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Abstract

The pervasiveness of massive data repositories has led

to much interest in efficient methods for indexing, search,

and retrieval. For image data, a rapidly developing body of

work for these applications shows impressive performance

with methods that broadly fall under the umbrella term of

Binary Hashing. Given a distance matrix, a binary hashing

algorithm solves for a binary code for the given set of ex-

amples, whose Hamming distance nicely approximates the

original distances. The formulation is non-convex — so ex-

isting solutions adopt spectral relaxations or perform co-

ordinate descent (or quantization) on a surrogate objective

that is numerically more tractable. In this paper, we first

derive an Augmented Lagrangian approach to optimize the

standard binary Hashing objective (i.e., maintain fidelity

with a given distance matrix). With appropriate step sizes,

we find that this scheme already yields results that match or

substantially outperform state of the art methods on most

benchmarks used in the literature. Then, to allow the model

to scale to large datasets, we obtain an interesting reformu-

lation of the binary hashing objective as a non-negative ma-

trix factorization. Later, this leads to a simple multiplica-

tive updates algorithm — whose parallelization properties

are exploited to obtain a fast GPU based implementation.

We give a probabilistic analysis of our initialization scheme

and present a range of experiments to show that the method

is simple to implement and competes favorably with avail-

able methods (both for optimization and generalization).

1. Introduction

The pervasiveness of massive image data repositories

with billions (and even trillions) of examples has led to

a renewed interest in efficient algorithms for search and

indexing. These datasets correspond to surveillance data,

text, video sequences, measurements from scientific exper-

iments, gene expression profiles and photo collections — in

each case, the data is very high dimensional and efficient

storage and retrieval allows important downstream applica-

tions to operate seamlessly. Driven by these requirements,

research in the last decade has focused on both compact rep-

resentations of the data to mitigate dependence on its na-

tive dimensionality as well as approximate forms of nearest

neighbor schemes since a linear scan is impractical in most,

if not all, practical deployments.

A simple solution which is (partly) cognizant of both the

space and time considerations in the above setting is dimen-

sionality reduction. Clearly, by mapping (or embedding) the

distribution from the native space D to lower dimensions,

d ≪ D, significantly reduces the storage requirements.

Further, even if a linear (or nearest neighbor) search were

employed, its running time may only be weakly dependent

on D. While this strategy is sometimes sufficient, the liter-

ature suggests that retrieval times can be substantially im-

proved if the embedding were binary. The Hamming dis-

tance between a query point and an item in the database

can now be computed via logical operations (such as XOR).

This allows a naı̈ve search, even on a massive dataset, to run

within a few seconds. Also, allocating 32 or 64 bits per item

(e.g., an image), one can fit a billion-sized dataset in the

main memory of a moderately priced workstation. These

observations have led to a nice set of results which adapt

the rich theory of Locality Sensitive Hashing (LSH) [13] to

this application. LSH obtains dimensionality reduction us-

ing Random projections [5]. By the Johnson-Lindenstrauss

lemma, original distances between the examples are pre-

served (up to some distortion) with high probability. Now,

as the number of bits grows, LSH offers increasingly better

fidelity with the original raw distances. Recent work has

also derived kernelized versions of LSH [17], which makes

the ideas applicable in an even broader setting.

Despite the various advantages of LSH, empirical results

suggest that with a restricted number of bits (usually less

than a hundred), LSH does not perform very well. In other

words, to be practically useful, the number of bits may have

to be large which seriously limits its applicability in prob-

lems in computer vision [12]. An elegant solution to this

problem is to use learning within hashing, that is, instead

of treating the hashing function as a black-box, several ap-

proaches learn the item-wise code from the data either in a

supervised or unsupervised setting [12]. The core goal in

most of these proposals is to derive a specific hashing code

whose Hamming distances reflect the relationships given by
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a semantic distance matrix or class labels obtained using do-

main knowledge. Such strategies significantly outperforms

a vanilla LSH scheme and yield state of the art results for

computer vision and NLP applications [19]. From a prac-

tical point of view, learning binary embeddings offers yet

another key advantage. Observe that calculating distances

between image or text data directly, as if their native repre-

sentations were points in a vector space is often meaning-

less. One often performs extensive pre-processing to ex-

press images as feature descriptors or graphs and text may

be encoded as a distribution over topics. Such objects may

not support standard arithmetic operations such as addition

and multiplication. So, calculation of ‘distances’ between

them typically involve an oracle which computes graph cor-

relation and/or geodesics or divergence measures between

probability distributions over topics [3]. Conceptually, it

seems logical to “learn” a binary embedding that best pre-

serves these domain-specific affinities, instead of finding a

lower dimensional embedding that is low-distortion merely

in terms of Euclidean distance, a quantity which is incon-

sistent with the geometry of the space of these objects.

Related Work. Distance preserving hashing (and binary

embedding) is a very well studied problem in theoretical

computer science, coding theory and machine learning. To

keep our review concise, we will restrict our discussion to

papers that deal with learning binary hashing functions.

Semantic hashing [30] uses a deep generative model (Re-

stricted Boltzmann machine) which is learnt via pretrain-

ing followed by a fine-tuning step to obtain the hashing

function, which preserves semantic distances in Hamming

space. Matches to a query vector are found by exploring

a Hamming ball around the original vector. The method

works well unless the number of bits d, is large, when per-

turbations for a given radius become expensive. Spectral

hashing [35] uses the eigenfunctions of the Laplacian to

capture the variance of the data, which is then assigned ad-

ditional bits in the encoding. The semi-supervised hashing

algorithm minimizes a loss function defined on the labeled

data, but similar to spectral hashing optimizes a variance

based measure for the labeled (plus the unlabeled) exam-

ples. Kulis’ BRE algorithm [16] performs coordinate de-

scent to minimize the difference between the Hamming dis-

tances and the original Euclidean distances whereas [27]

uses a formulation similar to [16] but with a different loss

function. Using PCA as a starting point, [11, 10] minimize

the quantization error of mapping the (reduced dimension-

ality) real-valued data to vertices of the binary hypercube

using a Procrustes type algorithm. Lin et al. [21] argue

for training the hashing function one bit at a time, to allow

dissimilar objects to move apart. Ke et. al. [14] formulated

the task of learning the hashing function within the boosting

setting. But this algorithm requires specification of example

pair relationships, which may become prohibitive. Other re-

lated works include parameter sensitive hashing [31] which

is an interesting variation of LSH, and asymmetric hash

functions [25]. A recent work on multidimensional spec-

tral hashing (MDSH) [34], inspired by spectral hashing, is

in some sense the closest to our work. It seeks to optimize a

similar cost function as us — the loss between the distance

in the Hamming space and the given distance function. The

bits in the final solution correspond to thresholded eigen-

vectors of the affinity matrix.

Maximize fidelity with all entries of the given distance

matrix? The underlying goal in many binary hashing

schemes is to make the Hamming distance of the obtained

binary codes resemble the original distance matrix, in its

entirety, as well as possible. On the other hand, hashing for-

mulations studied in theoretical computer science primarily

look at a retrieval task where the focus is slightly different.

In this case, various authors [8, 34] have suggested that only

faithfully reconstructing the smaller distances between ex-

ample pairs is sufficient. Notice that this makes intuitive

sense if the follow-up procedure is concerned only with

(unsupervised) nearest neighbor queries, and the goal is to

optimize querying time. However, in recent work, these

ideas have also been used, with minor adaptation, within

machine learning and computer vision where the eventual

goal is to instead retrieve examples which are semantically

similar to the query (e.g., objects from the same class) [15].

This change in the eventual application needs careful han-

dling. It is easy to see that preserving only the small dis-

tances in an embedding is problematic here — such an ap-

proach will not bother maximizing inter-class distances of

the codes, leading to poor generalization on out-of-sample

examples. Essentially, the learned hashing function is bi-

ased (only by positive examples) and is not discriminative.

Algorithms such as BRE, MDSH (with a large number of

bits) and ITQ [16, 34, 10] indeed seek to mirror the dis-

tance matrix in its entirety, which is the approach we adopt

here. This is done by solving for a matrix Ah (the hamming

distance matrices obtained from the binary code), such that

|A − Ah|
2 is minimized given a ‘target’ distance function

A. While [16] stays close to the original idea of local-

ity sensitive hashing and requires the hashing function to be

of a certain functional form, [34] has no such restriction.

In fact, this approach most closely resembles our proposal

since it expresses Aaff (the hamming affinity matrix) as a

factorization of the form, Aaff = Y ΛY T , where Y is later

used to derive the binary code and Λ is a weight matrix.

The solution is obtained by thresholding the eigen vectors

of Aaff .

Our Contributions. Many results on the problem so far

use eigen-vector decomposition to provide a warm start to

the subsequent iterative schemes. One example of this strat-

egy is the ITQ algorithm [10]. But very recent works [34]

argue for thresholding the eigen-vectors directly. We show
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with a simple toy example how this may be unsatisfactory,

even in a noise-less setting. An example in the Supplement

(see Figure 1) shows a target distance matrix A which is

exactly equal to the Hamming distance matrix of a given

code, whereas the generated code is not optimal. Of course,

multiple binary codes can yield the same distance matrix;

nonetheless, in some sense, this represents the ideal input to

the problem. We construct the corresponding affinity matrix

as Aaff = 1
2 (2d1n×n−Ah) as in [34] and then threshold its

eigen vectors based on their sign. Even in this situation, the

matrix is far from the true code. This is not a hand crafted

example to show a rare occurrence. We can verify that by

sampling affinity matrices which are very close estimates

(modulo a small error) of affinities obtained from randomly

generated codes (X), across a number of different settings,

we seldom obtain the exact code. One reason for this be-

havior is that in computing Hamming distance (or its affin-

ity), all bits are equally important. This is not true for eigen

vectors whose importance is strictly weighted by the mag-

nitude of eigen values. We find that such a decomposition is

still useful — not for direct thresholding, but to find a basis

where we obtain an initial real-valued embedding. Further,

this embedding can be significantly improved in practice by

a numerically stable optimization scheme, yielding state of

the art results on a variety of benchmarks.

The main contributions of this paper are: (i) We present

two related optimization models for binary hashing. The

first is an Augmented Lagrangian approach that solves a

relaxation of the original formulation. The second recasts

the problem in a form very similar to the well-known Non-

negative Matrix Factorization. In the latter case, the update

steps are very similar to those used in widely used NMF im-

plementations for large scale datasets; (ii) Our initialization

(used for both approaches) is generated using a very simple

rule. We show that if the data follows certain (mild) dis-

tributional assumptions, we can bound the obtained Ham-

ming distance as a function of the original distances. Note

that such results are the de-facto desiderata of any hash-

ing framework; (iii) For experiments, we show substantially

improved performance (for optimization and generalization

performance) on benchmarks used in many state of the art

algorithms for this problem. We also discuss a CUDA based

implementation which is significantly faster than an non-

GPU implementation, leading to significant runtime gains.

2. The Proposed Algorithm

Let X̂ ∈ R
n×D be a high dimensional matrix represent-

ing n examples in D dimensions. Let A be the correspond-

ing distance matrix where A ∈ n× n. 1 Our goal is to em-

bed X̂ into a lower dimensional binary space X ∈ n × d,

where D ≫ d, while preserving their relative distances to

1“Distance” refers to any function that returns low values for near items

whereas “affinity” refers to functions that return high values for near items.

the extent possible. Since X is binary, we compute their

relationship using the Hamming distance. Let Ah be the

corresponding Hamming distance matrix in R
n×n, where

each entry Ah(i, j) gives the Hamming distance between

points i and j in X . Then, our objective can be written as

min ‖A−Ah‖
2
F s.t. Ah = Φ(X). (1)

Here, Φ(·) is a function that provides the Hamming dis-

tance matrix of X . To represent Φ, we can write Ah(i, j) =
Xi ⊕ Xj where Xi and Xj are row vectors of X . Note

that these rows correspond to the binary embedding of

points i and j and ⊕ denotes the XOR operation of two

binary vectors. However, substituting this linear comple-

mentarity form directly into (1) yields a difficult optimiza-

tion problem. Instead, we can observe that the correspond-

ing XOR operation may be written in algebraic form as

Ah = X(1−X)T +(1−X)XT . By inspection, the identity

holds because an XOR operation between two binary vec-

tors counts the number of locations where the bits are dif-

ferent. Therefore, the (i, j) entry of the matrix X(1−X)T

simply counts the locations where Xi is 1 and Xj is 0. On

the other hand, corresponding entry in (1 − X)XT counts

the locations where Xi is 0 and Xj is 1. Substituting the

identity for Ah into (1) directly is not particularly attractive

because it gives a quatric polynomial.

2.1. Augmented Lagrangian Formulation

We first present an Augmented Lagrangian based ap-

proach [7]. To do so, we first write the above conditions

as a constrained optimization problem, with a slight refor-

mulation.

Let Ah = XET + EXT − 2XXT , where E ∈ R
n×d

is a matrix of all 1s. Essentially (XET )ij counts the num-

ber of 1s in Xi whereas (EXT )ij does the same for Xj .

Also, (XXT )ij counts the number of bits where both are 1.

Therefore, computing the sum of the first two terms and

subtracting the intersection gives us the precise form for

Hamming distance. This yields the following optimization

problem,

min
X,Y

||A− Y ||2F

s.t. Y = XET + EXT − 2XXT , X ∈ {0, 1}n×d

(2)

Note that Ah is replaced by Y for notational simplicity.

We relax the binary restrictions to let 0 ≤ Xij ≤ 1 instead.

Hence, we are interested in solving for a stationary point of

the following optimization problem,

min
X,Y
||A− Y ||2F

s.t. Y = XET + EXT − 2XXT , X ∈ [0, 1]
n×d

(3)

Using the standard Augmented Lagrangian Method (ALM)
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[26] and denoting ∆ =
(

XET + EXT − 2XXT
)

,

min
X,Y

‖A− Y ‖2F − 〈Λ, Y −∆〉+
µ

2
‖Y −∆‖2F

s.t. 0 ≤ X ≤ 1

(4)

Let the objective function be denoted as L(X,Y ; Λ;µ)
where Λ and µ are optimization parameters. Our pro-

Algorithm 1 Augmented Lagrangian Method (ALM)

Given X0, Y0 = X0, µ0 > 0,Λ0. (Xk denotes the value

of X at the k-th iteration.)

while convergence not satisfied do

Compute an approximate minimizer of L i.e.

(Xk+1, Yk+1) = argmin
X,Y

L(·, ·,Λk;µk) (5)

Project Xk+1 to the feasible set i.e. 0 ≤ X ≤ 1 and

check for convergence (stopping criteria).

Set Λk+1 = Λk+1 − µk∆k

Update µk+1 ≥ µk. For instance, we can set µk+1 =
βµk for a constant β > 1.

end while

posed algorithm is given in Algorithm 1. Although there

are several ways to compute (5) in Alg. 1, we adopt a

simple gradient descent approach, where we calculate the

gradients ∇L(Xk) and ∇L(Yk) of L wrt X and Y respec-

tively (see supplement). Then, the variable X is updated as

Xk+1 = Xk − αk∇L(Xk), where αk is the step size of

the kth iteration computed using a simple backtracking line

search strategy. A similar update is used for Y . Momentum

methods or Quasi-Newton methods can be used, if desired,

but the simplicity of the gradient descent step provides com-

putational advantage for larger datasets.

In closing, we point out a few characteristics of the prob-

lem. First, because A has all values between 0 and 1, after

a few iterations of ALM, the objective function is domi-

nated by the penalty term with µ. Therefore, the problem

behaves like a convex objective as the Hessian becomes di-

agonally dominant with a positive entry. Despite its sim-

plicity, ALM performs quite well empirically (relative to

existing methods) as we will discuss shortly. Next, we de-

rive a Non-negative matrix factorization (NMF) [18] based

model which offers other computational advantages.

2.2. NMF Formulation

The approach in [34] formulates the binary hashing

problem as a factorization of the affinity matrix into sym-

metric components. It turns out that the Hamming dis-

tance matrix can also be expressed in such a factored form,

though in this case, the factors generated will not be sym-

metric. This leads to a binary NMF type formulation for

the problem, with additional constraints. The formulation

offers several benefits which we will discuss shortly.

Our construction proceeds as follows. For notational

purposes, let A,Ah, X be the corresponding vector forms

of matrices A, Ah and X respectively. That is, if A ∈
R

n×n, then A is a column vector of length n2, created from

A in row major order. Clearly, (1) can be written as

min
Ah

‖A−Ah‖
2
F s.t. Ah = Φ′(X) (6)

where Φ′(·) serves as the Hamming distance function.

Next, we rewrite the matrix product (1 − X)XT in its

vector form as well. This can be expressed as HX , where

H = (In×n ⊗ (1 − X)) is a n2 × nd matrix where I de-

notes the identity matrix and ⊗ is the Kronecker product of

two matrices (Chapter 5, [29]). To ensure that Ah is the

vectorized form of a symmetric matrix, we multiply HX ,

on the left, with a specific matrix M . Here, M is a constant

binary matrix in R
n2

×n2

constructed in the following way.

Let i and j be two indices in A which correspond to sym-

metric off-diagonal entries in A: that is, A(k, l) = A(i) and

A(l, k) = A(j). Then, the ith column of M , given as M.i,

contains 1s in rows i and j. The jth column is identical to

the ith column, making M symmetric. Essentially, if X is

a length appropriate vector, then (MX)i = Xi+Xj , adds

the corresponding off-diagonal elements. Then, it is easy to

verify that MHX is the same as Ah.

Since the constraint Xi(1 −Xi) = 0 is satisfied if and

only if Xi ∈ {0, 1} and imposing the constraints as de-

scribed above in (6), we get the following model,

min
X,H

‖A−MHX‖2F

s.t. H = I ⊗ (1−X), Xi ∈ {0, 1}∀i.

The formulation is similar to a binary NMF problem with

additional constraints. Several approaches have been pro-

posed recently to solve the NMF problem, where one or

both factors are binary [32, 36]. For our purpose, we adopt

a simple gradient projection scheme as discussed in [26].

Relaxing the binary restrictions, we define the convex re-

laxation of the feasible set as,

C := {{H,X}|H = I ⊗ (1−X), 0 ≤ X ≤ 1} (7)

We define the projection operator ΠC as,

ΠC(z) := argmin
x∈C
‖x− z‖pp (8)

ΠC(z) exists and it is unique since C is convex. The choice

of p does not matter but it is interesting to note that when

p = 1, the projection operation [18] can be formulated as a

linear program.

2.2.1 A Multiplicative Update scheme

Because (8) is in a NMF form, we can now derive solutions

based on multiplicative updates.
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Algorithm 2 Multiplicative Gradient Projection Algorithm

Start from an initial point H,X ∈ C

while convergence not satisfied do

Update X and H using the multiplicative update as

given in (10) and (11).

Update (H,X)← ΠC(H,X).
end while

Let f(H,X) be the objective function. The derivative of

f with respect to X and H are given by,

∂f

∂H
= 2M

(

MHXX
T −AX

T
)

,

∂f

∂X
= 2HTM( MHX −A).

(9)

We now follow the recipe in [18] and perform an update
as,

X l ←X l

(

HTMA
)

l

(HTM2HX)l
(10)

Hij ← Hij

(

MAX
T
)

ij

(M2HXXT )ij
, (11)

After this step, we project on to C to maintain feasibility.

ALM versus NMF. Occasionally, a NMF algorithm may

fail to converge for a number of reasons. One can easily

construct an example in one dimension to verify this. Nu-

merical experiments in the later sections do indicate this na-

ture of multiplicative updates in one specific case. The con-

vergence proof (for multiplicative updates) is based on the

construction of an auxiliary function. When the auxiliary

function is non-smooth or when we are already at a station-

ary point of the auxiliary function, then the algorithm may

fail to converge. We refer the reader to [18] for convergence

details. Nonetheless, note that the update steps in principle

require large size matrices, but due to the block structure of

H and the construction of M , it can be broken down into

much smaller computations, much of which can be done in

parallel [22]. Multiplicative updates intuitively makes more

sense when we are dealing with massive data sets since we

need very limited information in order to update each en-

try. Second, this method is much more stable to incomplete

data, by design. Third, NMF has been extensively studied

in machine learning and mature implementations are avail-

able. The formulation makes the use of such libraries for

binary hashing possible with minor cosmetic changes. Fi-

nally, ALM has a parameter µ which has to be carefully up-

dated. This is because when we make µk+1 ≫ µk then we

try to satisfy the constraints more than seeking to decrease

the objective.

2.2.2 Parallel Implementation

It turns out that because of the block structure of the matrix

H , a number of key steps in the matrix updates can be sim-

plified and done in a parallel manner. Consider the updates

in (10) and (11). Since A is a vector of a symmetric matrix,

MA is simply the vector form of Â = 2A− diag(A)I . We

focus on the update rule for H first and observe that, if the

H from a previous step is block diagonal (true for any fea-

sible H), then the update equation will result in non-zero

values only in the diagonal blocks of the new H matrix.

Therefore, we can reformulate the rule only for the diago-

nal blocks of H (Hi) each of which is of size n× d as

Hi ← Hi

Â(i, :)TX(i, :)

2(XHi(i, :)TX(i, :) +HiX(i, :)TX(i, :))
(12)

Each of these block updates can be done in parallel since

there is no dependency among the different blocks. The

update rule for X can be written in terms of a matrix as

X ← X
Â(i, :)THi

2(Hi(i, :)XTHi +X(i, :)HT
i Hi)

(13)

Once again this update rule can be further broken down to

an update for each row of X , which can be done concur-

rently. We implemented this algorithm using CUDA, where

computing the matrix products in the update rules is done

concurrently at the level of individual entries of the matrix

products. This gives a significant speedup compared to a

non-parallel version, particularly when n grows larger. We

will discuss this further in the experiments.

3. Initialization

The models outlined above are iterative approaches that

need an initialization. To this end, we adopt a simple

scheme, where we first project X̂ to d ≪ D dimensions

(either using PCA or random projections). Then, each point

in the projected data is ‘mean-thresholded’ to get an initial

estimate of X . Each real-valued entry is rounded to 0 if

smaller than the mean of the corresponding dimension, and

1 otherwise (one can also obtain the threshold by computing

the maximum margin in 1-D [28]). Consider the ‘event’ that

our initialization procedure is poor in the sense that pairs of

examples (in the real-valued distribution in R
d) which are

close are not thresholded to the same binary bit. We will

bound (away from 1) the likelihood of such events under the

assumption that the projected data follows some Gamma
distribution (Chapter 19, [33]). This assumption allows the

result to be general enough to include a wide variety of data

distributions, yet provide useful initializations [2, 4].

Theorem 3.1 (Consistency of Initial estimate). Let

{xi} ∈ {0, 1} be the binary embedding of {vi} ∼
Gamma(k, θ) where k ≥ 1 (k, θ, kθ is shape, scale, mean
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of the distribution) so that

xi =

{

0 if vi ≤ E(vi) = kθ

1 otherwise
(14)

and vi, vj be any two entries (for examples i and j) in the

same dimension ∈ {1, · · · , d} with |vi − vj | = s < kθ.

Then we have,

Pr(xi ⊕ xj = 1) ≤f(s, k, θ)g(k) where

f(s, k, θ) =
exp(−s

θ
)

θ2

(

1 +
s

kθ − s

)k−1

,

g(k) =
γ(2k − 1, 2k)

22k−1[Γ(k)]2

(15)

Proof (Sketch). The proof (see supplement) follows by

first observing that

xi ⊕ xj = 1 ⇐⇒ kθ − s < vj ≤ kθ

for some vj ≤ vi. Hence, to show (15), we need to compute

the following integral,

Pr(xi ⊕ xj = 1) :=

∫

vj∈(kθ−s,kθ],vi=vj+s

p(vi)p(vj)

Using that fact that vi, vj ∼ Gamma(k, θ), k ≥ 1 with

s < kθ, the above integral simplifies to

Pr(xi ⊕ xj = 1) ≤
exp(− s

θ
)(1 + s

kθ−s
)k−1

(Γ(k))2θ222k−1
γ̄(k)

where γ̄(k) =

[

γ(2k − 1, 2k)− γ

(

2k − 1,
2(kθ − s)

θ

)]

where γ(·, ·) is the lower incomplete Gamma function. Ob-

serving that γ(·, ·) is positive and non-decreasing in its sec-

ond argument, we get (15).

Whenever k ≥ 1, g(k) in (15) is smaller than 0.45 and

decreases as k increases. Further, f(s, k, θ) < 1, except

for very small θ. The case of θ ≈ 0 can be rectified by

rescaling the data to ensure θ is large enough. Overall, for

some (k, θ), a decrease in s will drastically reduce the up-

per bound in (15). This makes sense since the binary em-

bedding would contain very few errors at small values of s.

Note that in our setting, it is not necessary to analyze the

case of s > kθ since the instances i, j will be assigned dif-

ferent embeddings ({0, 1}) with probability 1 anyway. The

above result is dimension-wise and applies directly to mul-

tiple dimensions (where each dimension has its own k and

θ). The upper bound then will be the product of (15) type

upper bounds over all dimensions.

Note that using the initialization as the starting point, Alg

1 and 2 monotonically decreases the objective. So the ini-

tialization serves as an upper bound on the final objective

value. Hence, Thm 3.1 applies to the output of these algo-

rithms as well.

3.1. Out of Sample Extensions

When evaluating on unseen data, we generate d linear

classifiers, using the d bits of training code as labels, and

then these classifiers are to predict the code for test exam-

ple. Note that while most approaches in unsupervised hash-

ing learn the seperating hyperplanes during the process of

hashing itself, our method (similar to [20]) solves for the

code first and then generates the hyperplanes, which are

used to determine the codes for unseen test points. One ad-

vantage of our approach is that the hyperplanes generated

are based on the maximum margin principle, which may re-

sult in more discriminative seperation of the two classes, for

each hash bit, and can be especially useful for unseen data.

Time Complexity: For NMF approach, the update rules

(12) and (13) have a time complexity of O(n2). However,

in the parallel version, simultaneous updates reduce per it-

eration cost to O(n). For ALM, update steps consist of ma-

trix multiplications of the form XXT which is O(n2) but

much cheaper in practice. Using a standard package like

Intel MKL reduces the run time to O(n) by parallelization.

The cost for out of sample extension is O(dT ) where T is

the runtime for learning a linear classifier.

4. Experiments

We performed a number of experiments to evaluate the

efficacy of our ALM and NMF methods, comparing these

with five other approaches for binary hashing, including Lo-

cality Sensitive Hashing (LSH) [13], KLSH [17], SH [35],

MDSH [34], BRE [16], ITQ [11] and Anchor Graph Hash-

ing (1 and 2 layer) [24, 23]. We evaluate these on a number

of machine learning and vision datasets, which vary in size,

dimensionality, and number of classes. These include Iris,

Heart, Nursery, MNIST, Caltech101, LabelMe, and two CI-

FAR datasets. All except LabelMe, come with class labels.

Note that since ours is an unsupervised approach, labels

are not used while learning the codes, but only for evalu-

ation. For naming purposes, the data used to construct the

distance matrix on which codes are learned is called train-

ing and all other query data are considered test data. For

datasets where labels are available, we report accuracies of

the k nearest Neighbors (k = 4) of a given query, w.r.t. the

same class labels. This will demonstrate whether semantic

concepts can be identified using such an approach.

We also evaluate the approaches by computing precision

and recall values which are standard for such tasks, to see

how well these approaches perform in approximating dis-

tances in the original space, both for training (next para-

graph) and test data points.

Estimation of Distances: We use the Iris and Heart

datasets to see how well the generated code approximates a

given distance matrix. We use Euclidean distance for A,

and the standard Gaussian kernels for affinity. For each
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Figure 1. Objective function value (left) and NN accuracy (center) on Iris and Heart dataset. (a) Iris 2 bits, (b) Iris 4 bits, (c) Heart 4 bits, (d) Heart 8 bits,

(e) Heart 16 bits. (right) Running time factor improvements for each iteration of the parallel implementation relative to the regular implementation

code, we compute ‖A − Ah‖
2, and then normalize it by

the squared Frobenius norm of A, (‖A‖2) and the number

of bits. Fig. 1 (columns 1-2) shows these values for both

datasets, as a function of the number of bits. Note that we

only choose bits which are powers of 2 and do not exceed

the inherent dimension of the data. As can be seen from this

plot, both our NMF and ALM approach approximate the

distances better than any other method. By increasing the

number of bits, the approximation progressively improves

for all approaches.

Number of classes: Caltech101 is a good dataset to see

how an increase in number of classes affect performance,

since it has a large number of classes (up to 101) and a small

number of data items per class, which makes it a difficult

dataset in some sense. Since this is widely used in com-

puter vision, kernels for this dataset on different features

are available (UCSD MKL dataset). We use the (mean of

a small set of) kernel(s) as the input to some of our com-

parison methods and also to create our distances. However,

since the original features for the test dataset (needed by

some of the methods being compared to) is unavailable, we

limit our evaluation to the training dataset only. Whenever

features were needed by our method or comparison methods

for training data, we generated them by implementing the

approach in [1]. Fig. 2 (Row 1, Col 1-2) shows the results

on the Caltech 101 dataset, using 50 and 101 classes. The

plot shows that in both settings, our methods outperform

the other approaches. In addition, doubling the number of

classes affects performance but not drastically.

Dimensionality: We use Cifar (Cifar-10), Cifar-100

and MNIST to see how our methods behave compared to

others on really high dimensional datasets (Fig. 2). HOG

features extracted from the Cifar data is a feature vector of

length 625 for each image, whereas MNIST’s native dimen-

sion is 784. For MNIST (Row 1, Col 3 and Row 2, Col 1),

our methods and SH are the top performers, whereas in the

Cifar case(Row 2, Col 2), our algorithms give the best re-

sults for test data. For Cifar-100 (Row 2, Col 3), the ALM

method outperforms NMF and others, particularly in test-

ing. More results on these datasets are in the supplement.

Generalization to unseen data as a function of dis-

tances: Here, we evaluate how well distances are approxi-

mated with all the datasets mentioned earlier. However, due

to lack of space, we only present a subset of these plots here.

In order to evaluate how well NN distances are estimated us-

ing codes on unseen data, we first define a threshold, such

that if the Euclidean distance of two points is less than the

threshold, they are considered “true neighbors”. Given a

query and a threshold on Hamming distance (in our case,

we set it to 3), the retrieved items for the query are all data-

points whose Hamming distance is below the threshold. We

compute precision as the proportion of retrieved points that

are indeed true neighbors, and recall as the proportion of

true retrieved points out of all true points. For LabelMe,

the size of training dataset is set at 2000 and the remaining

examples (size 3000) are used for testing. Fig. 2 (Row 4,

Col 1) shows the precision values as a function of number

of bits. In general, we outperform all other methods w.r.t.

this measure. Fig. 2 (Row 4, Col 2-3) shows precision as

a function of recall for this setting for bits 4 and 16. Here,

we see that our performance is better than other methods

in both setting. The precision results on two other datasets

Mnist (Row 3, Col 2) and Nursery (Row 3, Col 3) show

similar results. (Note that the precision and PR curves for

all the other datasets are included in the supplement).

Generalization to unseen data as a function of labels:

For 4 datasets, Nursery (Row 3, Col 1), MNIST, Cifar and

Cifar-100, we show plots (Fig. 2) where the codes are learnt

on a training size of 2000 and generalized to a much larger

testing set (≥ 10000 in some cases). While the relative per-

centage varies (depending on the dataset), in most cases,

our models show impressive performance in finding neigh-

bors which have the same class label as the query point.

Furthermore, we also performed experiments to see if in-

creasing the size of the training set improves generalization

but found that in general, the relative improvement saturates

pretty quickly. Therefore, a moderate sized training set (if

chosen randomly) ensures good generalization.

Running Time: Note that when comparing all meth-

ods (including our nonparallel methods) with respect to run

time, the performances are not significantly different. But

we do see a significant difference when comparing (any)

nonparallel method with the parallel implementation. To do

this, we implemented our Parallel algorithm using Matlab’s
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Figure 2. Results on UCSD (Row 1, Cols 1-2), MNIST (Row 1, Cols 3; Row 2 Col 1), Cifar and Cifar100 (Row 2, Cols 2-3), Nursery (Row 3, Col 1),

Precision curves for Mnist (Row 3, Col 2) and Nursery (Row 3, Col 3) and Labelme (Row 4) datasets.

parallel computing toolbox and CUDA 5.5 on a machine

with a Tesla K40 graphics card. We measure the average

time taken per iteration using the GPU implementation as

well as our version which does not use GPU. We evaluate

the factor improvement in runtime when a GPU implemen-

tation is used. The results are plotted in Fig. 1 (column

3). Overall, we get 100x improvement in the runtime as

we increase n after which the gains saturate, perhaps due

to the number of threads supported on the device [9]. For

n = 1000 the runtime is < 0.2s. These improvements are

significant compared to a non-parallel version, resulting in

iteration times in the order of milliseconds.

5. Conclusions

This paper proposes effective solutions to the binary

hashing problem where, the goal is to generate binary codes

for high dimensional data points such that the Hamming dis-

tance maintains high fidelity with a target distance function.

We first derive an Augmented Lagrangian method as a ref-

erence - later, we provide a NMF based model which leads

to a Multiplicative updates scheme for binary hashing. The

procedure is parallelizable, by design, and will enable de-

ploying hashing for very large scale datasets using cosmetic

changes to heavily engineered implementations that are al-

ready widely available (e.g., MapReduce [6]). We show via

extensive experiments that both ALM and NMF methods

yield impressive performance relative to existing methods.
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