

One of the main benefits of GA is that robustness can be

easily incorporated simply by using the robust feature-wise

trimmed average (in which the smallest and largest P% of

values are ignored) in place of the ordinary average, which

is highly sensitive to outliers. We apply this same idea to

introduce robustness to our algorithm as well, which was

found to be particularly effective in cases when supervision

is minimal or altogether unavailable. However, while GA

must rely on greedy methods for acquiring more than just

the leading component (which could affect what is consid-

ered to be an outlier), our algorithm is able to estimate mul-

tiple components simultaneously.

4. Application to Semantic Segmentation

In this section, we describe how our method can be triv-

ially applied to the task of semantic segmentation. Our in-

tention is not to compete with highly-engineered, state-of-

the-art systems, but instead to demonstrate that introducing

intuitive instance-level constraints to traditional CA tech-

niques results in interpretable semantic components. Fur-

thermore, our method easily accommodates any level of su-

pervision, allowing for both unsupervised clustering of im-

age regions and weakly-supervised semantic segmentation.

The full semantic segmentation objective can be written

by combining Eq. 3 with the semantic constraints in Eq. 2

as follows. The segment belonging to the jth class is then

represented as the collection of superpixels whose indices

correspond to the non-zero elements in zij .

argmin
wij ,zij ,bj

n
∑

i=1

m
∑

j=1

{

‖Sidiag(qi)zij − wijbj‖
2

2
+ λz

⊺

ijLizij

}

s.t. q
⊺

i zij = wij ,

m
∑

j=1

zijk = 1, 0 ≤ zijk ≤ 1 (7)

Note that we replace the quadratic inequality constraint

from Section 3.1.2 with an equivalent penalty term by in-

troducing a trade-off parameter λ that controls the level of

smoothing. Its value is chosen through cross validation.

5. Experiments

To demonstrate the effectiveness of our method, we eval-

uate it against a number of datasets with varying levels of

superivsion.

First, we consider synthetic data with minimal controlled

intra-class variation. Specifically, we use 500 training im-

ages and 200 testing images generated by first selecting

one of three backgrounds from the Salzburg Texture Image

Database [20] and then randomly placing up to 7 rescaled

objects segmented from the MSRC2 dataset [35], for a to-

tal of 10 classes. There is a maximum of 50% overlap with

other objects and the image edges (simulating occlusion),

and there are 2.9 classes per image on average.

Table 1 shows the segmentation performance of our al-

gorithm with varying levels of supervision using a BoW

dictionary size of 1024 with smoothness regularization pa-

rameter λ = 0.05 and using a robust trimmed average

with P = 20%. In the unsupervised setting, clusters were

permuted and assigned to class labels in order to maxi-

mize average training accuracy. As unsupervised baselines,

we also compare k-medians clustering of both ground-truth

segments and independent superpixels. Even though our

method is based on superpixels, its performance is very

close to the clustering of ground-truth segments, even per-

forming better on smaller classes. This is likely due to the
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Figure 5. A comparison of the components found through SCA with (a) PCA and (b) NMF. The first column in each row shows a recon-

structed image while the next five columns show the components used and the corresponding coefficients that minimize its reconstruction

error. Row (i) uses the basis found through matrix factorization (either PCA or NMF), (ii) the shared exemplar components bj of SCA,

and (iii) the instance components hij of SCA that exactly reconstruct the image. The qualitative similarity between these components and

the comparable reconstruction performance suggests a close relationship between SCA and traditional matrix factorization, despite their

different objective functions. (Note that each column is normalized to the same scale for visualization.)

Table 1. Accuracies with different levels of supervision.

ae
ro

p
la

n
e

co
w

b
u

il
d

in
g

ca
r

sh
ee

p

tr
ee

g
ra

ss

m
ar

b
le

st
o

n
e

b
ar

k

to
ta

l

1 2 3 4 5 6 7 8 9 10

Cluster (GT) 02 66 41 52 00 96 98 96 49 96 77

Cluster (Super) 00 29 96 32 03 39 52 29 31 28 36

SCA (None) 76 73 84 65 84 01 86 88 81 75 77

SCA (Weak) 80 81 90 74 86 53 81 83 82 88 82

SCA (Full) 77 78 85 74 78 55 86 88 88 92 85

Table 2. MSRC2 total segmentation accuracies.
[39] [2] [25] SCA (None) SCA (Weak) SCA (Full)

Total Acc. 67 69 71 60 70 77

Table 3. Sift Flow average segmentation accuracies.
[39] [40] [41] SCA (None) SCA (Weak) SCA (Full)

Avg. Acc. 14 21 28 14 19 25

joint assignment of all classes within an image according

to the image formation constraints in Ci. Simply clustering

superpixels results in very poor performance because small

regions do not contain enough class-specific features.

While increasing the level of supervision improved ac-

curacy somewhat (especially for “tree”, which is visually

similar to the background classes such as “grass”), our al-

gorithm was generally able to cluster the image regions

into the correct semantic classes even with minimal train-

ing. Class confusion matrices and example segmentations

are shown in Fig. 6.

We also evaluated our algorithm on the MSRC2

dataset [35], which contains 591 images segmented into 21

ground truth classes. We first applied our method in the

unsupervised setting with m = 10 latent classes. Smooth-

ness regularization was used with λ = 2 along and exem-

0.02

0.66

0.41

0.52

0.00

0.96

0.98

0.99

0.49

0.96

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.00

0.29

0.96

0.32

0.03

0.39

0.52

0.29

0.31

0.28

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.76

0.73

0.84

0.65

0.84

0.01

0.86

0.88

0.81

0.75

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.80

0.81

0.90

0.74

0.86

0.53

0.81

0.83

0.82

0.88

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.77

0.78

0.85

0.74

0.78

0.55

0.86

0.88

0.88

0.92

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Ground

Truth

Cluster

(GT)

Cluster

(Super)

SCA

(None)

SCA

(Weak)

SCA

(Full)

Figure 6. Top: Confusion matrices for the accuracies in Table 1.

Bottom: Example segmentations for the different methods. In-

creasing levels of supervision improve segmentation consistency.

plar components were computed using the median, i.e. with

P = 50%. Example qualitative results are shown in Fig. 7.

Note that the resulting groups are semantically related and

generally give a good separation between classes. For ex-

ample, nearly all “aeroplane” pixels were assigned to clus-

ter 2, which also included pixels associated with other man-

made objects such as “car” and “boat”.

We tested our algorithm with weak labels provided at

both training and testing time. To provide context, we also

show results of our method when training without any labels

and with full pixel-level annotations. We used the standard

method for separating the training and testing data [35]. Ta-

ble 2 summarizes our results in terms of total pixel accu-

racy in comparison to other methods. Despite the simplic-

ity of our algorithm, we achieve comparable performance

to many state-of-the-art systems specifically engineered for

the task. Fig. 8 shows some example successful and unsuc-

cessful segmentations.

Finally, we evaluated performance on the challenging
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grass
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car
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aeroplane

Figure 7. Example unsupervised segmentation results on the

MSRC2 dataset. The bar plots on top show the proportion of pix-

els associated with a given ground truth class that were assigned

to each of the 10 unsupervised clusters. Below are example im-

ages and the resulting segmentations achieved by our algorithm,

showing clear separation into semantically-meaningful groups.

Sift Flow dataset [24], which contains 2688 total images

(200 of which are used only for testing) and 33 classes, with

an average of 4.43 classes per image. Following [41], we

predict weak labels of testing images using linear SVMs

trained on 4096-dimensional features extracted from the

last fully-convolutional layer (fc6) in the pre-trained Caffe

CNN [17]. Table 3 shows average class accuracy in compar-

ison to other methods. Results from unsupervised and fully-

supervised training are also shown for comparison. We

again achieve comparable performance to other methods

that are designed specifically for weakly-supervised seman-

tic segmentation and use much richer feature sets (color,

GIST, and superpixel locations) and priors (e.g. objectness,

ILP, and discriminative appearance models.)

6. Conclusion

In this paper, we outlined a general framework for ex-

plicitly introducing interpretability to CA. This was ac-

complished through an alternative objective function (rather

building grass tree cow sheep sky aeroplane water car road cat 

(a) Successful Segmentations

(b) Failure Cases

Figure 8. Example weakly-supervised segmentations from the

MSRC2 dataset showing both (a) successful and (b) unsuccess-

ful cases. Typical failure cases occur because of confusion be-

tween visually similar classes that commonly co-occur (e.g. sky

and road) or when different classes have very similar color (e.g.

the gray cat sitting on the road.)

than the traditional least squares reconstruction error from

matrix factorization) that exposes instance components

which can be constrained using prior information. Specif-

ically, we formalized an intuitive observation: images tend

to be partitioned into spatially-consistent, non-overlapping

regions that belong only to a single class. Despite their

simplicity, these constraints allow for the semantically-

meaningful clustering of image regions. Requiring only

BoW features and superpixel color similarities, our algo-

rithm is easily-implementable, efficient, and robust to ini-

tialization. Furthermore, varying levels of supervision can

be incorporated trivially.

Even without manual engineering, fine-tuning, or over-

fitting to a particular dataset, we achieve competitive per-

formance on standard weakly-supervised semantic segmen-

tation tasks. Our approach is general, allowing for the sim-

ple inclusion of additional constraints and priors with the

potential to improve these results even further. SCA could

also be easily adapted to numerous other applications be-

yond semantic segmentation, including time series analysis,

background modeling in videos, etc.
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